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ABSTRACT: We study the problem of minimizing the weighted number of tardy jobs on a single machine
with deterministic machine availability constraints. We show that the cases with resumable and non-resumable
jobs (1, hk|ri, nr − a|

∑
wiUi and 1, hk|ri, r − a|

∑
wiUi) can both be modeled as a more general scheduling

problem, consisting in selecting and scheduling jobs on parallel machines subject to time windows and group
constraints. For this generic problem, we design a Mixed Integer Linear Programming (MILP) model as well as
several improvements. Based on a set of randomly generated instances, computational results indicate that the
direct solution of the improved MILP is a competitive method since it allows solving optimally most instances of
1, hk|ri, nr−a|

∑
wiUi, 1, hk|ri, r−a|

∑
wiUi and 1|ri|

∑
wiUi with 300 jobs in 1000 seconds. Moreover, it can

be favorably compared to previous work published for the special case of periodic maintenance without release date.

KEYWORDS: Scheduling, Late jobs, Availability constraints, Integer Linear Programming.

1 INTRODUCTION

In most scheduling problems, we assume that a job
can be processed anytime after its release date. How-
ever, more and more research papers study schedul-
ing problems subject to machine or job availability
constraints. In this context, machines or jobs can
be unavailable for processing during given time in-
tervals. This reflects real constraints that cannot be
ignored in many practical situations like, in real pro-
duction scheduling, maintenance operations or pauses
imposed by labor laws.

We study two problems defined by a set I =
{J1, . . . , Jn} of n jobs. Each job Ji is characterized
by a release date ri, a due date di, a processing time
pi and a weight wi. All jobs must be processed on a
single machine, so that the weighted number of late
jobs is minimized. A job cannot be preempted by an-
other one: if a job starts on the machine, no other
job can start until the first one completes. A set of K
time intervals [Bs, Fs], s ∈ {1, . . . ,K}, when the ma-
chine is unavailable, is given as input. Moreover, we
add without loss of generality two fictitious unavail-
ability periods 0 and K + 1, such that B0 = F0 = 0
and BK+1 = FK+1 = ∞. All data are integer and
deterministic.
We consider the cases of resumable and non-

resumable jobs. When jobs are resumable, a job
may start before a unavailability period and be re-
sumed after it. In this case, the completion of the
job is simply postponed for the duration of the un-
availability periods crossed by the job. This problem
is denoted by 1, hk|ri, r − a|

∑
wiUi in the standard

three fields notation (Graham et al., 1979). When
jobs are non-resumable, if a job has started but has
not completed before an unavailability period, it must
be restarted from zero after the unavailability period.
Thus, it is equivalent to forbid jobs to be preempted
by unavailability periods. This problem is denoted
by 1, hk|ri, nr − a|

∑
wiUi. Although this is not the

object of this work, let us note that some research pa-
pers also investigate the semi-resumable case, where
job can be resumed but must be partially restarted af-
ter an availability period (this corresponds in practice
to, for example, a setup time required after a main-
tenance). Some authors (e.g. Mauguière et al., 2005)
also consider problems with both resumable and non-
resumable jobs, and crossable and non-crossable un-
availability periods (even resumable jobs cannot be
preempted by non-crossable periods).

Concerning only the case of deterministic machine
availability constraints (when unavailability periods
are perfectly known in advance), (Ma et al., 2010)
gathers more than 90 research papers. Interestingly,
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only one paper mentioning the minimization of the
number of tardy jobs is referenced in this survey:
(Lee, 1996) shows that 1, h1|r − a|

∑
Ui is polyno-

mial and that Moore-Hodgson’s algorithm (Moore,
1968) lead to an absolute error of 1 to solve the prob-
lem 1, h1|nr − a|

∑
wiUi. Another survey (Schmidt,

2000) cites (Lawler and Martel, 1989), which stud-
ies the minimization of the number of late jobs on
two machines whose speeds can vary (and possibly be
null) over time, when preemption is allowed. (Chen,
2009) studies a special case of 1, hk|nr − a|

∑
Ui in

which unavailability intervals correspond to periodic
maintenance. The author develop a heuristic and a
branch-and-bound to solve optimally instances with
up to 32 jobs.

The aim of this paper is to provide models for solv-
ing 1, hk|rj , nr−a|

∑
wiUi and 1, hk|ri, r−a|

∑
wiUi.

The idea of these models is to convert the problems
into a more general problem, for which we write an
efficient Mixed Integer Linear Programming (MILP)
model. The paper is structured as follows. Section
2 describes a general scheduling problem (STWP )
which consists in selecting and scheduling jobs sub-
ject to time windows and group constraints on par-
allel machines. Several improvements are proposed
to make the solution of the MILP by a solver easier.
Section 3 investigate the case of resumable jobs. We
show that the problem is equivalent to 1|ri|

∑
wiUi

and present a way of modeling the latter as (STWP ).
Section 4 gives two different transformations from
1, hk|ri, nr−a|

∑
wiUi to (STWP ). In Section 5, we

report computational results obtained for the direct
solution of the improved MILP. Finally, we conclude
in Section 6.

2 A PROBLEM OF SELECTING AND
SCHEDULING JOBS (STWP )

This section describes the problem of Selecting jobs
with Time Windows on Parallel processors (STWP )
and provides an efficient Mixed Integer Linear Pro-
gramming to solve it.

