
HAL Id: hal-00728581
https://hal.science/hal-00728581

Submitted on 30 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Introducing Explicit Causality in Object-oriented
Hybrid System Modeling
Liu Liu, Felix Felgner, Georg Frey

To cite this version:
Liu Liu, Felix Felgner, Georg Frey. Introducing Explicit Causality in Object-oriented Hybrid System
Modeling. MOSIM 2012 - 9th International Conference of Modeling, Optimization and SIMulation,
Jun 2012, Bordeaux, France. pp.1-10. �hal-00728581�

https://hal.science/hal-00728581
https://hal.archives-ouvertes.fr

9th International Conference of Modeling, Optimization and Simulation - MOSIM’12
 June 06-08, 2012 – Bordeaux - France

“Performance, interoperability and safety for sustainable development”

INTRODUCING EXPLICIT CAUSALITY IN OBJECT-ORIENTED HYBRID
SYSTEM MODELING

Liu Liu, Felix Felgner, Georg Frey

Chair of Automation, Saarland University
Saarbrücken, Germany

{ liu.liu | felix.felgner | georg.frey }@aut.uni-saarland.de

ABSTRACT: Along with the rapid development of embedded devices and network technology, the area of Cyber
Physical Systems (CPS), has arisen. In terms of modeling and simulation, CPS—like many technical systems—have a
hybrid nature, i.e., discrete-event behavior and continuous-time dynamics have to be integrated with each other.
Basically, this integration is supported by modern object-oriented modeling paradigms such as Modelica®. The
equation-based concept resolves the causality between interconnected components, which qualifies this modeling
scheme for complex multi-domain systems. However, in hybrid systems, explicit causality is required to correctly
manage iterative events. This paper highlights these issues, including algorithmic loops and instantaneous multiple
updates, which essentially arise from incompatibilities between the object-oriented concept and specific discrete-event
phenomena. We discuss several possible solutions and introduce the concept of re-allocating the objects’ behavioral
intelligence.

KEYWORDS: Object-oriented Modeling and Simulation, Causality, Cyber-Physical System (CPS), algorithmic loop,
instantaneous multiple updates

1 INTRODUCTION

The modeling and simulation of hybrid systems has been
discussed for more than 30 years, with F. E. CELLIER’s
1979 dissertation (Cellier, 1979) being one of the earliest
extensive contributions in the field. By now, various
approaches have been developed to model and analyze
these systems, e.g. using hybrid automata (Henzinger,
1996) in system modeling and model checking
(Henzinger, 1997) for system analysis. Regarding simu-
lation, hybrid simulation technology is basically divided
into two fractions: Firstly, the well-known technique—
applied, e.g., by Matlab® and Dymola®—making use of
modern ODE solvers with additional mechanism for
handling discontinuity. Secondly, a relatively new ap-
proach introduced in PowerDEVS (Bergero and Hof-
man, 2011), which applies a quantization-based integra-
tion method and the Discrete Event System Specification
(DEVS) formalism (Zeigler et al., 2000) for the model-
ing and simulation of hybrid systems.

The term hybrid system is used to classify a system
which involves combined continuous and discrete behav-
ior. Plenty of examples can be categorized as hybrid sys-
tems, either pure physical systems (e.g. bouncing ball) or
control systems (e.g. thermostat). Along with the rapid
development of embedded devices and network technol-
ogy, a more specific sub-area of hybrid systems, the
Cyber Physical Systems (CPS), has arisen. CPS empha-
sizes the integration of computation and physical pro-
cesses (Lee, 2008). The author in (Lee, 2008) points out
some interesting challenges in the design process of

CPS. Some of the challenges, e.g. handling concurrency,
building more deterministic models and managing large
scale heterogeneous structures, are also of interest from
the simulation point of view. Consequently, the analysis
of CPS requires practice- and engineering-oriented tools.
The classic methods based on rigorous mathematical
models such as hybrid automata and DEVS, due to the
lack of commercial-level software supports, may no
longer be efficient or even not applicable to treat CPS.

