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ABSTRACT: We study a production planning problem known as the discrete lot-sizing and scheduling
problem with sequence-dependent changeover costs. This optimization problem can be formulated as a quadratic
integer program. In the present paper, we propose to compute a tight lower bound of the optimal solution value
by using a semidefinite relaxation of the problem rather than a standard linear relaxation. This is achieved in
particular by using reformulation techniques previously proposed in the semidefinite programming literature for
the quadratic knapsack problem. The results of the preliminary computational experiments we carried out on
small instances show that the proposed approach provides lower bounds of overall improved quality as compared
with other possible LP relaxations.
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1 INTRODUCTION

Fierce competition in today’s global market forces
industrial companies to better manage their supply
chain networks. In particular, making the right de-
cisions regarding one of the core supply chain pro-
cesses, goods production, directly affects the produc-
tivity and hence the competitiveness of a company.
Industrial production management involves, among
others, lot-sizing and scheduling decisions.

Lot-sizing arises in production whenever start-up op-
erations such as preheating or tool changing are re-
quired in order to prepare the production resource
for the processing of a new product. The amount of
the related startup costs usually does not depend on
the number of products processed after the start-up.
Thus, to minimize start-up costs, production should
be run using large lot sizes. However, this generates
inventory holding costs as the production cannot be
synchronized with the actual demand pattern: prod-
ucts must be held in inventory between the time they
are produced and the time they are used to satisfy
customer demand. The objective of lot-sizing is thus
to reach the best possible trade-off between start-up
and inventory holding costs while taking into account

both the customer demand satisfaction and the tech-
nical limitations of the production system.

We study in the present paper a variant of lot-sizing
problem known as the discrete lot-sizing and schedul-
ing problem or DLSP. As defined by (Fleischmann,
1990), in the DLSP, several key assumptions are used
to model the production planning problem:
- Demand for products is deterministically known and
time-varying.
- A finite time horizon subdivided into discrete peri-
ods is used to plan production.
- At most one product can be produced per period
and the facility processes either one product at full
capacity or is completely idle (”discrete” production
policy).
- Costs to be minimized are the inventory holding
costs and the changeover costs.

We consider here the complicating case where the
changeover costs to be incurred when the production
of a new lot begins are sequence-dependent, i.e. de-
pend on both the product produced before and the
product produced after the changeover.

A wide variety of solution techniques from the Op-
erations Research field have been proposed to solve
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lot-sizing problems: the reader is referred e.g. to the
literature reviews provided by (Jans and Degraeve,
2007) and (Buschkühl et al., 2010) for more detail.
Among them, most existing exact solution approaches
are based on tight mixed-integer linear programming
(MILP) formulations which are solved by standard
Branch & Bound procedures. In particular, valid in-
equalities and extended reformulations have been pro-
posed by (Eppen and Martin, 1987) and (van Eijl and
van Hoesel, 1997) to obtain tight linear relaxations of
the DLSP. However, even if substantial improvements
of the lower bounds can be obtained by strengthening
the MILP formulation, there are still cases where the
linear relaxation of the DLSP is of rather weak quality
(see e.g. Gicquel et al., 2009). These difficulties thus
motivate the study of more powerful formulations for
lot-sizing and scheduling problems. One such possi-
bility consists in using a semidefinite relaxation of the
problem rather than the standard continuous relax-
ation used in mixed-integer linear programming.

To the best of our knowledge, there is no pre-
vious attempt at using semidefinite relaxations to
solve lot-sizing problems. The main contributions of
the present paper are thus twofold. First we pro-
pose to compute lower bounds for the DLSP with
sequence-dependent changeover costs (DLSPSD) us-
ing a semidefinite relaxation rather than a standard
linear relaxation. Second we present a cutting-plane
generation algorithm based on a semidefinite pro-
gramming (SDP) solver to tighten the initial semidef-
inite relaxation. The results of the computational ex-
periments we carried out on small instances show that
the proposed approach provides good quality lower
bounds on average, especially for the instances fea-
turing a product family cost structure.