2.1 Definition

An instance of (STWP ) is defined by the following
data:

• A set I = {J1, . . . , JnI
} of nI jobs;

• A partition G of I into nG disjoint groups: G =
{G1, . . . , GnG

};

• A set M = {M1, . . . ,MnM
} of nM machines;

• For each job Ji ∈ I, the following integers are
given: a release date ri, a deadline d̄i, a process-
ing cost wi, a processing time pi, and a process-
ing machine mi

A feasible solution of this instance of (STWP ) sat-
isfies the following constraints. For each group Gg,
g ∈ {1, . . . , nG}, exactly one job in Gg must be pro-
cessed. Processing job Ji, i ∈ {1, . . . , nJ} generates
a cost wi. If it is selected, job Ji must be processed
on machine Mmi

without preemption, within its pro-
cessing time window [ri, d̄i].

This problem is clearly a generalization of the prob-
lem of minimizing of the weighted number of tardy
jobs on parallel unrelated machines (R|ri|

∑
wiUi).

2.2 Characterization of feasible selections of
jobs

The MILP characterization of feasible selections of
jobs presented in this section is derived from (Deti-
enne et al., 2011), where the authors present MILP
models for minimizing a regular step cost function
of jobs completion times on parallel machines. The
same principle was also used in (Dauzère-Pérès and
Sevaux, 2002) for minimizing the number of late jobs
on a single machine. The current work differs by fo-
cusing on the feasibility of a selection of jobs, while
the two others focus on the optimality of a sequence
of jobs and lead to slightly different MILP models.
Moreover, we propose original improvements for the
derived model. Finally, in current work we address
a more general problem containing problems of both
previous papers.

Let us focus on a single machine, the result being eas-
ily adapted to multiple machines. The core idea can
be seen as an extension of the Earliest Due Date rule.
Suppose that all release dates are null, and consider
a set J ⊆ I of jobs that are selected for processing,
such that all constraints on groups are satisfied. Then
all jobs Ji ∈ J must be scheduled in [0, d̄i]. We know
that it is possible (the selection is feasible) if and only
if, when jobs are sequenced with no idle time and in a
non decreasing order of their deadlines, they all meet
their deadline (Jackson, 1955). However, this result
does not hold in the presence of non equal release
dates. In this case, we show that, by inserting virtual
jobs with appropriate time windows, we can establish
a similar dominant order.

For the sake of conciseness, we do not give a formal
proof of the result. This proof would be similar to the
one described in (Detienne et al., 2011). Let us intu-
itively show how we build the set of virtual jobs. Let
us consider a feasible selection and schedule of jobs.
Let Ji and Jj be two jobs processed consecutively in
this solution (Ji precedes Jj). Concerning the posi-
tions of Ji and Jj with respect to their release dates
and deadlines, the three following cases can occur.

• Case 1: d̄i ≤ d̄j . Jobs Ji and Jj are scheduled ac-
cording to a non-decreasing order of their dead-
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Ji Jj

rj d̄i d̄j

Figure 1: Case 1: d̄i ≤ d̄j . Jobs i and j are scheduled according to a non-decreasing order of their deadlines.

Ji

Ji Jj

Jj

rirj d̄j d̄i

Figure 2: Case 2: ri ≥ rj and d̄i > d̄j . Jobs i and j can be swapped and scheduled according to a non-decreasing
order of their deadlines, and the resulting schedule is feasible.

lines (see Figure 1).

• Case 2: ri ≥ rj and d̄i > d̄j . It can be seen
from Figure 2 that Ji and Jj can be swapped, so
that the schedule before and after them does not
change and Ji and Jj still meet their deadlines.
Moreover, in the resulting schedule, Ji and Jj are
scheduled according to a non-decreasing order of
their deadlines.

• Case 3: ri < rj and d̄i > d̄j . Jobs Ji and Jj are
not scheduled according to a non-decreasing or-
der of their deadlines (see Figure 3). Moreover,
interchanging their processing order may result
in delaying the jobs processed after Ji and Jj ,
or simply the completion time of job Ji exceed-
ing its deadline. We propose to insert a virtual
job Jh(i,j) in the group of job Ji, so that the cur-
rent feasible solution can be obtained by selecting
Jh(i,j), equivalent to selecting Ji, and schedule it
before Jj while keeping a sequence of jobs satis-
fying a non-decreasing order of their deadlines.
We can show that choosing the same character-
istics for Jh(i,j) as for Ji except d̄h(i,j) = d̄j is
valid if, in the order considered, ties are broken
according to an arbitrary non-decreasing order
of the release dates of the jobs.

Thus, in case 1, the feasible solution is obtained by
scheduling Ji and Jj in the order of their deadlines. In
case 2, interchanging Ji and Jj leads to another feasi-
ble schedule, in which they are scheduled in the order
of their deadlines. In case 3, once we have added the
adapted set of virtual jobs, the feasible solution can
be obtained by selecting the virtual job Jh(i,j) corre-
sponding to scheduling Ji before Jj , so that Jh(i,j)

and Jj are scheduled in a non-decreasing order of
their deadlines, ties being broken according to a non-
decreasing order of their release dates. The intuitive
insight provided above can be applied separately on
each machine of the problem, to generate a suitable

set of virtual jobs. We use the fact that, one each
machine, there exists at least one feasible schedule in
which the processed job are scheduled according to
this order, to write an MILP model that determines
the optimal selection of jobs.

Formally, for each job Ji ∈ I, we define the set of
associated virtual jobs by:

Hi = {Jh(i,j)/Jj ∈ I,mi = mj , ri < rj , d̄i > d̄j}

where h(i, j) denotes the index of the virtual job,
satisfying h(i, j) 6= h(i′, j′) if i 6= i′ or j 6= j′, and
h(i, j) ∈ {nI + 1, . . . , nI′} with nI′ = |I|+ | ∪nI

k=1Hk|.
Moreover, let us denote h−1(l) the index of job Jj
such that ∃i/h(i, j) = l, i.e. the index of the job that
generated Jl. If Jl ∈ I (Jl is not a virtual job), we
set h−1(l) = ∅. Each job Jl ∈ Hi, i ∈ {1, . . . , nI} has
the following characteristics: rl = ri, d̄l = d̄h−1(l),
pl = pi, wl = wi and ml = mi.

