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ABSTRACT: The scheduling of parallel machines is a well-known problem in many companies. Nevertheless, not al-
ways all the jobs can be manufactured in any machine and the eligibility appears. Based on a real-life situation, we 
present a company which has three different sets of machines, called as high-level, medium-level and low-level respec-
tively. Besides, there are release times and delivery times related to the respective previous operations and following 
operations to the main process to be carried in the parallel machines. A set of n jobs to be scheduled on these m paral-
lel machines are also distributed among levels. One job from a level can be manufactured in a machine of the same or 
higher level. Initially all the jobs are processed on the machines of high level. But a penalty appears when a job is 
manufactured in a machine different of this initial level. The proposed algorithm solves the problem with two criteria: 
the minimization of the completion time or makespan, Cmax, and the minimization of the total penalty. The objective is to 
determine or to approximate the Pareto front. Several alternatives are presented according to different rules to move a 
job from one machine to another and compared through numerical experiments. 
 
KEYWORDS: parallel machines, eligibility, release times, delivery times, Pareto front. 
 

1 INTRODUCTION 

The scheduling problem of parallel machines is very 
usual in the companies. A single operation must be done 
on a set of jobs and it is only necessary to perform it in 
one of the available machines. The processing times of 
the operations are typically known (e.g. Pinedo, 2005). 
Some assigning and sequencing problems for two or 
more parallel machines have been described as highly 
complex (Blazewicz et al, 2001). 
 
In this work we deal with a particular problem within the 
scheduling of parallel machines, when some jobs cannot 
be done on any machine, what is known in literature as 
eligibility (Leung and Li, 2008). 
 
Given a set of n jobs (j=1,…,n) to be scheduled on m 
parallel machines (i=1,…,m), these machines are distrib-
uted generally among p groups or levels (k=1,…,p). Par-
ticularly we will propose an algorithm for p=3, which 
means that machines and parts are separated into 3 levels 
(k=1 is considered for high-level machines; k=2 is con-
sidered for medium-level and k=3 for low-level). All the 
machines must be classified in one of the three levels. 
The same is done for the jobs: each of them is assigned 
to one of the levels. A machine in the level k can manu-
facture jobs of its own level k and also of lower levels. 
The processing time of a job is the same for any ma-
chine. This is known in the literature as nested pro-
cessing set (Leung and Li, 2008).  

 
The characteristics of each job j are the processing time 
pj for the parallel machine operation, the release time rj 
(also called head time), which can be consequence of the 
previous operations received by the job, and the delivery 
time qj (also tail or queue time), as a result of the subse-
quent tasks and transport to the end of the production 
system.  
 
Our problem is based in the scheduling of company de-
voted to industrial paintings. It has a set of machines, 
which are reactors. The costs of manufacturing are im-
portant. The managers of the company prefer the use of 
the most modern resources, in our case the high-level 
machines. Nevertheless, if all the jobs were done in this 
subset of machines, the makespan would reach a very 
high value. In this case, the rest of machines would be 
completely free and available to manufacture. For this 
reason, some works from machines of the high-level are 
moved to the other machines.  
 
Moreover, machinery used for particular products, gen-
erally small products, is considered in the low-level. The 
medium-level machines can work these small products 
and also other products with longer dimensions. For this 
reason, the medium-level machines are also preferred to 
the low-level machines. 
 
So, we define a penalty whose value is 1 if a job (of me-
dium or low-levels) is scheduled in a medium-level ma-
chine and is 2 if a job (of low-level) is scheduled in a 
low-level machine. Penalties will be known as weights. 
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Therefore, two objectives are taken into account when a 
feasible schedule is determined: the minimum comple-
tion time or makespan, Cmax, and the minimum total 
weight, Wtot.  
 
A schedule will be said feasible if the following condi-
tions are accomplished: 
 

 Each machine processes at most one job at a 
time. 

 A job is only processed in a single machine. 
 Pre-emption is not allowed. 
 Starting time is not lower than the release time: 

tj ≥ rj. 
 A job assigned to level k is processed in a ma-

chine of the same or a higher level. 
 