The paper is organized as follows. We introduce in
Section 2 a quadratic integer programming (QIP) for-
mulation for the DLSPSD. We then explain in Section
3 how this QIP can be reformulated as a semidefi-
nite program and how lower bounds can be obtained
for the DLSPSD by semidefinite relaxation. This
is achieved mainly by relying on reformulation tech-
niques previously proposed in the SDP literature for
the quadratic knapsack problem. Section 4 is devoted
to the description of the cutting-plane generation al-
gorithm we use to strengthen the initial semidefinite
relaxation of the problem. Some computational re-
sults involving a comparison with previously pub-
lished MILP strengthening techniques are then pre-
sented in Section 5.

2 QIP FORMULATION OF THE DLSPSD

We first consider a QIP formulation for the DL-
SPSD. Namely, the sequence-dependent nature of the
changeover costs leads to the introduction of a series
of quadratic terms in the objective function.

2.1 Initial QIP formulation

We wish to plan production for a set of products de-
noted p = 1...P to be processed on a single production
machine over a planning horizon involving t = 1...T
periods. Product p = 0 represents the idle state of
the machine and period t = 0 is used to describe the
initial state of the production system.

Production capacity is assumed to be constant
throughout the planning horizon. We can thus
w.l.o.g. normalize the production capacity to one unit
per period and express the demands to be satisfied
as integer numbers of units (see e.g. Fleischmann,
1990 and Gicquel et al., 2011). We denote Dpt the
demand for product p in period t, hp the inventory
holding cost per unit per period for product p and
Spq the sequence-dependent changeover cost to be in-
curred whenever the resource setup state is changed
from product p to product q.

Using this notation, the DLSPSD can be seen as the
problem of assigning a single product to each period
of the planning horizon while ensuring demand
satisfaction. We thus introduce the binary decision
variables ypt where ypt = 1 if product p is assigned
to period t and 0 otherwise, and obtain the following
DLSP1 formulation.

(DLSP1)

ZDLSP = min

P∑
p=1

T∑
t=1

hp

t∑
τ=1

(ypτ −Dpτ )

+

P∑
p,q=0

Sp,q

T−1∑
t=0

yptyqt+1 (1)

∀p,∀t,
t∑

τ=1

ypτ ≥
t∑

τ=1

Dpτ (2)

∀t,
P∑
p=0

ypt = 1 (3)

∀p,∀t, ypt ∈ {0, 1} (4)

The objective function (1) corresponds to the min-
imization of the inventory holding and changeover
costs over the planning horizon.

∑t
τ=1(ypτ −Dpτ ) is

the inventory level of product p at the end of period
t and the quadratic term yptyqt+1 is equal to 1 iif the
machine is switched from product p to product q at
the beginning of period t+ 1. Constraints (2) impose
that the cumulated demand over interval [1, t] is sasti-
fied by the cumulated production over the same time
interval. Constraints (3) ensure that a single prod-
uct is assigned to each period of the planning horizon.
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2.2 Reformulation involving knapsack con-
straints with positive coefficients

In what follows, we intend to use some of the reformu-
lation techniques proposed for the quadratic knapsack
problem (QKP) by (Helmberg, 2000) and (Helmberg
et al., 2000) to derive a semidefinite relaxation of the
DSLPSD. However, these reformulations require that
all coefficients in the knapsack constraint are posi-
tive. This is why we carry out a change of decision
variables by replacing each binary variable ypt by its
complementary variable xpt = 1− ypt.

We thus introduce the binary decision variables xpt
where xpt = 1 if product p is not assigned to period t
and 0 otherwise. This leads to the following DLSP2
formulation of the DLSPSD which involves a series of
knapsack constraints with positive coefficients.