The object-oriented (OO) modeling paradigm, to be con-
sidered as the de-facto standard to handle the system
complexity, provides a further potential framework for
the modeling and simulation of hybrid systems, especial-
ly for CPS.

Recently, several works have been started in the field of
modeling and simulation of CPS using the Modelica®

language. The ‘NCLib’ library presented in (Liu and
Frey, 2008), (Wagner et al., 2008) provides components
for modeling computation and communication systems.
Detailed timing effects, including real-time task schedul-
ing, task execution and network communication, are
captured. In combination with other Modelica® libraries,
complex CPS can be modeled and simulated in a single
simulation environment. An illustrative CPS example is
given in Figure 1 (Liu and Frey, 2008). Here, the OO
modeling paradigm is extensively employed to break
down the complexity of the whole system which in-
volves ca. 13,000 variables. The robotic arm consists of
five revolute joints, each with a drive axis attached. An
embedded controller (axis controller) is deployed for
each drive axis. The axis controllers exchange infor-

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

mation (sensor values, actuator values) with the center
controller (trajectory plan) through the Fully-Switched-
Ethernet. The robotic arm is modeled using the Modeli-
ca® Multibody library, while the communication and
computation components are built upon components
from the NCLib library. Besides ‘NCLib’,
‘TrueTime Network’ (Reuterswärd et al., 2009) trans-
plants the network part of the ‘TrueTime’ library from
MATLAB/Simulink to Modelica®. The ‘Modeli-
ca_EmbeddedSystems’ library presented in (Henriksson
and Elmqvist, 2011) shows recent Modelica® develop-
ments facilitating integrated model-based system devel-
opment applicable to CPS.

Figure 1. Modeling a CPS using ‘NCLib’

One main challenge of hybrid system simulation
is handling the synchronization and the temporal or logi-
cal ordering of multiple events, for which we use the
term causality. This is especially true regarding the
aforementioned CPS, as stated in one of E.A LEE’s re-
cent publications:

“It is also challenging to accurately represent in models
distinct events that are causally related but occur at the
same time.” (Derler et al., 2011)

In order to achieve deterministic behavior in simulation,
the causality of the modeled systems has to be modeled
unambiguously and simulated correctly. This challenge
also applies to the state-of-the-art OO modeling lan-
guages and simulation packages (e.g. Modelica® /
Dymola®, which is further discussed in this paper).

This paper aims at proposing a well-arranged and sys-
tematical solution for the causality problem. Based on a
detailed discussion of existing approaches, a new ap-
proach called intelligence re-allocation is suggested.
This approach is based on a modified OO modeling par-
adigm. Since it utilizes as less tool-specific features as
possible, it is a promising generic method for the OO
modeling and simulation of hybrid systems regarding the
causality problem. This approach has been utilized in the
implementation of the ‘NCLib’ library.

The paper is structured as follows: Section 2 introduces
the origin of the causality problem in OO modeling and
simulation. The way of handling causality in modern
simulation tool Modelica® / Dymola® and potential prob-
lems are shortly introduced. Section 3 explains the prob-
lem of algorithmic loop and discusses three possible
solutions. In section 4, the instantaneous multiple up-
dates problem, as a further complication of the causality
problem, is introduced and three feasible solutions are
analyzed. As a generic solution to resolve causality prob-
lems, the re-allocation of objects’ behavioral intelli-
gence is proposed in section 5. Section 6 concludes the
paper.

2 THE CAUSALITY PROBLEM

2.1 The origin of the causality problem

One of the intrinsic characteristics of every real, physical
system is concurrency. Interactive elements in a physical
system also behave concurrently. During the modeling of
such a system, certain interactions may be abstracted,
typically those interactions which (from the system point
of view) serve for the transfer of a certain information.
For instance:

 The interaction between components of a communi-

cation system (cf. section 3.1);
 The interaction between two colliding rigid bodies

(cf. section 4.1).

