
HAL Id: hal-00728604
https://hal.science/hal-00728604

Submitted on 30 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An algorithm for a biobjective parallel machine problem
with eligibility and release and delivery times

Manuel Mateo, Jacques Teghem

To cite this version:
Manuel Mateo, Jacques Teghem. An algorithm for a biobjective parallel machine problem with eli-
gibility and release and delivery times. 9th International Conference on Modeling, Optimization &
SIMulation, Jun 2012, Bordeaux, France. �hal-00728604�

https://hal.science/hal-00728604
https://hal.archives-ouvertes.fr

9th International Conference of Modeling, Optimization and Simulation - MOSIM’12
 June 06-08, 2012 – Bordeaux - France

“Performance, interoperability and safety for sustainable development”

AN ALGORITHM FOR A BIOBJECTIVE PARALLEL MACHINE
PROBLEM WITH ELIGIBILITY AND RELEASE AND DELIVERY TIMES

Manuel MATEO

Dep. Organització Empreses / UPC
Av Diagonal, 647, 7th

08028 Barcelona - Spain
manel.mateo@upc.edu

Jacques TEGHEM

MATHRO / Faculté Polytechnique /UMons
9, rue de Houdain

7000 Mons - Belgique
jacques.teghem@umons.ac.be

ABSTRACT: The scheduling of parallel machines is a well-known problem in many companies. Nevertheless, not al-
ways all the jobs can be manufactured in any machine and the eligibility appears. Based on a real-life situation, we
present a company which has three different sets of machines, called as high-level, medium-level and low-level respec-
tively. Besides, there are release times and delivery times related to the respective previous operations and following
operations to the main process to be carried in the parallel machines. A set of n jobs to be scheduled on these m paral-
lel machines are also distributed among levels. One job from a level can be manufactured in a machine of the same or
higher level. Initially all the jobs are processed on the machines of high level. But a penalty appears when a job is
manufactured in a machine different of this initial level. The proposed algorithm solves the problem with two criteria:
the minimization of the completion time or makespan, Cmax, and the minimization of the total penalty. The objective is to
determine or to approximate the Pareto front. Several alternatives are presented according to different rules to move a
job from one machine to another and compared through numerical experiments.

KEYWORDS: parallel machines, eligibility, release times, delivery times, Pareto front.

1 INTRODUCTION

The scheduling problem of parallel machines is very
usual in the companies. A single operation must be done
on a set of jobs and it is only necessary to perform it in
one of the available machines. The processing times of
the operations are typically known (e.g. Pinedo, 2005).
Some assigning and sequencing problems for two or
more parallel machines have been described as highly
complex (Blazewicz et al, 2001).

In this work we deal with a particular problem within the
scheduling of parallel machines, when some jobs cannot
be done on any machine, what is known in literature as
eligibility (Leung and Li, 2008).

Given a set of n jobs (j=1,…,n) to be scheduled on m
parallel machines (i=1,…,m), these machines are distrib-
uted generally among p groups or levels (k=1,…,p). Par-
ticularly we will propose an algorithm for p=3, which
means that machines and parts are separated into 3 levels
(k=1 is considered for high-level machines; k=2 is con-
sidered for medium-level and k=3 for low-level). All the
machines must be classified in one of the three levels.
The same is done for the jobs: each of them is assigned
to one of the levels. A machine in the level k can manu-
facture jobs of its own level k and also of lower levels.
The processing time of a job is the same for any ma-
chine. This is known in the literature as nested pro-
cessing set (Leung and Li, 2008).

The characteristics of each job j are the processing time
pj for the parallel machine operation, the release time rj
(also called head time), which can be consequence of the
previous operations received by the job, and the delivery
time qj (also tail or queue time), as a result of the subse-
quent tasks and transport to the end of the production
system.

Our problem is based in the scheduling of company de-
voted to industrial paintings. It has a set of machines,
which are reactors. The costs of manufacturing are im-
portant. The managers of the company prefer the use of
the most modern resources, in our case the high-level
machines. Nevertheless, if all the jobs were done in this
subset of machines, the makespan would reach a very
high value. In this case, the rest of machines would be
completely free and available to manufacture. For this
reason, some works from machines of the high-level are
moved to the other machines.

Moreover, machinery used for particular products, gen-
erally small products, is considered in the low-level. The
medium-level machines can work these small products
and also other products with longer dimensions. For this
reason, the medium-level machines are also preferred to
the low-level machines.