(DLSP2)

ZDLSP = min

P∑
p=1

T∑
t=1

hp

t∑
τ=1

(1− xpτ −Dpτ )

+

P∑
p,q=0

Sp,q

T−1∑
t=0

(1− xpt)(1− xqt+1)

(5)

∀p,∀t,
t∑

τ=1

xpτ ≤ t−
t∑

τ=1

Dpτ (6)

∀t,
P∑
p=0

xpt = P (7)

∀p,∀t, xpt ∈ {0, 1} (8)

The objective function (5) corresponds to the min-
imization of the inventory holding and changeover
costs over the planning horizon. Constraints (6) limit
the number of non-productive periods for product p
over interval [1, t] so as to garantee that there are
enough productive periods left to satisfy the cumu-
lated demand for this product over interval [1, t].
Constraints (7) ensure that out of the P + 1 products
involved in the production planning problem, exactly
P are not assigned to period t of the planning horizon.

3 INITIAL SEMIDEFINITE RELAX-
ATION OF THE DLSPSD

Semidefinite programming can be broadly described
as the extension of linear programming from the space
of real vectors to the space of symmetric matrices:
variables of the optimization problem are semidef-
inite positive matrices instead of positive real vec-
tors. Semidefinite programming is an area of math-
ematical programming which has witnessed impor-

tant developments since the seminal papers of (Lovász
and Schrijver, 1991) and (Goemans and Williamson,
1995) were published. A good introduction to the
field is provided e.g. by (Helmberg, 2002). In partic-
ular, semidefinite relaxations were proved to provide
tight bounds for some well-known quadratic combi-
natorial optimization problems such as the max-cut
problem, the quadratic assignment problem or the
quadratic knapsack problem.

3.1 Notation and definitions

We denote Sn the set of symmetric matrices of size n.
The standard scalar product between two matrices A
and B in Sn is defined as:
< A,B >= tr(AB) =

∑n
i=1

∑n
j=1AijBij

where tr(.) is the trace of a square matrix.

We denote diag(A) the vector containing the main
diagonal of a square matrix A and Diag(a) = at.In
the n × n diagonal matrix containing the vector a ∈
Rn on its main diagonal.

A matrix X ∈ Sn is said to be positive semidefinite iff
all its eigenvalues are nonnegative: we write it X � 0.
The set of positive semidefinite matrices is denoted
S+
n ⊂ Sn.

A semidefinite program can be defined as the maxi-
mization of a linear function of X ∈ S+

n subject to
a series of linear constraints. Symmetric matrices
C,A1, ...AM are used to express the objective func-
tion and the technical constraints, leading to the fol-
lowing formulation:

ZSDP = max < C,X > (9)

< Am, X >≤ bm ∀m = 1..M (10)

X � 0 (11)

Semidefinite programs are convex optimization prob-
lems which can be solved either by interior-point al-
gorithms (see e.g. Benson et al., 2000) or spectral
bundle methods (see e.g. Helmberg and Rendl, 2000).
They are especially well-suited to deal with quadratic
programs. Namely, given x ∈ Rn, any quadratic form
xtAx+ btx+ c can be rewritten < A, xxt > +btx+ c.

3.2 Semidefinite relaxation of the QKP

We now explain how a semidefinite relaxation can
be derived from the quadratic binary programming
formulation of a standard combinatorial optimization
problem: the quadratic knapsack problem. The pro-
cedure described in this subsection will serve as a ba-
sis for deriving a semidefinite relaxation of the DL-
SPSD.

The quadratic knapsack problem (QKP) can be for-
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mulated as a quadratic binary program where a
quadratic objective function is to be maximized under
a single linear constraint.

(QKP)

ZQKP = max ztC̃z (12)

atz ≤ b (13)

z ∈ {0, 1}n (14)

Note that, since z2i = zi for zi ∈ {0, 1}, linear costs
ctz can be modeled on the diagonal of matrix C̃.