By that abstraction, the system model receives its hybrid
nature: (discrete) events are integrated to define certain
actions to be performed at a certain time instant. With
those events, as opposed to the original physically con-
current interaction, the causality of those events has to
be introduced. This causality further presents itself as a
communication and synchronization problem in the con-
text of computer programming.

The sequential programming technology can handle cau-
sality problem easily by applying a global list of unpro-
cessed events, whereas, in concurrent programming,
dozens of methods, e.g. semaphores, message passing,
monitors, etc., are utilized to solve it.

Since the objects in OO modeling are functionally the
same as the parallel processes in the concurrent pro-
gramming, OO modeling and simulation of physical
systems faces similar challenges as concurrent pro-
gramming, regarding the causality problem. The simula-
tion tool used to evaluate the OO models further defines
special disciplines for solving causality problems.

Models arisen from OO modeling have to be firstly in-
terpreted by a simulation tool. The working schema of
the interpreter/compiler and the run-time system of the
simulation tool play dominant roles in rebuilding the
causality. The simulation tool has to decide how to up-
date and process pending event-set dynamically, based

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

on the information gathered from models. Consequently,
the modeler should have solid knowledge about the sim-
ulation tool to ensure the correctness of the model.

Figure 2 depicts the causality problem of OO modeling.
Supposing the system should execute the operations a, b,
c, d in a defined sequence at the time instant tE:
a()→c()→b()→d(). In the normal OO programming
case, a top-level program can be defined to manage the
calls of methods to achieve this goal. However, in the
OO modeling and simulation tool, the lack of upper-
level model determines that additional synchronization
information is required to define the sequence. Without
such information, the simulator itself can merely ensure
that all the methods are executed in one possible se-
quence at the time instant tE. Formulating the synchroni-
zation information must strictly follow the disciplines
defined by the simulation tools. In the following section,
we will exemplarily exam the simulation tool Modelica®
/ Dymola® in this aspect.

Object1

+ a()
+ b()

Object 2

+ c()
+ d()

Continuous time ttE

Evaluation sequence of operations
a() c() b() d()

Figure 2. The causality problem in object-oriented mod-

eling

2.2 Causality in an object-oriented modeling and

simulation tool

To illustrate the basic working schema of a simulator,
the widely used modeling and simulation environment
Modelica® / Dymola® is taken as an example. Modelica®
is an OO equation-based language, primarily intended
for physical system modeling. Additionally, with the
support of assignment-based algorithms and special lan-
guage elements, Modelica® is also capable for modeling
hybrid Systems (Elmqvist et al., 2001). Due to the usage
of synchronous differential, algebraic and discrete equa-
tions as well as automated formula manipulation (Cellier
and Elmqvist, 1993) provided by the simulator Dymola®,
concurrency and causality assignment problems are
solved for equation-based modeling (Mosterman et al.,
1998), (Lundvall and Fritzson, 2003), (Otter et al.,
1999).

In equation-based models, the equations are solved for
unknowns concurrently at any instant of time. In (Otter

et al., 1999), the authors demonstrate that, at the instance
of discontinuity, the order of equations is determined by
dataflow analysis, resulting in an automatic synchroniza-
tion of continuous and discrete equations. Thereby, de-
terministic behavior is guaranteed. At the meanwhile,
thanks to the single-assignment rule of Modelica®, the
so-called algebraic loop problem can be detected by the
compiler during translating the models.