The set of jobs of the enhanced problem is I ′ =
{J1, . . . , JnI′} and the new groups of jobs are G′ =
{G′1, . . . , G′nG

}, with G′g = Gg ∪ ∪Ji∈Gg
Hi, g ∈

{1, . . . , nG}. Besides, let I ′m = {Ji ∈ I ′/mi = m},
m ∈ {1, . . . , nM} be the set of jobs that can be pro-
cessed on machine Mm, and let G′mg = G′g ∩ I ′m be
the set of jobs from group G′g that can be processed
on machine Mm.

2.3 MILP model

In order to build our Mixed Integer Linear Pro-
gramming model, let us assume that, for each ma-
chine Mm ∈ M , (virtual and real) jobs that can
be processed on Mm are sorted according to a non-
decreasing order of their deadlines, ties being bro-
ken according to an arbitrary non-decreasing order of
their release dates. Moreover, let σm(k) be the in-
dex of the kth job that can be processed on Mm. For
the sake of readability, let us introduce the following
notations:
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d̄h(i,j)

rjri d̄j d̄i

Ji Jj

Jj Ji

Figure 3: Case 3: ri < rj and d̄i > d̄j . Swapping i and j may lead to an infeasible schedule. So we cannot
derive an other optimal schedule satisfying the usual non-decreasing order of the deadlines. A virtual job Jh(i,j)

is added to the group of job Ji, with the same characteristics as Ji except its deadline d̄h(i,j) = d̄j . Scheduling i
before j comes to selecting Jh(i,j) and Jj , which can be scheduled in a non-decreasing order of their deadlines.

• rmk = rσm(k) is the release date of the kth job on
machine Mm

• pmk = pσm(k) is the processing time of the kth job
on machine Mm

• d̄mk = d̄σm(k) is the deadline of the kth job on
machine Mm

• wmk = wσm(k) is the processing cost of the kth

job on machine Mm

Then, the problem (STWP ) can be expressed as:

(A) min

nM∑
m=1

|I′m|∑
k=1

wmk x
m
k (1)

nM∑
m=1

∑
k/Jk∈G′mg

xmk = 1 g = 1, . . . , nG (2)

tmk − (rmk + pmk )xmk ≥ 0 m = 1, . . . , nM ,

k = 1, . . . , |I ′m|(3)

tmk − tmk−1 − pmk xmk ≥ 0 m = 1, . . . , nM ,

k = 2, . . . , |I ′m|(4)

0 ≤ tmk ≤ d̄mk m = 1, . . . , nM ,

k = 1, . . . , |I ′m|(5)

xmk ∈ {0, 1} m = 1, . . . , nM ,

k = 1, . . . , |I ′m|(6)

In this model, variable tmk denotes the completion
time of the kth job on machine Mm, if it is processed.
Otherwise, it is a lower bound of the starting time of
the next processed job. Variable xmk is equal to 1 if
and only if the kth job on machine Mm is processed,
and is equal to 0 otherwise. Constraints (2) ensure
that exactly one job of each group is selected. Con-
straints (3) state that each job cannot start before
its release date, while Constraints (4) express the re-
source and conjunctive constraints (each machine can
handle at most one job at a time, and selected jobs are
processed in the correct order). Constraints (5) force

each job to complete before its deadline. Note that,
as jobs are sorted according to a non-decreasing order
of their deadlines, Constraint (5) at rank k does not
over-constrain the completion times of jobs of ranks
k′, k′ < k. Expression (1) is the objective function,
which minimizes the sum of the costs of selected jobs.

2.4 Improvements

Proposition 1 and 2 exploit the classical selections on
disjunction (see e.g. Carlier, 1982) to remove some
virtual jobs and to strengthen the model. Similar
propositions are also used in (Dauzère-Pérès and Se-
vaux, 2002) or (Detienne et al., 2011).

Proposition 1. Let Ji ∈ I and Jj ∈ I, i 6= j, mi =
mj. If ri < rj, di > dj and ri+pi+pj > dj, then the
virtual job Jh(i,j) is useless and can be removed from
the model.

Proof. Processing Ji before Jj is not feasible. Hence,
if both Ji and Jj are scheduled, Jj precedes Ji and
case 3 (Figure 3) cannot occur.

Proposition 2. Let Ji ∈ I and Jj ∈ I, i 6= j, mi =
mj = m. If ri + pi + pj > dj and rj + pj + pi > di,
then the following inequality holds:∑

k/Jk∈Hi∪Hj∪{Ji,Jj}

xmk ≤ 1

Proof. The inequality just expresses that Ji and Jj
(or one of their corresponding virtual jobs) cannot be
both processed in a feasible solution.

Proposition 3 strengthens the model by removing
some equivalent feasible solutions.

Proposition 3. If at least one feasible solution ex-
ists, there exists at least one feasible solution such
that the following inequalities hold:

xmk ≥ xmk′ m = 1, ..., nM , k = 1, ..., |I ′m|,
k′ = 1, ..., |I ′m|, σm(k) = h−1(σm(k′))
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Proof. The relation σm(k) = h−1(σm(k′)) expresses
the fact that the virtual job Jσm(k′) has been gener-
ated to represent a job Ji processed before Jσm(k), be-
cause of case 3. If Jσm(k) is not processed, then there
is no need to consider the virtual job Jσm(k′) associ-
ated with it. Thus, we allow selecting a virtual job
only if the real job that generated it is selected.

Proposition 4 tightens the upper bound of variables
tmk and reduces the constants used in Constraints (3).