So, we define a penalty whose value is 1 if a job (of me-
dium or low-levels) is scheduled in a medium-level ma-
chine and is 2 if a job (of low-level) is scheduled in a
low-level machine. Penalties will be known as weights.

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

Therefore, two objectives are taken into account when a
feasible schedule is determined: the minimum comple-
tion time or makespan, Cmax, and the minimum total
weight, Wtot.

A schedule will be said feasible if the following condi-
tions are accomplished:

 Each machine processes at most one job at a
time.

 A job is only processed in a single machine.
 Pre-emption is not allowed.
 Starting time is not lower than the release time:

tj ≥ rj.
 A job assigned to level k is processed in a ma-

chine of the same or a higher level.

Taking into account the release and delivery times of the
jobs, our proposed algorithm refers to the algorithm de-
scribed in Gharbi and Haouari (2002) if these two sets of
times must be considered, but eligibility requires work-
ing with subsets of jobs at each level.

Section 2 presents the state of the art in parallel ma-
chines, with eligibility and release and delivery times,
and some remarks on multicriteria. Section 3 describes
the problem and the notation, while Section 4 introduces
the multicriteria approach algorithm. Section 5 presents
the computational experience. Finally, some conclusions
are given in Section 6.

2 LITERATURE REVIEW

2.1 The parallel machine problem

According to the notation of Graham et al (1979), the
problem can be noted as Pm|rj; qj; Mj|(Cmax, Wtot), where
job j can only be produced in a subset Mj of the m ma-
chines. A sub-problem can be solved for each value of
the weight, i.e. the second criterion. Considering only the
first criterion, the makespan, Pm|rj; qj|Cmax or P|rj; qj|Cmax
is an extension of the classical identical parallel machine
problem denoted by P||Cmax, which is a basic problem in
scheduling theory. However, we should remember that
the preemptive version, denoted by P|rj, qj, pmtn|Cmax, is
solvable in polynomial time using a network flow (Horn,
1974). Considering only the makespan, the problem can
be seen also as a generalization of the classical one ma-
chine problem 1|rj; qj|Cmax, which is known to be strong-
ly NP-hard (Garey and Johnson, 1979). Therefore, the
Pm|rj; qj; Mj|(Cmax, Wtot) is NP-hard in the strong sense.

Parallel machine problems have received the attention
from the research community since a long time. A sur-
vey of this literature is presented, for instance, in Pinedo
(2002). If release and delivery times are added, the prob-
lem becomes P|rj; qj|Cmax, but despite its theoretical and
practical interest, has received only a reduced attention.

Indeed, the literature regarding this problem is relatively
scarce.

To the best of our knowledge, the only exact algorithm
in the literature for this problem was developed by
Carlier (1987). Simple dispatching rules are analysed in
Carlier (1987) and Gharbi and Haouari (2002). Bratley et
al. (1975) developed a simple enumerative algorithm for
the problem P|rj; dj|Cmax, where dj represents the deadline
of job j. Lancia (2000) gives an enumerative method for
the problem with two unrelated machines, denoted by
R2|rj, qj|Cmax.

Other similar problems have been investigated. On the
one hand, there is the uniform parallel machine version,
which was dealt by Dessouky (1998); he develops a
branch-and-bound algorithm for Q|rj; qj; pj =1|Cmax. On
the other hand, for the single machine problem 1|rj;
qj|Cmax some branch-and-bound algorithms have been
proposed (Carlier, 1982).

Since P||Cmax is NP-hard in the strong sense, a problem
with eligibility is strongly NP-hard as well. Following
Leung and Li (2008), there are two important cases of
eligibility that have received considerable attention in the
literature: the nested processing set restrictions and the
inclusive processing set restrictions. The first one has the
property that for each pair Mj and Mk, either Mj and Mk
are disjoint, or one of them is included in the other. The
second one is a special case where the situation of dis-
joint Mj and Mk is not considered.

Our problem can be classified in the second group of
situations, similar to what Hwang et al (2004) presented
in the service industry. In this case of inclusive process-
ing set restrictions, each Mj is associated with a single
machine index aj such that denotes the first or the last
machine useful for the job j, depending on the sequence
of machines. In our case, aj means that a job j can be
processed between machines 1 and aj, once machines are
sequenced by levels.

To the best of our knowledge, only Centeno and
Armacost (1997) and once again Centeno and Armacost
(2004) have worked on both characteristics at the same
time. Nevertheless, they only look for the minimization
of the makespan on parallel machines with release times
and machine eligibility restrictions (Pm|rj; Mj|Cmax).
They do not consider queue or delivery times.