The algorithmic sequence, in which unknowns will be
solved for, is of no interest in equation-based modeling.
However, for modeling computational and communica-
tion systems (which are essentially discrete-event sys-
tems), it is more straightforward to formulate the behav-
ior in algorithms. Furthermore, algorithms are more
preferable as multiple assignments to the same variable
are frequently required, which is not allowed by equa-
tions due to the single-assignment rule. Modelica® sup-
ports algorithm declaration. For ordering multiple events
at the same time instant, data-dependency order and dec-
laration-order can be used, where the latter one is not
supported in Modelica® language specification (Fritzson,
2004). However, the comparison of the specification and
the implementation details in Dymola® reveals some
divergences: e.g., the declaration order in a single algo-
rithm section within one model is supported in Dymola®.

The general procedure of defining execution sequence of
multiple functions (operations) at the same time instant
in Modelica® is as follows: Firstly, each segment of algo-
rithm has to be encapsulated into an event handler. Sec-
ondly, the condition of this event handler has to be de-
fined in the body of previous event handler and activated
properly. Thus, the series of method calls is then repre-
sented by a series of events. However, the execution of
the series of events is instantaneous from the viewpoint
of continuous simulation. Special support by the simula-
tion tool, named event iteration, is required. Event itera-
tion denotes the situation that when an event occurs, new
values of a system variable may immediately trigger a
further event (Mosterman, 1999). In case of Modelica® /
Dymola®, the desired execution order can be modeled by
an intentional definition of event priority, event propaga-
tion and data dependency order. Though it is possible to
use above mentioned techniques to rebuild the sequence
of algorithms, it complicates the formulation and verifi-
cation of models. Especially for modeling large-scale
heterogeneous systems, the event propagation and data-
dependency ordering are barely manageable due to the
large number of interconnected objects. Furthermore,
since the algorithms may be coupled, certain issues such
as algebraic/algorithmic loop and instantaneous multiple
updates emerge.

Moreover, the language specification of Modelica® is to
some extent ambiguous concerning the event-servicing
algorithm. The author has mentioned in (Fritzson, 2004):
“The Modelica language specification does not prescribe
any special algorithm [for event-servicing algorithm],
thereby giving freedom to the Modelica language im-

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

plementer to invent even better algorithms.” This kind of
divergence can be found in the different interpretations
of the pre() operator in different tools including Dymola,
OpenModelica and SimulationX.

Further in (Nikoukhan, 2007), issues concerning syn-
chronous and asynchronous events in Modelica® and
some of its compilers, e.g. Dymola® and Scicos, are dis-
cussed. The author shows that different interpretations of
the specification may possibly lead to considerable dif-
ferences in the ways of model construction and compiler
implementation.

Last but not least, the OO model structure has to be in-
terpreted and transformed into ordered codes by a front-
end compiler. The existing diversity of front-end com-
pilers is another source of uncertainty.

These kinds of vagueness lead to different implementa-
tions of simulation tools, and bring about limitations for
the user. Firstly, the way of model construction must
strictly obey the disciplines drawn by the simulator. Sec-
ondly, the correctness of the simulation is strongly de-
pendent on the “quality of implementation”.

It is suboptimal if the constructed model has to be modi-
fied for using in other tools which differ from the origi-
nal implementation tool. To avoid this inconvenience,
the modeler has to adhere to clearly-defined language
specifications rather than “exploiting” ambiguities in a
trial-and-error modeling policy.

In the following sections 3 and 4, we will demonstrate
the two most important manifestations of the causality
problem—algorithmic loops and instantaneous multiple
updates—and examine some modeling approaches to
handle the causality problem in a systematic manner.
Furthermore, the systematic solution benefits from its
scalability, i.e., numerous overlapped algorithmic loops
and instantaneous multiple updates are solved in the
same manner.