Taking into account the release and delivery times of the 
jobs, our proposed algorithm refers to the algorithm de-
scribed in Gharbi and Haouari (2002) if these two sets of 
times must be considered, but eligibility requires work-
ing with subsets of jobs at each level.  
 
Section 2 presents the state of the art in parallel ma-
chines, with eligibility and release and delivery times, 
and some remarks on multicriteria. Section 3 describes 
the problem and the notation, while Section 4 introduces 
the multicriteria approach algorithm. Section 5 presents 
the computational experience. Finally, some conclusions 
are given in Section 6. 

2 LITERATURE REVIEW 

2.1 The parallel machine problem  

According to the notation of Graham et al (1979), the 
problem can be noted as Pm|rj; qj; Mj|(Cmax, Wtot), where 
job j can only be produced in a subset Mj of the m ma-
chines. A sub-problem can be solved for each value of 
the weight, i.e. the second criterion. Considering only the 
first criterion, the makespan, Pm|rj; qj|Cmax or P|rj; qj|Cmax 
is an extension of the classical identical parallel machine 
problem denoted by P||Cmax, which is a basic problem in 
scheduling theory. However, we should remember that 
the preemptive version, denoted by P|rj, qj, pmtn|Cmax, is 
solvable in polynomial time using a network flow (Horn, 
1974). Considering only the makespan, the problem can 
be seen also as a generalization of the classical one ma-
chine problem 1|rj; qj|Cmax, which is known to be strong-
ly NP-hard (Garey and Johnson, 1979). Therefore, the 
Pm|rj; qj; Mj|(Cmax, Wtot) is NP-hard in the strong sense.  
 
Parallel machine problems have received the attention 
from the research community since a long time. A sur-
vey of this literature is presented, for instance, in Pinedo 
(2002). If release and delivery times are added, the prob-
lem becomes P|rj; qj|Cmax, but despite its theoretical and 
practical interest, has received only a reduced attention. 

Indeed, the literature regarding this problem is relatively 
scarce.  
 
To the best of our knowledge, the only exact algorithm 
in the literature for this problem was developed by 
Carlier (1987). Simple dispatching rules are analysed in 
Carlier (1987) and Gharbi and Haouari (2002). Bratley et 
al. (1975) developed a simple enumerative algorithm for 
the problem P|rj; dj|Cmax, where dj represents the deadline 
of job j. Lancia (2000) gives an enumerative method for 
the problem with two unrelated machines, denoted by 
R2|rj, qj|Cmax.  
 
Other similar problems have been investigated. On the 
one hand, there is the uniform parallel machine version, 
which was dealt by Dessouky (1998); he develops a 
branch-and-bound algorithm for Q|rj; qj; pj =1|Cmax. On 
the other hand, for the single machine problem 1|rj; 
qj|Cmax some branch-and-bound algorithms have been 
proposed (Carlier, 1982). 
 
Since P||Cmax is NP-hard in the strong sense, a problem 
with eligibility is strongly NP-hard as well. Following 
Leung and Li (2008), there are two important cases of 
eligibility that have received considerable attention in the 
literature: the nested processing set restrictions and the 
inclusive processing set restrictions. The first one has the 
property that for each pair Mj and Mk, either Mj and Mk 
are disjoint, or one of them is included in the other. The 
second one is a special case where the situation of dis-
joint Mj and Mk is not considered. 
 
Our problem can be classified in the second group of 
situations, similar to what Hwang et al (2004) presented 
in the service industry. In this case of inclusive process-
ing set restrictions, each Mj is associated with a single 
machine index aj such that denotes the first or the last 
machine useful for the job j, depending on the sequence 
of machines. In our case, aj means that a job j can be 
processed between machines 1 and aj, once machines are 
sequenced by levels. 
 
To the best of our knowledge, only Centeno and 
Armacost (1997) and once again Centeno and Armacost 
(2004) have worked on both characteristics at the same 
time. Nevertheless, they only look for the minimization 
of the makespan on parallel machines with release times 
and machine eligibility restrictions (Pm|rj; Mj|Cmax). 
They do not consider queue or delivery times. 
 