A semidefinite reformulation of (QKP) can be ob-
tained by using the following procedure:
- We introduce the matrix variable Z̃ = zzt ∈ Sn.
- The objective function is expressed using the scalar
product of Sn: ZQKP =< C̃, Z̃ >.

- We introduce a matrix Ã = Diag(a) ∈ Sn and ex-
press the linear constraint using the scalar product of
Sn: < Ã, Z̃ >≤ b.
- The binary character of the decision variables is im-
posed by stating: z2i = zi for all i in [1, n], which can
be equivalently written as: diag(Z̃) = z

We thus obtain the following SDP formulation:

(QKP)

ZQKP = max < C̃, Z̃ > (15)

< Ã, Z̃ >≤ b (16)

diag(Z̃) = z (17)

Z̃ − zzt = 0 (18)

Z̃ ∈ Sn (19)

Problem (QKP) cannot be solved as such due to the
non-convexity of constraint (18) . We thus replace the
matrix equality Z − zzt = 0 by the weaker inequality
Z − zzt � 0 (i.e. we enlarge the feasible set by drop-
ping the inequality Z − zzt � 0) and obtain a poly-
nomially solvable convex relaxation of the problem.
This provides an initial semidefinite relaxation for the
quadratic knapsack problem with ZQKP0 ≥ ZQKP .

(QKP0)

ZQKP0 = max < C̃, Z̃ > (20)

< Ã, Z̃ >≤ b (21)

diag(Z̃) = z (22)

Z̃ − zzt � 0 (23)

Z̃ ∈ Sn (24)

Due to the presence of constraints (22)-(23), (QKP0)
cannot be naturally handled by available SDP solvers

which are capable of solving semidefinite programs
only in the standard form of (9)-(11). This is why we
reformulate (QKP0) in the space of symmetric matri-
ces of size n+ 1.

- Let Z =


1 zt

z Z̃

 ∈ Sn+1.

Thanks to the Schur complement lemma, we have:
Z � 0 iif Z̃ − zzt � 0 so that constraint (23) can be
replaced with Z � 0 .

- C =


0 0

0 C̃

 and A =


0 0

0 Ã


are introduced so that the objective function (20) can
be reformulated as ZQKP0 = max < C,Z > and the
linear constraint (21) as < A,Z >≤ b.
- Constraint Z11 = 1 is expressed as < D1, Z >= 1

with D1 =


1 0

0 0

.

- Finally, constraints diag(Z) = z can be expressed
as Zii − Z1i = 0,∀i ∈ [2, n + 1]. This is en-
forced in the semidefinite program by constraints
< Di, Z >= 0 where Di ∈ Sn+1 is defined as:

Di =


0 ... -0.5 ...
...

-0.5 ... 1 ...
...


(QKP0) is thus reformulated in the Sn+1 space in the
form suitable for SDP solvers:

(QKP0’)

ZQKP0 = max < C,Z > (25)

< A,Z >≤ b (26)

< D1, Z >= 1 (27)

< Di, Z >= 0 ∀i = 2..n+ 1 (28)

Z � 0 (29)

Z ∈ Sn+1 (30)

Now as mentioned in chapter 3 of (Helmberg, 2000),
a key ingredient in the design of a semidefinite re-
laxation for (QKP) is the representation of the lin-
ear constraint atz ≤ b within the quadratic space.
(Helmberg, 2000) refers to the reformulation (QKP0)
presented above as the ”diagonal representation” and
explains that a tighter reformulation can possibly be
obtained by multiplying both sides of the linear in-
equality atz ≤ b by atz. This can be done only if
atz ≥ 0, i.e. if all coefficients of vector a are non
negative.

We obtain the inequality batz−aat.zzt ≥ 0, which can
be reformulated in the space Sn+1 as < A1, Z >≥ 0
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with A1 =


0 bat/2

ba/2 -aat

.