Proposition 4. For all m ∈ {1, . . . , nM}, let δm =
min{k∈1,...,|I′m|} r

m
k . Constraints (3) and (5) can be

replaced by:

tmk − (r′mk + pmk )xmk ≥ 0 m = 1, . . . , nM ,

k = 1, . . . , |I ′m|(7)

0 ≤ tmk ≤ d̄′mk m = 1, . . . , nM ,

k = 1, . . . , |I ′m|(8)

where r′mk = rmk −δm and d̄′mk = max(d̄′mk−1, d̄
′′m
k )−δm

and:

d̄′′mk =

{
d̄mk − ph−1(σm(k)) if h−1(σm(k)) 6= ∅
d̄mk if h−1(σm(k)) = ∅

Proof. First, it is easy to see that all dates can be
shifted together from any number δm of time slots
without changing the set of integer solutions. One
can verify that δm is chosen so that the constants of
Constraints (3) are non-negative and as small as pos-
sible. Second, according to Proposition 3, a virtual
job can be selected only if the real job that generated
it is selected. Thus, if Jσm(k) is a virtual job, then it
must complete before Jh−1(σm(k)), which must itself
complete before d̄mk . Hence, Jσm(k) must complete
before d̄mk − ph−1(σm(k)). So, we can decrease the up-
per bound of tmk down to this value, if we do not to
overconstrain the preceding jobs, i.e. if we do not
prevent that tmk−1 = d̄′mk−1.

Proposition 5 allows replacing some conjunctive con-
straints by knapsack constraints, which are usually
better dealt with by MILP solvers (for example by
generating cover cuts).

Proposition 5. Let m ∈ {1, . . . , nM} and km∗ =
arg max{k ∈ {1, . . . , |I ′m|}/r′mk = 0}. Constraints
(4) and (8) at ranks from 1 to km∗ can be replaced by
the following constraints:

∑k
l=1 p

m
l x

m
l ≤ d̄′mk k ∈ 1, . . . , km∗ (9)

tmkm∗ ≥
∑km∗
l=1 p

m
l x

m
l (10)

Proof. Since there is no release date for jobs before
position km∗ ,

∑k
l=1 p

m
l x

m
l is the completion time of

job at position k on Mm if it is processed. Inequality
(10) just defines tmkm∗ for Constraint (4) to be valid at
rank km∗ + 1.

Propositions 6 and 7 introduce Zero-Half cuts which
can be added to the model to tighten its linear relax-
ation.

Proposition 6. Let m ∈ {1, . . . , nM}, k ∈
{2, . . . , |I ′m| − 1}, u ∈ {k, . . . , |I ′m| − 1} and v ∈
{u + 1, . . . , |I ′m|}. Let bzc, z ∈ R denote the largest
integer not larger than z. If, for all l ∈ {u+1, . . . , v},
pml is even, then the following inequality is valid:

tmk−1 +

u∑
l=k

pml x
m
l +

v∑
l=u+1

pml
2
xml ≤

⌊
d̄′mu + d̄′mv

2

⌋

Proof. First note that Constraints (4) and (8) imply:

tmk−1 +

q∑
l=k

pml x
m
l ≤ d̄′mq q ∈ {k, . . . , |I ′m|} (11)

Let us sum up inequalities (11) at ranks u and v. We
get:

2tmk−1 +

u∑
l=k

2pml x
m
l +

v∑
l=u+1

pml x
m
l ≤ d̄′mu + d̄′mv (12)

Let us divide (12) by 2:

tmk−1 +

u∑
l=k

pml x
m
l +

v∑
l=u+1

pml
2
xml ≤

d̄′mu + d̄′mv
2

(13)

On the left side of this inequality, all terms are inte-
ger. Thus, the value of the left term cannot be frac-
tional, and we can tighten the inequality to obtain
the claimed result.

Proposition 7. Let m ∈ {1, . . . , nM}, k ∈
{1, . . . , |I ′m| − 1}, u ∈ {k, . . . , |I ′m| − 1} and v ∈
{u + 1, . . . , |I ′m|}. Let bzc, z ∈ R denote the largest
integer not larger than z. If, for all l ∈ {u+1, . . . , v},
pml is even, then the following inequality is valid:

r′mk xmk +

u∑
l=k

pml x
m
l +

v∑
l=u+1

pml
2
xml ≤

⌊
d̄′mu + d̄′mv

2

⌋

Proof. Similar to the proof of Proposition 6, except
that it also uses Constraints (7).

Note that the cuts provided by Propositions 6 and 7
are not dominated by the set of constraints defin-
ing the linear relaxation of (P ) when d̄mu + d̄mv is
odd. In practice, adding all these cuts makes the
MILP a lot larger and slows down its solution by a
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solver. Moreover, we did not develop an efficient sep-
aration algorithm for these particular cuts, so that
checking whether one of them is active given a frac-
tional solution at each node of a search tree is not
practically efficient. Therefore, we add a subset of
the cuts directly in the model before its solution. To
define this subset, we solve a family of |I ′| Linear Pro-
grams based on the linear relaxation of (A), in each
of which we fix a single variable xmk to 1. Note that
the procedure is fast since only a few dual-simplex
iterations are usually required to solve an LP incre-
mentally from the optimal basis of the previous prob-
lem. We add the cuts that are active in at least one
of the solutions of the LPs and such that u = k + 1,
v ∈ {u+ 1, . . . , arg max{v′ ≥ u+ 1/pq is even for q ∈
{u+ 1, . . . , v′}}}, and d̄′mu + d̄′mv is odd.