3 ALGORITHMIC LOOP

3.1 Exemplary problem description

Similar to the algebraic loop problem that usually results
from the circular interconnection of different objects,
coupled algorithms may cause loops. In order to distin-
guish this type of loops from the common algebraic loop,
we name it algorithmic loop. An algorithmic loop is
caused by iterative, mutually dependent events in differ-
ent objects that are enclosed in a loop. A typical concrete
example is the activation and deactivation of the same
conditional event. That is, the code inside a conditional
event changes the condition that activates the event.
While an algebraic loop may be solved by some kind of
iteration or elimination algorithm (Cellier and Elmqvist,
1993), there is no automatic method for solving an algo-
rithmic loop. Typically, the simulation tool will give

some kind of warning or refuse the compilation of mod-
els containing algorithmic loops.

A typical real-world example concerning the modeling
of CPS is the Carrier Sense Multiple Access (CSMA)
communication illustrated in Figure 3. The transceiver is
going to send a message on the medium. Firstly, the
transceiver inquires the state of the medium. If the medi-
um is busy, the transceiver keeps waiting; and if the me-
dium is free, it begins transmission. At the beginning of
transmission, the medium sets its state as busy in order
to block other communication inquiries. After transmis-
sion time has expired, the transceiver stops transmission
and the medium sets its state to free. Following the OO
modeling paradigm, we get two models with coupled
algorithms. Since medium_free is the guard condition
for transmitting, while transmitting simultaneously
forces the reset of the guard condition medium_free, an
algorithmic loop is produced.

medium_free

transmitting

not medium_free

not transmitting

medium_free

transmitting

transmission_expires

have_data

A
lg

or
ith

m
ic

tim
e

(e
xe

cu
tio

n
se

qu
en

ce
)

A
lg

or
ith

m
ic

tim
e

(e
xe

cu
tio

n
se

qu
e

nc
e)

Medium Transceiver

medium
_free

trans‐
mitting

not transmitting

Figure 3. OO model of the CSMA communication

problem containing an algorithmic loop

Characteristic pseudo code (not Modelica® notation) of
the algorithmic loop is shown as follows.

model Transceiver
algorithm_to_generate_have_data_event();
when have_data and medium_free then

transmitting := true;
end when;
end Transceiver;

model Medium
when transmitting then

medium_free := false;
end when;
end Medium;

In the timing diagram in Figure 4, the algorithmic loop
problem displays two opposed, simultaneous, coupled
step functions. This type of signal changes is very com-
mon in the modeling of informational systems if the dy-
namics of the signal is abstracted by using step function.
The resultant model has been tested in the two common
simulation software environments Modelica® / Dymola®
and Stateflow® / Simulink®. Both demonstrate that the
system cannot be simulated without modifying the mod-
el or making use of additional language elements.

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

True

False
tE:

have_data

medium_free

transmitting

t

Figure 4. Timing diagram of the algorithmic loop in the

CSMA communication model

3.2 Possible solutions

Simplified physical dynamics (continuous approxima-
tion): Defining one of the variables of the loop as a con-
tinuous state variable builds an intrinsically meaningful
causality. Mathematically, this results in a first-order
system; the loop is resolved by the state’s initial value.
The variables medium_free and transmitting are de-
clared as type Real. The respective condition is formu-
lated by means of a threshold. Thereby, the models are
rewritten in:

model Transceiver
algorithm_to_generate_have_data_event();
when have_data then

if medium_free > threshold then
transmitting := true;

end if;
end when;
end Transceiver;

model Medium
a*der(medium_free)+medium_free=1–transmitting;
end Medium;

This approach preserves the OO structure. The main
drawback lies in slowing down the simulation speed be-
cause of the potential stiffness caused by the continuous
function. The parameters a and threshold have to be
adjusted to face the dynamic requirements of the discrete
variable transmitting. The resultant signals are illustrat-
ed in Figure 5.