This leads to the formulation of the following semidef-
inite relaxation of (QKP):

(QKP1)

ZQKP1 = max < C,Z > (31)

< A1, Z >≥ 0 (32)

< D1, Z >= 1 (33)

< Di, Z >= 0 ∀i = 2..n+ 1 (34)

Z � 0 (35)

Z ∈ Sn+1 (36)

(Helmberg, 2000) proves that: ZQKP0 ≥ ZQKP1 ≥
ZQKP , i.e. that the semidefinite relaxation of (QKP)
obtained by using the second reformulation of the
linear constraint is as least as strong and possibly
tighter than the one obtained by using the diagonal
representation. We will thus apply this reformulation
technique for all the knaspsack constraints involved
in the formulation (DLSP2) of the DLSPSD.

3.3 Semidefinite relaxation of the DLSPSD

Starting from the quadratic integer formulation
(DSLP2) of the DLSPSD, we obtain a semidefinite
relaxation of the DLSPSD by following a procedure
similar to the one described above for the quadratic
knapsack problem:
- Let n = (P + 1)T .
- We define a vector x = [x01, ..., x0T , ..., xpt, ..., xPT ]
and a matrix X ∈ Sn+1 such that X =

1 xt

x X̃

.

- We define a cost matrix C such that < C,X >
is equal to the objective function of formulation
(DLSP2).
- Each knapsack linear constraints (6) of the form
atx ≤ b is multiplied by atx before being reformu-
lated in the Sn+1 space. This leads to the introduc-
tion of a series of matrices Apt to express the demand
satisfaction constraints.
- Each equality linear constraints (7) is reformulated
using the diagonal representation. We thus intro-
duce matrices Bt to express the product-period semi-
assignment constraints.
- We use matrices D1 and Di, i = 2...n+ 1 similar to
those used in Section 3.2 to express that diag(X) = x.

We thus obtain the following semidefinite program
which provides an initial semidefinite relaxation of

the DLSPSD.

(SDP0)

ZSDP0 =< C,X > (37)

< Apt, X >≥ 0 ∀p,∀t (38)

< Bt, X >= P ∀t (39)

< D1, X >= 1 (40)

< Di, X >= 0 ∀i = 2..n+ 1 (41)

X � 0 (42)

X ∈ Sn+1 (43)

4 CUTTING-PLANE GENERATION AL-
GORITHM

4.1 Valid inequalities

We use four families of valid inequalities to strengthen
the initial semidefinite relaxation (SDP0) of DL-
SPSD.

The first family of valid inequalities exploits the pres-
ence of implicit binary exclusion constraints implied
by the assignment constraints (3). Namely, two dif-
ferent products p and q cannot be assigned to the
same period t leading to:

∀t,∀(p, q)s.t.p 6= q, (1− xpt)(1− xqt) = 0 (44)

We also use two families of valid inequalities dis-
cussed in (Helmberg, 2000) for the quadratic knap-
sack problem and in (Roupin, 2004) for general biva-
lent quadratic problems. These valid inequalities are
obtained by multiplying each knapsack inequality of
type (6) either by xqt′ or by (1−xqt′). This approach
can be seen as a generalization of the reformulation
method first proposed by (Sherali and Adams, 1990)
to obtain strong relaxations for bivalent linear pro-
grams. We thus obtain:

∀(p, q) ∀(t, t′),

∑
τ=1..t

xpτxq,t′ ≤ (t−
∑
τ=1..t

Dpτ )xq,t′ (45)

∀(p, q) ∀(t, t′),

∑
τ=1..t

xpτ (1−xq,t′) ≤ (t−
∑
τ=1..t

Dpτ )(1−xq,t′) (46)

Finally, we use a fourth family of simple valid inequal-
ities which are part of the so called triangle inequali-
ties used in computing semidefinite relaxation for un-
constrained quadratic programs (see e.g. Helmberg,
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2000). These are obtained by relying on the fact that
we have:

∀(p, q),∀(t, t′), (1− xpt)(1− xqt′) ≥ 0 (47)

Valid inequalities (44)-(47) are quadratic constraints
of the form F̃ijxixj + fixi <= g. We reformulate
them by introducing a matrix F ∈ Sn+1 such that

F =


0 ft/2

f/2 F̃

 and add them to formulation

SDP0 presented above as < F,X >≤ g.