3 RESUMABLE JOBS

(Lee, 1996) shows that the problem 1, h1|r − a|
∑
Ui

can be solved using Moore-Hodgson’s algorithm ini-
tially designed to solve the problem 1||

∑
Ui (Moore,

1968). Indeed, within the procedure, it is sufficient
to add the duration F1 −B1 of the unavailability pe-
riod to the completion time of the jobs completing af-
ter B1. However, remark that considering a problem
without availability constraints and adding unavail-
ability periods, even with resumable jobs, sometimes
changes the complexity of the problem: the author
shows that 1, h1|r − a|

∑
wiCi is NP-hard in the or-

dinary sense, although 1||
∑
wiCi is polynomial.

3.1 Conversion into 1|ri|
∑
wiUi

In this section, we show that any instance of
1, hk|ri, r − a|

∑
wiUi can be transformed into an

equivalent instance of 1|ri|
∑
wiUi. Let us denote

by s(t) = arg max{s/Bs < t} the index of the last
unavailability period starting before t. Let us define
the following function, which aims at shifting a time
instant from a problem with unavailability periods to
a problem without unavailability periods, by remov-
ing them and considering that no time elapse during
them.

∆(t) =

{
t−
∑s(t)
s=1(Fs −Bs) if Fs(t) < t

Bs(t) −
∑s(t)
s=1(Fs −Bs) otherwise

(14)

The first case applies when t lies between two un-
availability periods, while the second is for situations
where t falls during an unavailability period. Any
feasible solution Ω of an instance (P ) of 1, hk|ri, r −
a|
∑
wiUi can be characterized by, for each job Ji ∈ I,

a starting time S(i) and a completion time C(i). We
claim that, to any feasible solution of (P ), corre-
sponds a feasible solution Ω′ of an instance (P ′) of
the problem 1|ri|

∑
wiUi, with the same cost. (P ′) is

defined by a set of jobs I ′ such that |I ′| = |I|, and,
for each job J ′i ∈ I ′, a release date r′i = ∆(ri), a pro-
cessing time p′i = pi, a due date d′i = ∆(di) and a
weight w′i = wi. The corresponding solution of (P ′)
is defined by S′(i) = ∆(S(i)) and C ′(i) = ∆(C(i)).
In order to prove this, let us first observe that ∆ is
a non-decreasing function (we do not give the proof
here for the sake of conciseness).

Proposition 8. If t ≥ t′, then ∆(t) ≥ ∆(t′).

Now, let us prove that the values of S′(i) and C ′(i)
are consistent.

Proposition 9. For all job J ′i ∈ I ′, C ′(i) = S′(i)+pi.

Proof. The completion time of job Ji can be ex-
pressed as C(i) = β(S(i), pi, s̄), with s̄ = arg min{s ≤
k/β(S(i), pi, s) ≤ Bs+1} and β(t, p, s) = t + p +∑s
s′=s(t)+1(Fs′ − Bs′). Clearly, β(t, p, s) is the com-

pletion time of a job starting at t and whose process-
ing time is p, if we take into account unavailability
periods up to period s. We then seek for the first un-
availability period s̄ that does not postpone the com-
pletion of the job. Besides, notice that s(C(i)) = s̄.
After (14) and by remarking that a job never com-
pletes during an unavailability period, we have:

∆(C(i)) = C(i)−
s(C(i))∑
s=1

(Fs −Bs)

= S(i) + pi +

s̄∑
s=s(S(i))+1

(Fs −Bs)

−
s̄∑
s=1

(Fs −Bs)

= S(i) + pi −
S(i)∑
s=1

(Fs −Bs)

Besides, after (14), ∆(S(i)) = S(i) −
∑s(S(i))
s=1 (Fs −

Bs). Hence, we have ∆(C(i))−∆(S(i)) = pi.

Proposition 10. Ω′ is a feasible solution of (P ′).

Proof. Ω is feasible. So, S(i) ≥ ri for all Ji ∈
I. Hence, after Proposition 8, S′(i) = ∆(S(i)) ≥
∆(ri) = r′i and all release date constraints are satis-
fied by Ω′.
Moreover, let us consider any pair of jobs Ji and Jj
processed consecutively in Ω. Then S(j) ≥ C(i). So,
S′(j) = ∆(S(j)) ≥ ∆(C(i)) = C ′(i). Hence and after
Proposition 9, Ω′ satisfies all conjunctive and disjunc-
tive constraints.
Besides, let Ji be a late job in Ω. Then C(i) > di,
and C ′(i) = ∆(C(i)) > ∆(di) = d′i (we can show
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that the latter inequality is strict because C(i) can-
not stand during an unavailability period). Conse-
quently, J ′i is late in Ω′ and a cost w′i = wi is incurred.
Let Ji be a on-time job in Ω. Then C(i) ≤ di, and
C ′(i) = ∆(C(i)) ≤ ∆(di) = d′i and J ′i is on-time.
Hence, Ω and Ω′ have the same cost.

Based on a function ∆+(t) =
min{β(0, t, s)/β(0, t, s) ≤ Bs+1}, we can show
in a similar way that a feasible solution of (P ) cor-
responds to each feasible solution of (P ′), with the
same cost. So, from (P ), we can build an equivalent
instance (P ′) of the problem 1|ri|

∑
wiUi. This

reduction from 1, hk|ri, r− a|
∑
wiUi to 1|ri|

∑
wiUi

can be done in polynomial time.

Note that equal release dates in (P ) will yield equal
release dates in (P ′). Thus, this implies the follow-
ing complexity results: 1, hk|r − a|

∑
Ui is polyno-

mial and 1, hk|r − a|
∑
wiUi is NP-hard in the or-

dinary sense. Other results can be derived, for ex-
ample that 1, hk|ri, r − a|

∑
Ui is polynomial when

release and due dates are similarly ordered, or that
1, hk|r − a|

∑
wiUi is polynomial when processing

times and job weights are oppositely ordered. . .