2.2 The multicriteria problem

A survey of multicriteria research can be found in Ehr-
gott and Gandibleux (2002), more specifically on bicrite-
ria scheduling in Nagar et al (1995). According to Loukil
et al (2007), concerning multi-objective optimization
problems we can distinguish five main approaches in the
literature:

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

 Hierarchical approach: considered objectives
are ranked in a priority order and optimized fol-
lowing this order.

 Utility approach: a utility function or weighting
function, often a weighted linear combination of
the objectives, is used to aggregate the consid-
ered objectives in a single one.

 Goal programming: all the objectives are taken
into account as constraints which express some
satisfying levels (or goals) and the objective is
to find a solution whose values are as close as
possible of the pre-defined goal for each objec-
tive.

 Simultaneous (or Pareto) approach: the aim is to
generate, or to approximate in case of a heuris-
tic method, the complete set of efficient solu-
tions.

 Interactive approach: at each step of the proce-
dure, the decision-maker expresses his prefer-
ences in regard to one (or several) solutions
proposed. So, the method will progressively
converge to a satisfying compromise between
the considered objectives.

Our procedure can be classified into the fourth approach
We recall that for a multi-objective optimization prob-
lem:

() 1,...,min k
X S

z X k K



 (1)

A solution X*S is efficient or Pareto optimal (or non-
dominated) if there is no other solution XS such that
zk(X) ≤ zk(X*) k with at least one strict inequality.

Despite their importance, scare attention has been given
to multiple criteria scheduling problems, especially in
multiple machine problems (T’Kindt and Billaut, 2002).
This is due to the complexity of these combinatorial
problems. From the analysis of the literature, often the
methods proposed are either very complex to implement
or only able to solve small size problems and with two
objectives, or completely dependent on the model
treated.

3 NOTATION

Let us consider the m machines divided in three levels.
Instead of using k=1,2,3 for the different levels, we will
denote by h the machines of the high level, m for the
machines of the medium level, and l for the machines of
the low level, respectively. The number of machines for
each set of machines will be mh, mm and ml, respective-
ly. In a similar way, the n jobs to be manufactured are
also divided in similar groups. Then, the number of jobs
will be nh, nm and nl, respectively. Finally, we thus
have:

m=mh+mm+ml (2)

n= nh+nm+nl (3)

The nl jobs can be manufactured in machines of any
level. The nm jobs of the second group can be treated in
any of the mm+mh machines of medium and low levels.
Finally, the nh jobs of the last group can be only manu-
factured in the mh machines of high level.

A job j (j=1,...,n) is defined by a processing time pj; a
release time rj; a delivery time qj and is classified into
one of the three levels (h, m, l).

The job j will be scheduled in the machine between tj,
the starting time of job j, and tj+pj. Given tj, the comple-
tion time of this job is computed as:

Cj=tj+pj+qj (5)

And obviously, the makespan is:

Cmax = maxj {Cj} (6)

We also define CmaxH, as the makespan only for the
high-level machines; and equivalently CmaxM and CmaxL
for the medium-level and low-level machines, respec-
tively.

A solution will be represented by a vector , each one of
its elements, j, is composed of the assigned machine
and the starting time of that job j.

On the other hand, weights are applied on the kind of
level change:

 wj =1 if j is assigned to one of the mm machines
in 
 wj =2 if j is assigned to one of the ml machines in


and the total weight becomes:

Wtot = j {wj} (7)

The multicriteria objective is shown as:

 max (), ()min tot
X S

C X W X
 (8)

4 THE PROPOSED ALGORITHM

4.1 Some previous remarks on the algorithm

The algorithm is divided in two phases. It starts with a
solution with null total weight, when all the jobs are as-
signed to high-level. I.e. any job (belonging to any level)
is scheduled in one of the machines of high-level. This
implies a first solution with the maximum Cmax in the set
of efficient solutions and the minimum weight, equal to
0.

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

While new efficient solutions can be found, an iteration
of the second phase implies that one job is taken from an
origin level machine and moved to a destination level
machine.

Briefly, the substeps in this phase are:

 Select the origin level of the movement.
 Select a job to be changed to a different level

(only a subset of jobs is available).
 Select the destination level of the movement.
 Machines in both levels are re-scheduled.
 The objectives of the new solution are evaluated

(Cmax; Wtot).

In our first proposal of the algorithm we establish a pri-
ority in the level changes:

 First, job changes between high-level and me-
dium-level machines are tried.