2.2 The multicriteria problem  

A survey of multicriteria research can be found in Ehr-
gott and Gandibleux (2002), more specifically on bicrite-
ria scheduling in Nagar et al (1995). According to Loukil 
et al (2007), concerning multi-objective optimization 
problems we can distinguish five main approaches in the 
literature: 
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 Hierarchical approach: considered objectives 
are ranked in a priority order and optimized fol-
lowing this order. 

 Utility approach: a utility function or weighting 
function, often a weighted linear combination of 
the objectives, is used to aggregate the consid-
ered objectives in a single one. 

 Goal programming: all the objectives are taken 
into account as constraints which express some 
satisfying levels (or goals) and the objective is 
to find a solution whose values are as close as 
possible of the pre-defined goal for each objec-
tive.  

 Simultaneous (or Pareto) approach: the aim is to 
generate, or to approximate in case of a heuris-
tic method, the complete set of efficient solu-
tions.  

 Interactive approach: at each step of the proce-
dure, the decision-maker expresses his prefer-
ences in regard to one (or several) solutions 
proposed. So, the method will progressively 
converge to a satisfying compromise between 
the considered objectives. 

 
Our procedure can be classified into the fourth approach 
We recall that for a multi-objective optimization prob-
lem:  
 

( ) 1,...,min k
X S

z X k K



  (1) 

 
A solution X*S is efficient or Pareto optimal (or non-
dominated) if there is no other solution XS such that 
zk(X) ≤ zk(X*) k with at least one strict inequality. 
 
Despite their importance, scare attention has been given 
to multiple criteria scheduling problems, especially in 
multiple machine problems (T’Kindt and Billaut, 2002). 
This is due to the complexity of these combinatorial 
problems. From the analysis of the literature, often the 
methods proposed are either very complex to implement 
or only able to solve small size problems and with two 
objectives, or completely dependent on the model 
treated. 

3 NOTATION  

Let us consider the m machines divided in three levels. 
Instead of using k=1,2,3 for the different levels, we will 
denote by h the machines of the high level, m for the 
machines of the medium level, and l for the machines of 
the low level, respectively. The number of machines for 
each set of machines will be mh, mm and ml, respective-
ly. In a similar way, the n jobs to be manufactured are 
also divided in similar groups. Then, the number of jobs 
will be nh, nm and nl, respectively. Finally, we thus 
have: 
 
m=mh+mm+ml (2) 

 

n= nh+nm+nl (3) 
 
The nl jobs can be manufactured in machines of any 
level. The nm jobs of the second group can be treated in 
any of the mm+mh machines of medium and low levels. 
Finally, the nh jobs of the last group can be only manu-
factured in the mh machines of high level. 
 
A job j (j=1,...,n) is defined by a processing time pj; a 
release time rj; a delivery time qj and is classified into 
one of the three levels (h, m, l).  
 
The job j will be scheduled in the machine between tj, 
the starting time of job j, and tj+pj.  Given tj, the comple-
tion time of this job is computed as: 
 
Cj=tj+pj+qj  (5) 
 
And obviously, the makespan is: 
 
Cmax = maxj {Cj}  (6) 
 
We also define CmaxH, as the makespan only for the 
high-level machines; and equivalently CmaxM and CmaxL 
for the medium-level and low-level machines, respec-
tively. 
 
A solution will be represented by a vector , each one of 
its elements, j, is composed of the assigned machine 
and the starting time of that job j. 
 
On the other hand, weights are applied on the kind of 
level change:  
 
 wj =1 if j is assigned to one of the mm machines 
in   
 wj =2 if j is assigned to one of the ml machines in 
  
 
and the total weight becomes:  
 
Wtot = j {wj}  (7) 
 
The multicriteria objective is shown as: 
 

 max ( ), ( )min tot
X S

C X W X
  (8) 

4 THE PROPOSED ALGORITHM  

4.1 Some previous remarks on the algorithm 

The algorithm is divided in two phases. It starts with a 
solution with null total weight, when all the jobs are as-
signed to high-level. I.e. any job (belonging to any level) 
is scheduled in one of the machines of high-level. This 
implies a first solution with the maximum Cmax in the set 
of efficient solutions and the minimum weight, equal to 
0. 
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While new efficient solutions can be found, an iteration 
of the second phase implies that one job is taken from an 
origin level machine and moved to a destination level 
machine. 
 