3.2 Conversion into (STWP )

In the remainder of the paper, data names followed
by a ”′” (resp. ”′′”) sign, like ”r′i” (resp. ”r′′i ”) refer
to data of instance denoted by (P ′) (resp. by (P ′′)).
From an instance (P ) of 1, hk|ri, r − a|

∑
wiUi, we

first build the instance (P ′) of 1|ri|
∑
wiUi as ex-

plained in the previous section. Then, the conver-
sion to an instance (P ′′) of (STWP ) is straightfor-
ward. Instance (P ′′) counts n′′M = 2 machines: the
first one is for scheduling on-time jobs, while the sec-
ond is a virtual machine which receives late jobs. For
each job J ′i of (P ′), create two jobs J ′′i and J ′′n+i+1 in
(P ′′), such that r′′i = r′i, d̄

′′
i = d′i, w

′′
i = 0, p′′i = p′i,

m′′i = 1 and r′′n+i+1 = 0, d′′n+i+1 = 1, w′′n+i+1 = w′i,
p′′n+i+1 = 0 and m′′n+i+1 = 2. Finally, create a group
G′′i = {J ′′i , J ′′n+i+1} for each job J ′i of (P ′).

4 NON RESUMABLE JOBS

The problem 1, hk|nr − a|
∑
Ui is NP-hard in the

strong sense (this can be proved, for example, by re-
duction of 3-partition as suggested in (Lee, 1996) for
1, hk|nr − a|Cmax). In this section, we propose two
ways of converting this problem to (STWP ). The
first one is similar to the transformation used in Sec-
tion 3. The second one decomposes the time horizon
according to the disjoint availability periods. In Sec-
tion 5, we report significant differences in the practi-
cal solution of the problem depending on the trans-
formation chosen.

4.1 Conversion into a two-machine (STWP )

Let us consider an instance (P ) of 1, hk|ri, nr −
a|
∑
wiUi and let us build an equivalent instance

(P ′) of (STWP ). For each job Ji of (P ), we cre-
ate a group of jobs composed of one job J ′i,s for each
unavailability period s where Ji can be processed,
plus one fictitious late job: G′i = {J ′i,s/1 ≤ s ≤
K + 1, Bs ≥ ri + pi, Fs−1 + pi ≤ di} ∪ {J ′i,∗}. The
late job J ′i,∗ is such that r′i,∗ = 0, d′i,∗ = 1, p′i,∗ = 0,
w′i,∗ = wi, m

′
i,∗ = 2. The time window of J ′i,s is the

intersection of the time window of Ji and the avail-
ability period [Fs−1, Bs]: r′i,s = max(ri, Fs−1) and
d′i,s = min(di, Bs). Hence, the job representing Ji is
forced to be processed out of the unavailability peri-
ods of the machine, and within the time window of
Ji. The other characteristics of J ′i,s are: p′i,s = pi,
w′i,s = 0 and m′i,s = 1.

4.2 Conversion into a K+ 1-machine (STWP )

The idea of this conversion is that jobs that are not
processed during the same availability period cannot
interfere with each other. More precisely, the starting
time of the first job processed in a period [Fs, Bs+1]
(which does not start before Fs) is not influenced
by the completion time of the last job processed in
[Fs−1, Bs] (which does not complete after Bs < Fs).
Therefore, we can shift down all dates of events occur-
ring during [Fs, Bs+1] by Fs time units. This is equiv-
alent to consider that each availability period corre-
sponds to an independent machine, on which jobs can
be processed in parallel. Formally, to build an equiv-
alent instance (P ′′) to (P ) and (P ′), we create k + 1
machines. For each job in (P ), we create a group of
jobs composed of one job J ′′i,s for each unavailability
period s where Ji can be processed, plus one ficti-
tious late job: G′′i = {J ′′i,s/1 ≤ s ≤ k + 1, Bs ≥
ri + pi, Fs−1 + pi ≤ di} ∪ {J ′′i,∗}. The late job J ′′i,∗
is such that r′′i,∗ = 0, d′′i,∗ = 1, p′′i,∗ = 0, w′′i,∗ = wi,
m′′i,∗ = K + 1. The release and due dates of other
jobs are defined as r′′i,s = max(ri, Fs−1) − Fs−1 and
d′′i,s = min(di, Bs)− Fs−1. Finally, p′′i,s = pi, w

′′
i,s = 0

and m′′i,s = s. Compared to the two-machine trans-
formation, this allows using smaller constants in Con-
straints (7) and (8).

5 COMPUTATIONAL RESULTS

This section reports computational results obtained
by solving the problems through the transformations
described in the paper, with help of the commercial
MILP solver IBM ILOG Cplex v12.3, on a Personal
Computer equipped with a 3.2 GHz quad-core proces-
sor and 3 GB RAM. The OS used is Windows Seven
32 bits, and so the RAM available for the program is
limited to 2 GB.
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In the results presented here, we applied all improve-
ments described in Section 2.4, except Propositions 6
and 7. Indeed, they globally degrade the performance
of the solver on our models. This can be explained
by the fact that they make the MILP model larger,
without sometimes bringing relevant information for
its solution. However, as we show in the sequel, they
sometimes help to solve difficult instances or to reduce
the gap between the best known bounds for unsolved
instances.

5.1 Resumable jobs

Section 3 shows that the problem 1, hk|ri, r −
a|
∑
wiUi is equivalent to 1|ri|

∑
wiUi. So, to test

our solving method, we generated instances for the
latter as described in (Dauzère-Pérès and Sevaux,
2002). More precisely, the generator takes the fol-
lowing parameters as input: The number n of jobs, a
release date factor R and a due date factor D. For
each job Ji, a processing time pi is drawn from a
uniform distribution {1, . . . , 100}. To each job i is
assigned a release date ri drawn from a uniform dis-
tribution {0, . . . , nR}, and a due date di drawn from
a uniform distribution {ri+pi, . . . , ri+pi+nD}. Pa-
rameter R controls the dispersion of the release dates,
while parameter D controls the size of the job execu-
tion windows. The parameters used to build our test
bed are the combinations of n ∈ {100, 200, 250, 300},
R ∈ {1, 5, 10, 20} and D ∈ {1, 5, 10, 20}. Ten in-
stances are generated for each combination of these
parameters, leading to a total of 640 instances.