 Then, job changes between high-level and low-
level machines are tried.

 Finally, job changes between medium-level and
low-level machines are tried.

We used different rules to select the job to be moved,
among the subset of candidates (considering the origin
and destination levels):

j = argminj (rj+pj, qj+pj) (9)

j = argmaxj (rj+pj, qj+pj) (10)

j = argminj (rj, qj) (11)

j = argmaxj (rj, qj) (12)

j = argminj (pj) (13)

j = argmaxj (pj) (14)

4.2 Heuristic 1 in case of one-machine per level

In order to schedule the jobs among the machines in a
certain level, we use a procedure similar to what Garbi
and Haouari (2002) proposed (see sub-section 4.3). Nev-
ertheless, if there is only one machine per level a simpler
procedure can be applied.

Let J a set of n jobs defined by the three times: rj, pj and
qj. We describe the algorithm with n jobs as in phase 1,
but later this value can vary according to the distribution
of jobs among levels.

For the initial sequence of jobs, two very similar heuris-
tics are proposed: the first based on the minimum values,
and the second on the maximum values. Their complex-
ity is in O(nlogn)

Heuristic 1

Heuristic 1a

1. A job 0s J is such that
0sr o

0sq corre-

sponds to min {rj;qj} j=1,...,n.

2. If 0s has been chosen due its release time, the

job occupies the first free position in the se-

quence. On the other hand, if 0s has been cho-

sen due its delivery time, the job occupies the
last free position of the sequence.

3.  0\J J s . If J  , go to Heuristic 1b;

otherwise, go to step 1 in this Heuristic 1a.

Heuristic 1b

1. A job 0s J is such that
0sr o

0sq corre-

sponds to max {rj;qj} j=1,...,n

2. Si 0s has been chosen due its release time, the

job occupies the last free position in the se-

quence. If 0s has been chosen due its delivery

time, the job occupies the first free position of
the sequence.

3.  0\J J s . If J  , stop; otherwise, go

to step 1 in this Heuristic 1b.

At the end of both heuristics, a non-negative vector

 1 2, ,..., nt t t  is obtained, where jt is the starting

time of job j (1;...;j jt r j n  ). For the next phases,

the vector with a minimum makespan is taken.

Example 1

For an easier understanding, we will work with the low-
level jobs in Table 1, where k is the level.

j j7 j8 j9 j10 j11
k l l l l l
rj 4 4 0 3 5
pj 8 6 5 4 2
qj 6 2 1 7 3

Table 1. Data for low-level jobs of Example 1.

There is a single low-level machine to produce the jobs.
The heuristic is applied as follows:

Heuristic 1a

1.  7;8;9;10;11J  ;  0 9s  and the mini-

mum is sr

2. Job 9 is assigned at the beginning of the sequence.

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

3.  7;8;10;11J  and return to step 1.

1.  0 8s  and the minimum is sq .

2. Job 8 is assigned at the end of the sequence.

And so on until J  , the resultant vector is:

 1 9;10;7;11;8  ; maxC = 27

Analogously, the heuristic 1b leads to vector:

 2 10;7;9;8;11  ; maxC = 31

1
is the preferred schedule.

4.3 Heuristic 2 in case of several machines per level

Gharbi and Haouari (2002) proposed an algorithm to
minimize the makespan of a set J of n jobs to be per-
formed on m≥2 machines and results in two vectors
=(t1,...,tn) where tj is the starting time for job j and
a=(a1,…,an) where aj is the machine to which j is as-
signed.

But previously it is necessary to define two conditions to
be evaluated. The jobs are sequenced by increasing order

of release time       , 1 2, ,...,r m mJ j j j . Jr.m is a vector

whose component j(t) is the job with the t-th arrival time
and j0Jr,m is such that

0 0 ,
min ()

r mj j j J j jr p r p   . It is as-

sumed that the Condition 1 (C1) is accomplished:

 0 0 1mj j jr p r


 

(15)

Then tj0 = rj0 in an optimal schedule and the job j0 can be
removed from the set of jobs to be scheduled and placed
in a set JR. The problem can be considered symmetrical
interchanging release and delivery times. An immediate
consequence of this symmetry is the definition of

      , 1 2, , ...,q m mJ j j j , whose component j(t) is the job

with the t-th delivery time in increasing order and j0Jq,m

is such that
0 0 ,

min ()
qmj j j J j jq p q p   . In ,q mJ jobs are

sequenced in increasing order of queue time. It is as-
sumed that the Condition 2 (C2) is accomplished:

 0 0 1mj j jq p q


 

(16)

Similarly the job j0 can be removed of the set of jobs to
be scheduled and placed in a set JQ. Then, the algorithm
for scheduling of jobs in a selected level is:

0. Classification of jobs into J , RJ and QJ .

0.1. Initialize the three sets: RJ  , QJ   ,

J J .
0.2. Check Condition C1.