Briefly, the substeps in this phase are: 
 

 Select the origin level of the movement. 
 Select a job to be changed to a different level 

(only a subset of jobs is available). 
 Select the destination level of the movement.  
 Machines in both levels are re-scheduled.  
 The objectives of the new solution are evaluated 

(Cmax; Wtot).  
 
In our first proposal of the algorithm we establish a pri-
ority in the level changes: 
 

 First, job changes between high-level and me-
dium-level machines are tried. 

 Then, job changes between high-level and low-
level machines are tried. 

 Finally, job changes between medium-level and 
low-level machines are tried. 

 
We used different rules to select the job to be moved, 
among the subset of candidates (considering the origin 
and destination levels): 
 
j = argminj (rj+pj, qj+pj) (9) 
 
j = argmaxj (rj+pj, qj+pj)  (10) 
 
j = argminj (rj, qj)  (11) 
 
j = argmaxj (rj, qj) (12) 
 
j = argminj (pj)  (13) 
 
j = argmaxj (pj)  (14) 
 
4.2 Heuristic 1 in case of one-machine per level  

In order to schedule the jobs among the machines in a 
certain level, we use a procedure similar to what Garbi 
and Haouari (2002) proposed (see sub-section 4.3). Nev-
ertheless, if there is only one machine per level a simpler 
procedure can be applied.  
 
Let J a set of n jobs defined by the three times: rj, pj and 
qj. We describe the algorithm with n jobs as in phase 1, 
but later this value can vary according to the distribution 
of jobs among levels. 
 
For the initial sequence of jobs, two very similar heuris-
tics are proposed: the first based on the minimum values, 
and the second on the maximum values. Their complex-
ity is in O(nlogn) 
 
 

Heuristic 1 
 
Heuristic 1a 
 

1. A job 0s J  is such that 
0sr  o 

0sq corre-

sponds to min {rj;qj} j=1,...,n.  

2. If 0s  has been chosen due its release time, the 

job occupies the first free position in the se-

quence. On the other hand, if 0s  has been cho-

sen due its delivery time, the job occupies the 
last free position of the sequence. 

3.  0\J J s . If J  , go to Heuristic 1b; 

otherwise, go to step 1 in this Heuristic 1a. 
 

Heuristic 1b 
 

1. A job 0s J  is such that 
0sr  o 

0sq corre-

sponds to max {rj;qj} j=1,...,n
 
 

2. Si 0s  has been chosen due its release time, the 

job occupies the last free position in the se-

quence. If 0s  has been chosen due its delivery 

time, the job occupies the first free position of 
the sequence.  

3.  0\J J s . If J  , stop; otherwise, go 

to step 1 in this Heuristic 1b. 
 
At the end of both heuristics, a non-negative vector 

 1 2, ,..., nt t t   is obtained, where jt is the starting 

time of job j ( 1;...;j jt r j n   ). For the next phases, 

the vector with a minimum makespan is taken. 
 
Example 1 
 
For an easier understanding, we will work with the low-
level jobs in Table 1, where k is the level. 
 

j j7 j8 j9 j10 j11 
k l l l l l 
rj 4 4 0 3 5 
pj 8 6 5 4 2 
qj 6 2 1 7 3 

Table 1. Data for low-level jobs of Example 1. 

 
There is a single low-level machine to produce the jobs. 
The heuristic is applied as follows: 
 
Heuristic 1a 

1.  7;8;9;10;11J  ;  0 9s   and the mini-

mum is sr  

2. Job 9 is assigned at the beginning of the sequence. 
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3.  7;8;10;11J   and return to step 1. 

1.  0 8s   and the minimum is sq . 

2. Job 8 is assigned at the end of the sequence. 
 
And so on until J  , the resultant vector is: 

 1 9;10;7;11;8  ; maxC  = 27  

Analogously, the heuristic 1b leads to vector: 

 2 10;7;9;8;11  ; maxC = 31  

1  
is the preferred schedule. 