However, the number of valid inequalities (44)-(47)
grows very fast with the problem size. It is thus not
possible to include all of them directly in formula-
tion SDP0. This is why we devised a cutting-plane
generation algorithm to include them as needed in
formulation (SDP0).

4.2 Cutting-plane generation algorithm

We use the following cutting-plane generation algo-
rithm (CPA) to strengthen the initial semidefinite re-
laxation of the DLSPSD obtained by solving formu-
lation SDP0.

Algorithm (CPA)

Step 1
- Solve (SDP0)
- Let test1=test2=test3=test4=0.

Step 2
While (test1× test2× test3× test4 = 0):

Step 2.1
- Look for the p most violated inequalities of
type (44) and add them to the current SDP
formulation.
- If at least minCut violated inequalities have
been found, solve the obtained semidefinite
program.
- Else let test1 = 1.

Step 2.2
- Look for the p most violated inequalities of
type (45) and add them to the current SDP
formulation.
- If at least minCut violated inequalities have
been found, solve the obtained semidefinite
program.
- Else let test2 = 1.

Step 2.3
- Look for the p most violated inequalities of
type (46) and add them to the current SDP
formulation.
- If at least minCut violated inequalities have
been found, solve the obtained semidefinite
program.

- Else let test3 = 1.
Step 2.4

- Look for the p most violated inequalities of
type (47) and add them to the current SDP
formulation.
- If at least minCut violated inequalities have
been found, solve the obtained semidefinite
program.
- Else let test4 = 1.

In the numerical experiments presented in Section 5,
we used p = 300 and minCut = 5. Namely, solving
large semidefinite programs is very computationally
intensive and usually requires a rather large amount
of computation time. During the cutting plane gen-
eration, we should thus avoid to repeatidly solve
semidefinite programs differing from one another only
by the addition of a small number of cuts. This is
why we try to generate at each step a rather large
number of violated cuts (namely p = 300) and, in
any case, prevent the algorithm from resolving the
semidefinite program if less than minCut = 5 cuts
have been added to the formulation.

When algorithm (CPA) stops, we obtain a lower
bound ZSDP1 of the optimal integer solution value
ZDSLP of problem DSLPSD with ZSDP0 ≤ ZSDP1 ≤
ZDSLP

5 PRELIMINARY COMPUTATIONAL
EXPERIMENTS

We now discuss the results of some preliminary com-
putational experiments carried out to evaluate the
quality of the lower bounds provided by the semidef-
inite relaxation of the DLSPSD discussed in Sections
3 and 4.

5.1 Problem instance generation

We randomly generated instances of the problem us-
ing a procedure adapted from that described in (Sa-
lomon et al., 1997) for the DLSP with sequence-
dependent changeover costs. More precisely, the var-
ious instances tested have the following characteris-
tics:
- Problem dimension. The problem dimension is rep-
resented by the number of products P and the number
of periods T : we solved small-size instances involving
2 to 6 products and 10 to 25 periods.
- Inventory holding costs. For each product, inventory
holding costs have been randomly generated from a
discrete uniform DU(5, 10) distribution.
- Changeover costs. We used two different types of
structure for the changeover cost matrix S. Instances
of sets A, B, D, F, H, J and L have a general cost
structure: the cost of a changeover from product p to
product q, Spq, was randomly generated from a dis-
crete uniform DU(100, 200) distribution. Instances
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of sets C, E, G, I, K, M correspond to the frequently
encountered case where products can be grouped into
product families: there is a high changeover cost be-
tween products of different families and a smaller
changeover cost between products belonging to the
same family. In this case, for products p and q belong-
ing to different product families, Spq was randomly
generated from a discrete uniform DU(100, 200) dis-
tribution ; for products p and q belonging to the same
product family, Spq was randomly generated from a
discrete uniform DU(0, 100) distribution.
- Production capacity utilization. Production capacity
utilization ρ is defined as the ratio between the total
cumulated demand (