0.2.1. If the number of jobs in J is no greater that

m, i.e., if J m , the algorithm stops.

0.2.2. If no job satisfies the Condition C1, go to 0.3;

otherwise,  0\J J j ;  0R RJ J j  and

go to 0.2.1.
0.3. Check Condition C2.

0.3.1. If the number of jobs in J is no greater that

m, i.e. if J m the algorithm stops.

0.3.2 If no job satisfies the Condition C2, go to 0.4;

otherwise,  0\J J j ;  0Q QJ J j  and

go to 0.3.1.
0.4. If no job is moved to a different set in 0.3, stop.

Otherwise, go to 0.2.

1. The jobs in J are assigned to the machines to obtain
a partial schedule . The first ready job is assigned to the
first available machine.

2. Two new concepts are necessary:

 ()iu  is the time in which the machine i is

available given the schedule  .

 1  is the symmetric schedule of  .
To integrate elements to the sets JR and JQ into , there
are two parts: first, jobs of JQ are assigned and then jobs
of JR. This step implies to apply the algorithm proposed
by Gharbi and Haouari (2002).

 2.1. All the jobs of the set QJ are assigned.

2.1.1. If QJ   , go to 2.2.

2.1.2. Job 0 Qj J is such that

0 0
max ()

Qj j j J j jp q p q   .

2.1.3. 0m is called the machine with availability

0 1,...,min ()i n iu u  .

2.1.4. Job 0j is scheduled on machine 0m and

0 00 0max(,)j ju u r p  is updated.

2.1.5.  0\Q QJ J j and go to 2.1.1.

2.2. 1  

2.3. All the jobs of the set RJ are assigned.

2.3.1. If RJ  , go to 2.4.

2.3.2. Job 0 Rj J is such that

0 0
max ()

Rj j j J j jr p r p   .

2.3.3. 0m is called the machine with availability

0 1,...,min ()i n iu u  .

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

2.3.4. Job 0j is scheduled on machine 0m and

0 00 0max(,)j ju u q p  is updated.

2.3.5.  0\Q QJ J j and go to 2.3.1.

2.4. 1  

In Step 2, jobs in the set JQ are first considered. The jobs
are assigned in the non-increasing sequence of the addi-
tion of the delivery time and the processing time. At ach
iteration, a job is assigned to the first available machine
and the job is removed from JQ. Once these jobs are
scheduled, the symmetric schedule is obtained in order
to assign the jobs in set JR, which will be allocated on the
first available machine in the non-increasing sequence of
ready plus processing times. As with the other set, each
time a job is assigned, it is removed from the set JR.

Example 2

We continue with similar data to the previous Example
1. Jobs and machines (ml=2) belong only to the low-
level.

j j7 j8 j9 j10 j11
k l l l l l
rj 6 4 0 3 8
pj 8 5 2 1 4
qj 6 2 1 4 7

Table 2. Data for low-level jobs of Example 2.

0.1. RJ  , QJ   , J J .

0.2a. The set is  , 9,10r mJ  ;

 
, 0min () min(2, 4) 2 9

r mj J j jr p j      .

Condition C1 (
 0 0 1mj j jr p r


 ) is satisfied.

Consequently, the new set is  9RJ  .

0.2b. Condition C1 leads to  , 10,8r mJ  .

 
, 0min () min(4,9) 4 10

r mj J j jr p j     

As above, the Condition C1 is checked again so that the

set is now  9;10RJ  .

As above, the Condition C1 is checked again.

0.2c. Condition C1 leads to  , 8,7r mJ  .

 
, 0min () min(9,14) 9 8

r mj J j jr p j     

As it is not accomplished, the algorithm goes to step 2.

0.3. Condition C2 leads to  , 7,8q mJ 

 
, 0min () min(7,14) 7 8

r mj J j jp q j     

It is accomplished. Consequently,  7Q QJ J  , and

the sets  9;10RJ  ;  11;7J  and  8QJ  .

The algorithm finishes the classification, as J m .