Time limit
n 10 sec. 100 sec. 1000 sec. 3600 sec.

100 99.4% 100.0% 100.0% 100.0%
200 55.6% 96.9% 99.4% 100.0%
250 21.3% 96.3% 97.5% 98.8%
300 9.4% 90.6% 94.4% 96.3%

Table 1: Part of instances of 1, hk|ri, r − a|
∑
wiUi

and 1|ri|
∑
wiUi proved to be solved optimally ac-

cording to different time limits.

Table 1 reports the part of instances solved to opti-
mality (such that the optimality of the solution found
is proved), according to the computing time required.
All instances with 200 jobs are solved within one
hour (applying Propositions 6 and 7 allows solving
the only 200-job instance unsolved within 1000 sec-
onds in 491 seconds), and 90.4% of the 300-job in-
stances are solved within 100 seconds. These results
are very good for the type of generic approach we use:
to the best of our knowledge, the best method for
solving 1|ri|

∑
wiUi has been published in (M’Hallah

and Bulfin, 2007), where the authors describe a ded-
icated branch-and-bound and report success with up
to 200 jobs (which is likely to perform better with

today’s computer power). It is interesting to note
that all the failures to solve instances within one hour
were caused by an out-of-memory status of the MILP
solver. Moreover, the unsolved instances are all gen-
erated with the same set of parameters R = 20 and
D = 1. A possible explanation is that the parameter
R = 20 generates large release dates, which make the
linear relaxation of the model weaker because of Con-
straints (7). Besides, parameter T = 1 generates nar-
row time windows and, thus, more constrained prob-
lems compared to other parameter combinations.

5.2 Non-resumable jobs

In order to generate a test bed for 1, hk|ri, nr −
a|
∑
wiUi, we based on the generator used for re-

sumable jobs and introduced two additional pa-
rameters. K is the number of unavailability pe-
riods in the instance, and UR is the ratio of un-
availability of the machine over the planning hori-
zon. We then generate K unavailability inter-
vals [Bs, Fs] such that Bs is drawn from a uni-
form distribution {mini pi, . . . ,maxi di−mini pi} and
Fs = Bs + 1 + UR×maxi di

100×K . If two generated pe-
riods overlap or are adjacent, the instance is re-
jected. We report results for all combinations of n ∈
{30, 50, 60, 100, 150, 200, 250, 300}, R ∈ {1, 5, 10, 20},
D ∈ {1, 5, 10, 20}, K ∈ {1, 3, 5} and UR ∈ {1, 5, 10}.
Five instances are generated for each combination of
parameters, leading to a total of 5760 instances.

5.2.1 Two-machine transformation

Table 2 gathers the part of instances solved us-
ing the two-machine transformation of 1, hk|ri, nr −
a|
∑
wiUi. One 60-job instance is left open by this

method and almost 10% of the 100-job instances are
not solved. Therefore, we do not report results for
larger instances in this section.

5.2.2 K + 1-machine transformation

Table 3 summarizes the results obtained using
the K + 1-machine transformation of 1, hk|ri, nr −
a|
∑
wiUi. This method performs much better than

the previous one: while the two-machine transforma-
tion leaves on 60-job instance open in 1000 seconds,
the maximum computing time for 60-job instances is
only 1.77 seconds for the K + 1-machine transforma-
tion. Moreover, only one 100-job instance is solved
in more than ten seconds, only one 200-jobs instance
is not solved and more than 98% of the 300-job in-
stances are solved.

Let us focus on the set of 300-job instances to an-
alyze the sensitivity of the method with respect to
generation parameters. Instances with a larger ratio
of unavailability are slightly easier to solve: 98.8%
when UR = 5 against 96.7% when UR = 1. It is



MOSIM’12 - June 06-08, 2012 - Bordeaux - France

Time limit
n 1 sec. 10 sec. 100 sec. 1000 sec.
30 100.0% 100.0% 100.0% 100.0%
50 87.1% 98.9% 99.9% 100.0%
60 71.8% 95.8% 99.6% 99.9%
100 28.6% 69.9% 83.6% 90.1%

Table 2: Results for the two-machine transformation
of 1, hk|ri, nr−a|

∑
wiUi: Part of instances proved to

be solved optimally according to different time limits.

Time limit
n 1 sec. 10 sec. 100 sec. 1000 sec.
30 100.0% 100.0% 100.0% 100.0%
50 100.0% 100.0% 100.0% 100.0%
60 97.8% 100.0% 100.0% 100.0%
100 69.6% 99.9% 100.0% 100.0%
150 25.8% 98.6% 100.0% 100.0%
200 7.1% 81.3% 99.2% 99.9%
250 1.9% 64.4% 96.9% 99.0%
300 0.6% 43.6% 93.9% 98.1%

Table 3: Results for the K + 1-machine transfor-
mation of 1, hk|ri, nr − a|

∑
wiUi: Part of instances

proved to be solved optimally according to different
time limits.