∑P
p=1

∑T
t=1D

pT ) and the total
cumulated available capacity (T ). We set ρ = 0.95.
- Demand pattern. Binary demands Dpt ∈ {0, 1} for
each product have been randomly generated accord-
ing to the following procedure:

1. We randomly select a product p∗ from a
discrete uniform DU(1, N) distribution and set
Dp∗T = 1.
2. For each product p, except product p∗, we ran-
domly select a period tp from a discrete uniform
DU(1, T ) distribution and set Dp,tp = 1.
3. For each entry in a N × T matrix, except for
the entries corresponding to the (p, t) combina-
tions for which we set Dpt > 0 in steps 1 or 2, we
randomly generate a number αpt from a discrete
uniform DU(1, PT ) distribution.
4. While the total cumulated demand
(
∑P
p=1

∑T
t=1Dpt) does not exceed ρT , we con-

sider the entries (p, t) one by one in the increas-
ing order of the corresponding value αpt and set
Dpt = 1.
5. When the total cumulated demand reaches ρT ,
we examine whether the corresponding instance is
feasible by checking that

∑P
p=1

∑t
τ=1Dpτ ≤ t for

all t. If the instance is infeasible, we repeat steps
1 to 4.

For each considered problem dimension, 10 instances
were generated, leading to a total of 130 instances.

5.2 Computational results

For each instance, we compute:
- the lower bound Zlp provided by the linear contin-
uous relaxation of formulation (DLSP1). This linear
relaxation is obtained by using the flow-conservation
constraints discussed in (Belvaux and Wolsey, 2001)
to link the linearization variables with the binary
setup variables. It is then further strengthened by
the valid inequalities proposed by (van Eijl and van
Hoesel, 1997) for the single-item DLSP.
- the lower bound Zext provided by the extended lin-
ear reformulation of (DLSP1). This extended refor-
mulation is adapted from the one proposed by (Eppen

and Martin, 1987) for the DLSP with multiple iden-
tical parallel production resources.
- the lower bound Zsdp1 provided by the semidefinite
relaxation of (DLSP2) discussed in Section 3.3 and
strengthened by algorithm (CPA),
- the optimal integer solution value Zip provided by
the resolution of the linear reformulation of (DL-
SPSD) discussed in (Belvaux and Wolsey, 2001).

Linear relaxations are computed using the simplex
algorithm embedded in CPLEX 12.1 whereas the op-
timal integer solution value is obtained using the
standard Branch & Bound algorithm embedded in
CPLEX 12.1. We use the semidefinite program-
ming solver DSDP based on an interior-point type
algorithm (Benson et al., 2000) to solve the various
semidefinite programs involved in algorithm (CPA).
All tests were run on an Intel Core i5 (2.7 GHz) with
4 Go of RAM, running under Windows 7.

Tables 1 ande 2 display the computational results.
We provide for each set of 10 instances:
- P and T the number of products and planning pe-
riods involved in the production planning problem,
- Glp (resp. Gext and Gsdp): the average gap between
the lower bound Zlp (resp. Zext and Zsdp1) and the
optimal integer solution value Zip.
- Tlp (resp. Text and Tsdp): the average computation
time (in seconds) needed to obtain Zlp (resp. Zext
and Zsdp1),
- Nsdp: the average total number of cuts generated by
algorithm (CPA) to strengthen the SDP relaxation.