1. Following with the example above,  11;7J  . Since

the first job to arrive is job 7, it will be assigned to the
first available low-level machine (l1). The following job,
j11, is assigned to the other machine (l2). The vectors at
the end of Step 1 are =(6,0,0,0,8) and a=(1,0,0,0,2),
with Cmax=20.

2.1.1. As  8QJ  , continue in 2.1.2.

2.1.2. As there is a single job,  0 8j  , then

0 0
7j jp q  .

2.1.3. Given =(6,0,0,0,8), the availability time is

   14,12iu   , whose minimum value is 12 and is

associated to machine ml2 .
2.1.4. Job 8 is scheduled on machine ml2; u0 (ml2) = 12+5
= 17. Therefore: ui()=(14,17) and the new vectors are
=(6,12,0,0,8), a = (1,2,0,0,2), with Cmax = 20.

2.1.5.  0\Q QJ J j , but now QJ   and finally

go to 2.2.
2.2. The inverse = -1=(6,3,0,0,8) is based on the sub-
traction of the ending processing time from Cmax = 20.

2.3.1. As  9;10RJ  , continue in 2.3.2.

2.3.2. Job 0 Rj J is j10 as
0 0j jr p 

max () 4

Rj J j jr p   .

2.3.3. Given    14,12iu   , 0 12u  comes from

machine ml2.
2.3.4. The job 10 is scheduled on machine ml2: u0 = 13.
Therefore: ui()=(14,13) and = -1=(6,3,0,12,8).

2.3.5.  0\Q QJ J j and go to 2.3.1.

The step 2.3 is repeated to assign job 9, which is finally
assigned to machine ml2.
2.4. Finally,  is inverted again: = -1=(6,12,5,7,8), a
= (1,2,2,2,2), with Cmax = 20.

4.4 The main algorithm

Therefore, the algorithm is as follows:

Phase 0. Data input
Phase I: Assignment of all the jobs to high-level ma-
chines.

If mh=1, apply Heuristic 1 for all the jobs.
Otherwise, apply Heuristic 2 for all the jobs.
Compute Cmaxº

Phase II: Movement of jobs between different levels

II.1. Job movement from high to medium level
final = false
while (final = false)

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

 Search for job candidates
 if there is no candidate
 final = true
 else

Search for a job between candidates according
to the prefixed rule

 Reschedule jobs in high-level
Reschedule jobs in medium-level
Compute the new Cmax, CmaxH, CmaxM
if Cmax < Cmaxº
 Save the new solution
 Cmaxº = Cmax
else
 final = true
endif

 endif
endwhile

II.2. Job movement from high to low level
This stage is analogous to II.1, but changing medium-
level by low-level and CmaxM by CmaxL.

II.3. Job movement from medium to low level
This stage is analogous to II.1, but changing high-level
by medium-level and medium-level by low-level, and
also CmaxH by CmaxM and CmaxM by CmaxL.

5 COMPUTATIONAL EXPERIENCE

Computational experience is based on the implementa-
tion of the algorithm described in Section 4. The in-
stances with 4≤m6, n=20 and p=3 were generated simi-
larly to what Gharbi and Haouari (2002) did; in fact they
were created as in Carlier (1987). The number of jobs to
produce is 20. For each number of jobs 100 instances are
generated. The number of machines is 4, 5 and 6. Differ-
ent distributions of machines are studied and are dis-
played in Table 3 and Table 4:

Distribution 4a 4b 4c 5a 5b 5c
mh 2 1 1 1 2 2
mm 1 2 1 2 1 2
ml 1 1 2 2 2 1

Table 3. Machine distribution in levels (m=4 and m=5).

Distribution 6a 6b 6c 6d 6e 6f 6g
mh 3 3 2 2 1 1 2
mm 2 1 3 1 3 2 2
ml 1 2 1 3 2 3 2

Table 4. Machine distribution in levels (m=6).

Processing times were generated using a discrete uni-
form distribution [1,10]. The proportion of high level
jobs is between 20 and 30%; for the medium-level, 20-
50%, and for the low-level, the rest, i.e. between 20 and
60%. The release and queue times are taken from a dis-
crete uniform distribution [1,K(n/m)], where K is a posi-
tive integer equal to 3 or 5, as in Gharbi and Haouari
(2002).