 
4.3 Heuristic 2 in case of several machines per level 

Gharbi and Haouari (2002) proposed an algorithm to 
minimize the makespan of a set J of n jobs to be per-
formed on m≥2 machines and results in two vectors 
=(t1,...,tn) where tj is the starting time for job j and 
a=(a1,…,an) where aj is the machine to which j is as-
signed. 
 
But previously it is necessary to define two conditions to 
be evaluated. The jobs are sequenced by increasing order 

of release time       , 1 2, ,...,r m mJ j j j . Jr.m is a vector 

whose component j(t) is the job with the t-th arrival time 
and j0Jr,m is such that 

0 0 ,
min ( )

r mj j j J j jr p r p   . It is as-

sumed that the Condition 1 (C1) is accomplished: 
 

 0 0 1mj j jr p r


 
   

(15) 

 
Then tj0 = rj0 in an optimal schedule and the job j0 can be 
removed from the set of jobs to be scheduled and placed 
in a set JR. The problem can be considered symmetrical 
interchanging release and delivery times. An immediate 
consequence of this symmetry is the definition of 

      , 1 2, , ...,q m mJ j j j , whose component j(t) is the job 

with the t-th delivery time in increasing order and j0Jq,m 

is such that 
0 0 ,

min ( )
qmj j j J j jq p q p   . In ,q mJ  jobs are 

sequenced in increasing order of queue time. It is as-
sumed that the Condition 2 (C2) is accomplished: 
 

 0 0 1mj j jq p q


 
   

(16) 

 
Similarly the job j0 can be removed of the set of jobs to 
be scheduled and placed in a set JQ. Then, the algorithm 
for scheduling of jobs in a selected level is: 
 

0. Classification of jobs into J , RJ  and QJ . 

0.1. Initialize the three sets: RJ  , QJ   , 

J J . 
0.2. Check Condition C1.  

0.2.1. If the number of jobs in J  is no greater that 

m, i.e., if J m , the algorithm stops. 

0.2.2. If no job satisfies the Condition C1, go to 0.3; 

otherwise,  0\J J j ;  0R RJ J j   and 

go to 0.2.1. 
0.3. Check Condition C2.  

0.3.1. If the number of jobs in J  is no greater that 

m, i.e. if J m the algorithm stops.  

0.3.2 If no job satisfies the Condition C2, go to 0.4; 

otherwise,  0\J J j ;  0Q QJ J j   and 

go to 0.3.1. 
0.4. If no job is moved to a different set in 0.3, stop. 

Otherwise, go to 0.2. 
 

1. The jobs in J  are assigned to the machines to obtain 
a partial schedule . The first ready job is assigned to the 
first available machine.  
 
2. Two new concepts are necessary:  

 ( )iu   is the time in which the machine i is 

available given the schedule  . 

 1   is the symmetric schedule of  .  
To integrate elements to the sets JR and JQ into , there 
are two parts: first, jobs of JQ are assigned and then jobs 
of JR. This step implies to apply the algorithm proposed 
by Gharbi and Haouari (2002). 
 

 2.1. All the jobs of the set QJ are assigned. 

2.1.1. If QJ   , go to 2.2. 

2.1.2. Job 0 Qj J  is such that 

0 0
max ( )

Qj j j J j jp q p q   .  

2.1.3. 0m is called the machine with availability 

0 1,...,min ( )i n iu u  .  

2.1.4. Job 0j  is scheduled on machine 0m  and 

0 00 0max( , )j ju u r p   is updated.  

2.1.5.  0\Q QJ J j  and go to 2.1.1. 

2.2. 1    

2.3. All the jobs of the set RJ  are assigned.  

2.3.1. If RJ  , go to 2.4. 

2.3.2. Job 0 Rj J  is such that 

0 0
max ( )

Rj j j J j jr p r p   .  

2.3.3. 0m is called the machine with availability 

0 1,...,min ( )i n iu u  .  
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2.3.4. Job 0j  is scheduled on machine 0m  and 

0 00 0max( , )j ju u q p   is updated. 

2.3.5.  0\Q QJ J j  and go to 2.3.1. 