easily explained because the less the machine is avail-
able, the smaller the number of possible positions for
each job is. Concerning the impact of the number
of unavailability period, we can hypothesize that in-
stances with one single unavailability period are more
difficult than those with three because their struc-
ture is relatively close to the case without availabil-
ity constraints. Thus, when K = 1 (97.9% solved),
the combinatorial difficulty comes from the sequenc-
ing of the jobs, enhanced by a second level of decision
consisting in assigning the suitable part of the hori-
zon for each job. When K = 3 (99.6% solved), this
source of hardness is lessen because the sequencing of
jobs is easier. Indeed, the time windows of jobs are
likely to me modified, so that the number of jobs with
strictly nested time windows (Figure 3) is relatively
small. Hence, the number of virtual jobs is relatively
small. When the number of unavailability periods
grows (K = 5, 96.7% solved), then the assignment
component of the problem becomes more difficult to
solve, and this is no more balanced by the, although
even more important, simplification of the sequenc-
ing component. This hypothesis is confirmed by the
apparently higher difficulty of the special case of peri-
odic maintenance discussed below, which practically
generates (STWP ) problems with many machines.
Regarding the release date and due date factors, the
combination R = 20, D = 1 yields once again the
most difficult instances for our method, since only
75.6% of these instances are solved.

Impact of Propositions 6 and 7 When applying
Proposition 6 and 7 as described in Section 2.4 on
the set of unsolved non-resumable instances, the only
200-job instance left open is solved in 398 seconds.
One (resp. four) of the seven 250-job (resp. fourteen
300-job) instances is solved. The average relative gap
for the still open instances, calculated as (best up-
per bound-best lower bound)/best lower bound, is
reduced from 0.5% to 0.37%. However, as stated be-
fore, the results obtained are globally degraded. This
is explained because difficult instances (with R = 20
and D = 1) have a poorer linear relaxation because
of large coefficients used in Constraints (7). The cuts
added improve the relaxation and improve the results
on these instances. However, for other instances, the
difficulty seems to come from the larger number of
variables and constraints while the linear relaxation
is better, so that making the MILP larger just make
it more difficult to solve.

Periodic maintenance constraints In order to
compare our methods with other work of the liter-
ature, we interest in the problem of minimizing the
number of tardy jobs on a single machine subject to
periodic maintenance, investigated by (Chen, 2009).
The author proposes a branch-and-bound to solve op-
timally instances with up to 32 jobs, in about 500
seconds on average (these are the results reported in
the paper and we did not run the program on our
machine). In this particular problem, jobs are non-
resumable, and unavailability periods are placed ac-
cording to a regular pattern over the planning hori-
zon: the machine is available for T time slots, then
under maintenance during t time slots, and this pat-
tern is repeated until the end of the planning period.
This is clearly a special case of 1, hk|nr − a|

∑
Ui.

We generated a set of instances as described in (Chen,
2009): For each of the n jobs, a processing time is
randomly generated from a discrete uniform distri-
bution (DU) over [1, 10]. The due dates are selected
from another DU over [(1−C −Q/2)

∑
i pi, (1−C +

Q/2)
∑
i pi] with restriction di ≥ 0, where Q and

C are the due date and tardiness factors, respec-
tively. The parameters chosen are all combinations
of n ∈ {32, 50, 100}, C ∈ {0.2, 0.6}, Q ∈ {0.2, 0.6},
T ∈ {10, 15, 20} and t ∈ {3, 6}. For each combina-
tion, we generated 30 instances, leading to a total of
1440 instances.

Table 4 indicates that most instances with 100 jobs
can be solved in less than 10 seconds. From Table 5,
we see that our method outperforms the previously
published approach, even if we take into account the
evolution of computer processing power: only 0.2 sec-
onds are needed in average to solve optimally 32-job
instances. However, the table also point out a weak-
ness of our method: even if a few seconds are suf-
ficient to solve most instances, it is sometimes un-
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Time limit
n 1 sec. 10 sec. 100 sec. 1000 sec.

32 98.8% 99.7% 100.0% 100.0%
50 95.1% 99.2% 99.4% 99.7%

100 66.1% 93.2% 95.0% 96.0%

Table 4: Special case with periodic maintenance and
equal job weights: Part of instances proved to be opti-
mally solved using the K+1-machine transformation
according to different time limits.

able to prove the optimality of solutions for instances
of the exact same size and generation parameters in
less than 1000 seconds. This is certainly partially
explained by the high degeneracy of these instances.
More precisely, the availability periods are relatively
short compared to the planning horizon. That is
why, in practice, there are many unavailability pe-
riods. Moreover, there is no release date constraint.
Therefore, the problem, in the way we model it, is
close to an assignment problem with many identical
resources (machines of (STWP ) with an equivalent
set of jobs that can be assigned). The difficulty comes
from the fact that, if there are q identical machines,
each feasible assignment of jobs to machines counts
q!− 1 other feasible equivalent assignments obtained
by permuting the set of jobs over the identical ma-
chines. In order to improve the performance of our
method on this problem, we could investigate ways of
breaking these symmetries. Note that, for unsolved
instances, absolute gaps are very small on average.

n Avg time Max time Avg unsolved
in sec. in sec. abs. Gap

32 0.2 37.5 -
50 0.9 >1000 1

100 4.9 >1000 1.53

Table 5: Special case with periodic maintenance and
equal job weights: average and maximum solving
time, average absolute gap after 1000 seconds for un-
solved instances.

6 CONCLUSION

This paper proposes different ways of transforming
scheduling problems with machine availability con-
straints into a more general problem. We show that
designing a suitable transformation leads to a com-
petitive exact solution method based on a MILP
solver for this type of problems. Indeed, although
we lack of points of comparison for the problem
1, hk|ri, nr−a|

∑
wiUi, the results obtained are com-

parable to the state-of-the-art for the special case of
the problem 1|ri|

∑
wiUi, and outperform a previ-

ously published solution approach for the special case
of periodic maintenance. Further work could consist
in developing a dedicated approach for solving the

problem (STWP ).
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