Results from tables 1 and 2 show that the lower
bounds provided by the semidefinite relaxation of
formulation (DLSP2) are of overall improved qual-
ity as compared with the strongest linear program-
ming relaxations known for the problem. Namely, for
instances with a general changeover cost structure,
Zsdp1 is slightly tighter than the bounds provided by
the best MILP strengthening techniques known for
the DLSP. The average gap over the 70 instances is
thus decreased from 1.1% with the extended linear re-
formulation to 0.5% with the semidefinite relaxation.
Moreover, for instances with a product family cost
structure, the proposed approach provides bounds of
significantly better quality than the previously pub-
lished linear relaxations. This can be seen for in-
stance by the fact than the average gap over the 60
corresponding instances is decreased from 6.2% with
the extended linear reformulation to 0.7% with the
semidefinite relaxation.

6 CONCLUSION AND PERSPECTIVES

We studied the discrete lot-sizing and scheduling
problem with sequence-dependent changeover costs.
This optimization problem can be formulated as
a quadratic integer progam. We proposed in the
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Set A B D F H J L
P 2 4 4 6 4 6 4
T 10 10 15 15 20 20 25
Glp 2.8 0.0 2.8 0.9 2.6 2.3 2.7
Tlp 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Gext 0.8 0.0 1.9 0.3 1.3 2.1 1.4
Text 0.1 0.1 0.1 0.1 0.2 0.2 0.2
Nsdp 93 177 944 977 1769 2246 2296
Gsdp 0.2 0.0 0.0 0.1 0.9 1.1 1.1
Tsdp 1.7 2.9 116 170 951 1445 1413

Table 1: Results for instances with a general cost
structure

Set C E G I K M
P 4 4 6 4 6 4
T 10 15 15 20 20 25
Glp 0.4 11.5 5.3 8.3 8.7 8.3
Tlp 0.02 0.1 0.1 0.1 0.1 0.1
Gext 0.0 11.2 4.2 7.2 7.5 7.2
Text 0.1 0.1 0.1 0.1 0.2 0.2
Nsdp 169 598 529 1143 1154 1220
Gsdp 0.0 0.0 0.0 1.1 1.9 1.1
Tsdp 2.7 163 202 1321 1378 1327

Table 2: Results for instances with a product family
cost structure

present paper to compute a lower bound of the op-
timal integer solution value of the problem by car-
rying out a semidefinite relaxation. This is achieved
mainly by exploiting a reformulation technique pro-
posed by (Helmberg, 2000) for the quadratic knap-
sack problem. We then presented a cutting-plane
generation algorithm relying on four families of non
problem-specific valid inequalities to strengthen the
initial semidefinite relaxation of the problem. The
results of our preliminary computational experiments
show that the proposed approach compares well with
the best MILP strengthening techniques known for
the DLSP. It provides good quality lower bounds on
average, especially for the instances featuring a prod-
uct family cost structure.

However, the computation time needed to obtain
the semidefinite lower bounds remains high. This is
mainly due to the fact that a series of semidefinite
programs of increasing size has to be solved by the
cutting-plane generation algorithm. This could be
improved thanks to a warm-start strategy: the so-
lution of the previous iteration of the cutting-plane
generation algorithm could be used to reoptimize the
problem slightly changed by the addition of some
valid inequalities. However, as explained in chapter 6
of (Helmberg, 2000), this type of strategy is difficult
to implement with interior-point algorithms such as
the one embedded in solver DSDP. It might thus be
worth investigating the use of a semidefinite program-
ming solver based on a spectral bundle method as this

would enable us to more easily exploit a warm-start
strategy during the cutting-plane generation.

REFERENCES

Belvaux G. and Wolsey L., 2001. Modelling prac-
tical lot-sizing problems as mixed-integer pro-
grams. Management Science, vol. 47(7), 993-
1007.

Benson S.J., Ye Y. and Zhang X., 2000. Solving
large-scale sparse semidefinite programs for com-
binatorial optimization. SIAM Journal on Opti-
mization, vol. 10(2), 443-461.
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