2.4. 1    
 
In Step 2, jobs in the set JQ are first considered. The jobs 
are assigned in the non-increasing sequence of the addi-
tion of the delivery time and the processing time. At ach 
iteration, a job is assigned to the first available machine 
and the job is removed from JQ. Once these jobs are 
scheduled, the symmetric schedule is obtained in order 
to assign the jobs in set JR, which will be allocated on the 
first available machine in the non-increasing sequence of 
ready plus processing times. As with the other set, each 
time a job is assigned, it is removed from the set JR. 
 
Example 2 
 
We continue with similar data to the previous Example 
1. Jobs and machines (ml=2) belong only to the low-
level. 
 

j j7 j8 j9 j10 j11 
k l l l l l 
rj 6 4 0 3 8 
pj 8 5 2 1 4 
qj 6 2 1 4 7 

Table 2. Data for low-level jobs of Example 2. 
 

0.1. RJ  , QJ   , J J . 

0.2a. The set is  , 9,10r mJ  ; 

 
, 0min ( ) min(2, 4) 2 9

r mj J j jr p j      . 

Condition C1 (
 0 0 1mj j jr p r


  ) is satisfied.  

Consequently, the new set is  9RJ  . 

0.2b. Condition C1 leads to  , 10,8r mJ  . 

 
, 0min ( ) min(4,9) 4 10

r mj J j jr p j       

As above, the Condition C1 is checked again so that the 

set is now  9;10RJ  .  

As above, the Condition C1 is checked again. 

0.2c. Condition C1 leads to  , 8,7r mJ  . 

 
, 0min ( ) min(9,14) 9 8

r mj J j jr p j        

As it is not accomplished, the algorithm goes to step 2. 

0.3. Condition C2 leads to  , 7,8q mJ 
 

 
, 0min ( ) min(7,14) 7 8

r mj J j jp q j        

It is accomplished. Consequently,  7Q QJ J  , and 

the sets  9;10RJ  ;  11;7J   and  8QJ  . 

The algorithm finishes the classification, as J m . 

 

1. Following with the example above,  11;7J  . Since 

the first job to arrive is job 7, it will be assigned to the 
first available low-level machine (l1). The following job, 
j11, is assigned to the other machine (l2). The vectors at 
the end of Step 1 are =(6,0,0,0,8) and a=(1,0,0,0,2), 
with Cmax=20. 
 

2.1.1. As  8QJ  , continue in 2.1.2. 

2.1.2. As there is a single job,  0 8j  , then 

0 0
7j jp q  . 

2.1.3. Given =(6,0,0,0,8), the availability time is 

   14,12iu    , whose minimum value is 12 and is 

associated to machine ml2 . 
2.1.4. Job 8 is scheduled on machine ml2; u0 (ml2) = 12+5 
= 17. Therefore: ui()=(14,17) and the new vectors are 
=(6,12,0,0,8), a = (1,2,0,0,2), with Cmax = 20.  

2.1.5.  0\Q QJ J j , but now QJ    and finally 

go to 2.2. 
2.2. The inverse = -1=(6,3,0,0,8) is based on the sub-
traction of the ending processing time from Cmax = 20. 

2.3.1. As  9;10RJ  , continue in 2.3.2. 

2.3.2. Job 0 Rj J  is j10 as 
0 0j jr p 

 
max ( ) 4

Rj J j jr p   .  

2.3.3. Given    14,12iu   , 0 12u   comes from 

machine ml2. 
2.3.4. The job 10 is scheduled on machine ml2: u0 = 13. 
Therefore: ui()=(14,13) and = -1=(6,3,0,12,8).  

2.3.5.  0\Q QJ J j  and go to 2.3.1. 

The step 2.3 is repeated to assign job 9, which is finally 
assigned to machine ml2.  
2.4. Finally,   is inverted again: = -1=(6,12,5,7,8), a 
= (1,2,2,2,2), with Cmax = 20. 
 
4.4 The main algorithm 

Therefore, the algorithm is as follows: 
 
Phase 0. Data input 
Phase I: Assignment of all the jobs to high-level ma-
chines. 