1

0

tE:
have_data

medium_free

transmitting

t

threshold

Figure 5. Timing diagram using simplified physical dy-

namics

Special language support: Modelica® provides the spe-
cial operator pre() to denote the left limit value)(tx of
a variable x at time instant t. It is suggested to use this
operator to cut algebraic loops. This solution is proposed
in most Modelica publications concerning concurrency

and algebraic/algorithmic loop problem, e.g. in the work
of Lundvall in (Lundvall, 2003) and in the recent Model-
ica DEVS library (“DEVSLib”) (Sanz, 2010). Using the
pre() operator, the medium model is modified as follows:

model Medium
when pre(transmitting) then

medium_free:=false;
end when;
end Medium;

Recall the timing diagram from Figure 4: At the time
instant tE, the trigger event have_data becomes true. The
variable transmitting has the value false at 

Et and true at

Et , which denotes a discontinuous step. The condition
pre(transmitting) is not triggered jet. After the trigger
event at tE has been evaluated, the assignment
pre(transmitting) := transmitting is executed by the sim-
ulator to define the new initial value for the numerical
solver. The event handler when pre(transmitting) is then
triggered at the exact same time instant tE. Thanks to the
assignment instruction, the two simultaneous events are
subsequently handled in two separated event handling
processes. The algorithmic loop problem is thereby
solved.

The pre() operator is one of the key features in Modeli-
ca® for handling algebraic and algorithmic loop prob-
lems. By means of when pre(condition), multiple events
at the same time instant can be ordered in a sequence. In
contrast to a when (condition) clause, which handles the
multiple events in a single event iteration procedure,
when pre(condition) isolates each event handling in a
single event servicing process by means of calculation
consistent restart values between them.

However, using the pre() operator is to some extent arbi-
trary. We can demonstrate this in our example, either
using when pre(transmitting), when pre(have_data and
medium_free)1 or even both of them, which will all pro-
duce the correct result. This arbitrariness reduces the
readability of the code and therefore raises the difficulty
of code maintenance and interchange.

Model re-construction: Obviously, flat model code
with explicitly defined sequence of algorithms will al-
ways resolve the algorithmic loop. However, the surren-
der of the OO structure is principally contradictory to
modern modeling practice.
Considering object-oriented structure as a constraint for
model re-construction, only the critical code segments
that causes the algorithmic loop has to be re-constructed
in the form of a local flat code. In other words, the code
segments which are originally distributed in two models
are now re-arranged in one single model, where the cau-

1 It is necessary in Dymola® to form Boolean expression have_data
and medium_free to a single Boolean variable in order to use pre()
operator .

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

sality is defined explicitly. This method is shown in the
following:

model Transceiver
algorithm_to_generate_have_data_event();
observer_interface to monitor transmitting;
end Transceiver;

model Medium
when have_data and medium_free then

transmitting := true;
end when;
when transmitting then

medium_free := false;
end when;
end Medium;

Thanks to the observer_interface, one model can moni-
tor its variables though the algorithms for manipulating
these variables are implemented in another model. This
approach merely requires that the simulator supports
declaration order in the execution of algorithms. This
requirement is easily satisfied because it is the basis of
sequential programming technique. Since the algorithm
is ordered and integrated in a single segment. It does not
need any manipulation by the front-end compiler.

4 INSTANTANEOUS MULTIPLE UPDATES

4.1 Exemplary problem description

In the modeling of computation and communication
components, multiple manipulations of the same variable
at a time instant are often required. Moreover, temporary
values during manipulations may be required for trigger-
ing new events. We define the term instantaneous multi-
ple updates to denote this problem (Figure 6). This kind
of problem is considered as a continuation of the causali-
ty problem described in section 3. It raises the following
question to the simulator: How to ensure the observabil-
ity of a temporary value update across model objects?

True

False
tE1:

have_data
t

medium_free

transmitting

Instantaneous
multiple updates

tE2:

Figure 6. Timing diagram of instantaneous multiple up-
dates in the CSMA communication model

Assuming the Transceiver has cached data to be sent
successively. In order to simplify the model and reduce
the number of events, the short pause time (network idle
time) between two successive transmissions is ignored.
At the time instant tE2, four events in a series occur:

transmitting↓  medium_free↑  transmitting↑ 
medium_free↓. Each variable has the same value before
and after the event time instant, but the temporary value
update between events must be evaluated and handled
correctly by the simulator.