In the following tables, given the solutions in the Pareto
front using two different rules A and B for the job selec-
tion from a origin level to another destination level, it is
computed c(A,B) as the number of non-dominated solu-
tions using the rule A by the solutions using rule B di-
vided by the total number of solutions obtained using
rule A. The respective rules A are in rows and rules B, in
columns. The results for the overall 13 distributions are
shown in Table 5.

min

(rp,qp)
max

(rp,qp)
min
(r,q)

max
(r,q)

min
(p)

max
(p)

min(rp,qp) 0.26 0.42 0.37 0.90 0.22
max(rp,qp) 0.98 0.95 0.96 1.00 0.47

min(r,q) 0.96 0.34 0.61 0.97 0.25
max(r,q) 0.94 0.40 0.77 0.99 0.31
min(p) 0.54 0.28 0.40 0.34 0.24
max(p) 0.99 0.90 0.99 0.96 1.00

Table 5: Proportion of non-dominated solutions (overall)

As Table 5 shows, the highest proportion is obtained
with the rule which considers the largest processing time
of a job in the candidate list. It is followed by the rule
which considers the largest sum of processing and
release or queue times, but clearly the first outperforms
the second comparing both rules.

In the following tables (Table 6, Table 7 and Table 8),
the results are shown according to the number of parallel
machines m.

If we fix our attention to the max(p) rule in the three
above tables, we can say this rule has a little better
performance with m=4 than m=6, i.e. less machines,
while the max(r+p,q+p) rule the performance for m=6 is
slightly better than m=4.

min

(rp,qp)
max

(rp,qp)
min
(r,q)

max
(r,q)

min
(p)

max
(p)

min(rp.qp) 0.23 0.41 0.33 0.92 0.19
max(rp.qp) 0.99 0.94 0.97 1.00 0.40

min(r.q) 0.96 0.33 0.58 0.96 0.24
max(r.q) 0.94 0.38 0.76 0.99 0.27
min(p) 0.46 0.22 0.37 0.27 0.19
max(p) 1.00 0.92 0.99 0.96 1.00

Table 6: Proportion of non-dominated solutions (m=4)

min

(rp.qp)
max

(rp.qp)
min
(r.q)

max
(r.q)

min
(p)

max
(p)

min(rp.qp) 0.27 0.42 0.39 0.91 0.22
max(rp.qp) 0.99 0.95 0.95 0.99 0.48

min(r.q) 0.97 0.35 0.63 0.98 0.25
max(r.q) 0.95 0.41 0.77 0.99 0.30
min(p) 0.55 0.28 0.39 0.36 0.23
max(p) 1.00 0.89 0.99 0.96 1.00

Table 7: Proportion of non-dominated solutions (m=5)

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

min

(rp.qp)
max

(rp.qp)
min
(r.q)

max
(r.q)

min
(p)

max
(p)

min(rp.qp) 0.28 0.43 0.39 0.88 0.24
max(rp.qp) 0.97 0.96 0.96 1.00 0.54

min(r.q) 0.94 0.35 0.63 0.98 0.27
max(r.q) 0.93 0.42 0.78 0.99 0.35
min(p) 0.61 0.33 0.45 0.40 0.29
max(p) 0.97 0.88 0.99 0.96 1.00

Table 8: Proportion of non-dominated solutions (m=6)

Once we see that the max(p) and the max(r+p,q+p) rules
are the most appropriate ways to select the job to be
moved, we analyze it considering the different machine
distributions.

Table 9 shows the comparison of solutions from max(p)
rule against the rest of rules for a single and multiple
machines.

According to Table 9, the highest number of non-
dominated solutions is reached when there is a single
machine in the high-level, while lowest number is
obtained when there is a single medium-level machine
and more than one high-level machines. We think the
result for mh=1 is very reasonable, as there are more
possibilities to decrease Cmax and more efficient
solutions can be obtained.

Finally, we must add that the computing times are very
short, with values lower than a second.

min

(rp.qp)
max

(rp.qp)
min
(r.q)

max
(r.q)

min
(p)

All

mh=1 1.00 0.97 1.00 0.99 1.00 0.99
mm=1 0.97 0.87 0.98 0.94 1.00 0.95
ml=1 1.00 0.87 0.98 0.94 1.00 0.96
mh>1 0.98 0.85 0.98 0.93 1.00 0.95
mm>1 1.00 0.91 0.99 0.97 1.00 0.97
ml>1 0.98 0.91 0.99 0.97 1.00 0.97

Table 9: Proportion of non-dominated solutions for
max(p) rule depending on the number of machines per

level

6 CONCLUSIONS

The problem of parallel machines with eligibility and
release and queue times has been studied, particularly
when machines and jobs are divided into three levels.
The studied multicriteria problem has two objectives to
be minimized: the makespan and the total weight. This
second value is positive if a job is not scheduled in the
high-level machines. The set of solutions constitutes an
approximation of the Pareto front.