If mh=1, apply Heuristic 1 for all the jobs. 
Otherwise, apply Heuristic 2 for all the jobs.  
Compute Cmaxº 

 
Phase II: Movement of jobs between different levels 
 
II.1. Job movement from high to medium level 
final = false 
while (final = false) 
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 Search for job candidates  
 if there is no candidate  
  final = true  
 else 

Search for a job between candidates according 
to the prefixed rule 

  Reschedule jobs in high-level 
Reschedule jobs in medium-level 
Compute the new Cmax, CmaxH, CmaxM 
if Cmax < Cmaxº 
 Save the new solution 
 Cmaxº = Cmax 
else 
 final = true 
endif 

 endif 
endwhile 
 
II.2. Job movement from high to low level 
This stage is analogous to II.1, but changing medium-
level by low-level and CmaxM by CmaxL. 
 
II.3. Job movement from medium to low level 
This stage is analogous to II.1, but changing high-level 
by medium-level and medium-level by low-level, and 
also CmaxH by CmaxM and CmaxM by CmaxL. 

5 COMPUTATIONAL EXPERIENCE 

Computational experience is based on the implementa-
tion of the algorithm described in Section 4. The in-
stances with 4≤m6, n=20 and p=3 were generated simi-
larly to what Gharbi and Haouari (2002) did; in fact they 
were created as in Carlier (1987). The number of jobs to 
produce is 20. For each number of jobs 100 instances are 
generated. The number of machines is 4, 5 and 6. Differ-
ent distributions of machines are studied and are dis-
played in Table 3 and Table 4:  
 

Distribution 4a 4b 4c 5a 5b 5c 
mh 2 1 1 1 2 2 
mm 1 2 1 2 1 2 
ml 1 1 2 2 2 1 

Table 3. Machine distribution in levels (m=4 and m=5). 
 

Distribution 6a 6b 6c 6d 6e 6f 6g 
mh 3 3 2 2 1 1 2 
mm 2 1 3 1 3 2 2 
ml 1 2 1 3 2 3 2 

Table 4. Machine distribution in levels (m=6). 
 
Processing times were generated using a discrete uni-
form distribution [1,10]. The proportion of high level 
jobs is between 20 and 30%; for the medium-level, 20-
50%, and for the low-level, the rest, i.e. between 20 and 
60%. The release and queue times are taken from a dis-
crete uniform distribution [1,K(n/m)], where K is a posi-
tive integer equal to 3 or 5, as in Gharbi and Haouari 
(2002). 

 
In the following tables, given the solutions in the Pareto 
front using two different rules A and B for the job selec-
tion from a origin level to another destination level, it is 
computed c(A,B) as the number of non-dominated solu-
tions using the rule A by the solutions using rule B di-
vided by the total number of solutions obtained using 
rule A. The respective rules A are in rows and rules B, in 
columns. The results for the overall 13 distributions are 
shown in Table 5.   
 

 
min 

(rp,qp)
max 

(rp,qp) 
min 
(r,q) 

max 
(r,q) 

min 
(p) 

max 
(p) 

min(rp,qp) 0.26 0.42 0.37 0.90 0.22
max(rp,qp) 0.98 0.95 0.96 1.00 0.47

min(r,q) 0.96 0.34  0.61 0.97 0.25
max(r,q) 0.94 0.40 0.77  0.99 0.31
min(p) 0.54 0.28 0.40 0.34 0.24
max(p) 0.99 0.90 0.99 0.96 1.00

Table 5: Proportion of non-dominated solutions (overall) 
 

As Table 5 shows, the highest proportion is obtained 
with the rule which considers the largest processing time 
of a job in the candidate list. It is followed by the rule 
which considers the largest sum of processing and 
release or queue times, but clearly the first outperforms 
the second comparing both rules. 
 
In the following tables (Table 6, Table 7 and Table 8), 
the results are shown according to the number of parallel 
machines m. 
 
If we fix our attention to the max(p) rule in the three 
above tables, we can say this rule has a little better 
performance with m=4 than m=6, i.e. less machines, 
while the max(r+p,q+p) rule the performance for m=6 is 
slightly better than m=4. 
 

 
min 

(rp,qp)
max 

(rp,qp) 
min 
(r,q) 

max 
(r,q) 

min 
(p) 

max 
(p) 

min(rp.qp) 0.23 0.41 0.33 0.92 0.19
max(rp.qp) 0.99 0.94 0.97 1.00 0.40

min(r.q) 0.96 0.33  0.58 0.96 0.24
max(r.q) 0.94 0.38 0.76  0.99 0.27
min(p) 0.46 0.22 0.37 0.27 0.19
max(p) 1.00 0.92 0.99 0.96 1.00

Table 6: Proportion of non-dominated solutions (m=4) 
 

 
min 

(rp.qp)
max 

(rp.qp) 
min 
(r.q) 

max 
(r.q) 

min 
(p) 

max 
(p) 

min(rp.qp) 0.27 0.42 0.39 0.91 0.22
max(rp.qp) 0.99 0.95 0.95 0.99 0.48

min(r.q) 0.97 0.35  0.63 0.98 0.25
max(r.q) 0.95 0.41 0.77  0.99 0.30
min(p) 0.55 0.28 0.39 0.36 0.23
max(p) 1.00 0.89 0.99 0.96 1.00

Table 7: Proportion of non-dominated solutions (m=5) 
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min 

(rp.qp) 
max 

(rp.qp) 
min 
(r.q) 

max 
(r.q) 

min 
(p) 

max 
(p) 

min(rp.qp)  0.28 0.43 0.39 0.88 0.24
max(rp.qp) 0.97  0.96 0.96 1.00 0.54

min(r.q) 0.94 0.35  0.63 0.98 0.27
max(r.q) 0.93 0.42 0.78  0.99 0.35
min(p) 0.61 0.33 0.45 0.40 0.29
max(p) 0.97 0.88 0.99 0.96 1.00

Table 8: Proportion of non-dominated solutions (m=6) 
 
Once we see that the max(p) and the max(r+p,q+p) rules 
are the most appropriate ways to select the job to be 
moved, we analyze it considering the different machine 
distributions. 
 
Table 9 shows the comparison of solutions from max(p) 
rule against the rest of rules for a single and multiple 
machines. 
 
According to Table 9, the highest number of non-
dominated solutions is reached when there is a single 
machine in the high-level, while lowest number is 
obtained when there is a single medium-level machine 
and more than one high-level machines. We think the 
result for mh=1 is very reasonable, as there are more 
possibilities to decrease Cmax and more efficient 
solutions can be obtained. 
 
Finally, we must add that the computing times are very 
short, with values lower than a second. 
 

 
min 

(rp.qp) 
max 

(rp.qp) 
min 
(r.q) 

max 
(r.q) 

min 
(p) 

All 

mh=1 1.00 0.97 1.00 0.99 1.00 0.99
mm=1 0.97 0.87 0.98 0.94 1.00 0.95
ml=1 1.00 0.87 0.98 0.94 1.00 0.96
mh>1 0.98 0.85 0.98 0.93 1.00 0.95
mm>1 1.00 0.91 0.99 0.97 1.00 0.97
ml>1 0.98 0.91 0.99 0.97 1.00 0.97

Table 9: Proportion of non-dominated solutions for 
max(p) rule depending on the number of machines per 

level 

6 CONCLUSIONS 

The problem of parallel machines with eligibility and 
release and queue times has been studied, particularly 
when machines and jobs are divided into three levels. 
The studied multicriteria problem has two objectives to 
be minimized: the makespan and the total weight. This 
second value is positive if a job is not scheduled in the 
high-level machines. The set of solutions constitutes an 
approximation of the Pareto front.  
 
As the initial situation is to produce all the jobs in 
machines of the high level, this solution shows a great 
makespan with null total weight. The rest of solutions in 

the Pareto front have a decreasing value in the makespan 
while the total weight simultaneously increases. 
 
If we check different rules for the selection of the job to 
be moved from a level to another, the best results are 
achieved with the largest processing times, although the 
rule considering also release or delivery times added to 
the processing time has also a good performance. 
 
Once have seen the results, we propose to continue the 
research with a dynamic combination of rules instead of 
using only one. We also intend to further tackle this 
problem using metaheuristics and determine accurate 
bounds. 
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