As the initial situation is to produce all the jobs in
machines of the high level, this solution shows a great
makespan with null total weight. The rest of solutions in

the Pareto front have a decreasing value in the makespan
while the total weight simultaneously increases.

If we check different rules for the selection of the job to
be moved from a level to another, the best results are
achieved with the largest processing times, although the
rule considering also release or delivery times added to
the processing time has also a good performance.

Once have seen the results, we propose to continue the
research with a dynamic combination of rules instead of
using only one. We also intend to further tackle this
problem using metaheuristics and determine accurate
bounds.

ACKNOWLEDGMENTS

This work has been done with the support of grant
DPI2007-61371 (Ministerio Educación y Ciencia,
Spain).

REFERENCES

Blazewicz J., Ecker K.H., Pesch E., Schmidt G. and J.

Weglarz, 2001. Scheduling Computer and
Manufacturing Processes, Springer-Verlag.

Bratley P., Florian M. and P. Robillard, 1975.

Scheduling with earliest start and due date constraints
on multiple machines. Naval Research Logistics
Quarterly, 22, p. 165 –173.

Carlier J., 1982. The One-Machine Sequencing Problem.

European Journal of Operational Research, 11, p.
42–47.

Carlier J., 1987. Scheduling jobs with release dates and

tails on identical machines to minimize the
makespan. European Journal of Operational
Research; 29, p. 298 –306.

Centeno, G. and R.L. Armacost, 1997. Parallel machine

scheduling with release time and machine eligibility
restrictions. Computers and Industrial Engineering,
33 (1–2), p. 273–276.

Centeno, G. and R.L. Armacost, 2004. Minimizing

makespan on parallel machines with release time and
machine eligibility restrictions. International Journal
of Production Research, 42 (6), p. 1243-1256.

Dessouky M.M., 1998. Scheduling identical jobs with

unequal ready times on uniform parallel machines to
minimize the maximum lateness. Computers and
Industrial Engineering, 34, p. 793–806.

Ehrgott, M. and X. Gandibleux, 2002, Multiobjective

combinatorial optimization—theory, methodology
and applications, in: Ehrgott, M. and X. Gandibleux,

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

Multiple Criteria Optimization. State of the Art.
Annotated Bibliographic. Surveys, Kluwer.

Garey, M.R. and D.S. Johnson, 1979. Strong NP-

completeness results: Motivation, examples and
implications. Journal of the Association of Computer
Machinery, 25, p. 499–508.

Gharbi, A. and M. Haouari, 2002. Minimizing makespan

on parallel machines subject to release dates and
delivery times. Journal of Scheduling, 5, p. 329–355.

Graham R.L., Lawler E.L., Johnson D.S., Lenstra J.K.

and Rinnooy K., 1979. Optimization and
approximation in deterministic sequencing and
scheduling theory: a survey. Annals of Discrete
Mathematics, 5, p. 287-326.

Horn, W.A., 1974. Some simple scheduling algorithms.

Naval Research Logistics Quarterly, 21, p. 177–185.

Hwang, H.-C., Chang, S.Y. and K. Lee, 2004. Parallel

machine scheduling under a grade of service
provision. Computers and Operations Research, 31
(12), p. 2055–2061.

Lancia, G., 2000. Scheduling jobs with release dates and

tails on two unrelated parallel machines to minimize

the makespan. European Journal of Operational
Research, 120, p. 277–288.

Leung, J. Y.-T. and C.-L. Li, 2008. Scheduling with

processing set restrictions: A survey. International
Journal of Production Economics, 116, p. 251-262.

Loukil, T., Teghem, J. and P. Fortemps, 2007. A multi-

objective production scheduling case study solved by
simulated annealing. European Journal of
Operational Research, 179 (3), p. 709-722.

Nagar, A., Haddock, J. and S. Heragu, 1995. Multiple

and bicriteria scheduling: A literature survey.
European Journal of Operational Research, 81 (1),
p. 88–104.

Pinedo, M.L., 2002. Scheduling theory, algorithms, and

systems. Prentice-Hall.

Pinedo M.L., 2005. Planning and scheduling in

manufacturing and services, Springer.

T’Kindt, V. and J.-Ch. Billaut, 2002. Multicriteria

Scheduling (Theory, Models and Algorithms).
Springer.