The instantaneous multiple updates problem exists not
only in modeling informational systems but also in mod-
eling physical systems. Newton’s cradle, with its elastic
collisions of rigid bodies, is a classic example which
shows the effect of handling iterative events in simula-
tion.

Consider the Newton’s cradle in Figure 7. It consists of
three balls with the same mass m. (There will not arise
further problems with more than 3 balls.) The initial
conditions are v1 = v and v2 = v3 = 0. The balls b2 and b3
are set directly near each other.

b1

x

b2 b3

x1 x2 x3

v1

Figure 7. Newton’s cradle

By collision, where x2 – x1 ≤ d and v1 > v2, the momen-
tum and kinetic energy are transferred from b1 to b2, and
subsequently, from b2 to b3. In reality, the exchange be-
tween two contacting balls takes a propagation delay
which is subject to the speed of sound. However, in
modeling practice, the exchange is normally considered
as instantaneous. The instantaneous transfer of momen-
tum and energy according to the collision sequence
causes iterative events. The iterative events abstract the
transient behavior from the real world, which has to be
handled correctly in a simulation tool. The velocity of b2,
at the time instant “between” the collisions with b1 and
b3, takes a temporary value.

We begin with the conception of objects. A ball object’s
continuous behavior is described by der(x) = v and
der(v) = 0 (without external forces). In order to decide on
a collision and to re-initialize its velocity in case of a
detected collision, a ball has to get the information from
all adjacent balls: their positions, velocities and masses.
In this example, since masses and dimensions of balls
are the same, it is sufficient to exchange the velocity and
position information. For simplifying, only the collision
sequence beginning from the leftmost ball (b1) to the
rightmost ball (b3) is considered. For the opposite direc-
tion, respective event definitions have to be added. Pseu-
do code showing the model object Ball is given below:

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

model Ball
parameter Real initPosition;
parameter Real initVelocity;
Real velocity(start=initVelocity);
Real position(start=initPosition);
equation
der(position)=velocity;
der(velocity)=0;
collision_on_left_side = distance_on_left_side <= 0
and velocity_of_left_ball − velocity > 0;
collision_on_right_side = distance_on_right_side<=0
and velocity − velocity_of_right_ball > 0;
when collision_on_left_side then

reinit(velocity, previous_velocity_of_left_ball);
end when;
when collision_on_right_side then

reinit(velocity, previous_velocity_of_right_ball);
end when;
end Ball;

Considering the time instant when ball b1 reaches b2,
there is a series of two collisions: Collision between b1
and b2 → Collision between b2 and b3. Each collision
contains two synchronous events:
collision_on_right_side in the left ball and collision_on
_left_side in the right ball. These events are synchronous
because the triggering conditions for them can be traced
back to an identical source.

At the time instant of collision, the following pseudo
code segments describe the re-initialization from a top-
level view. Starting with the collision between b1 and b2:

when collision_on_right_side_of_b1 then
reinit(velocity_of_b1, previous_velocity_of_b2);

end when;
when collision_on_left_side_of_b2 then

reinit(velocity_of_b2, previous_velocity_of_b1);
end when;

For the collision with b2 and b3:
when collision_on_right_side_of_b2 then

reinit(velocity_of_b2, previous_velocity_of_b3);
end when;
when collision_on_left_side_of_b3 then

reinit(velocity_of_b3, previous_velocity_of_b2);
end when;

As discussed before, since the update of the velocity of
b2 immediately activates the second collision, the two
collisions must be handled simultaneously. Consequent-
ly, there are four synchronous events at the time tE of
collision. To handle the multiple events at the same time
instant, two issues have to be considered:

The first issue is the ordering of the events. As discussed
in section 2, there are various approaches capable for
doing this. The desired execution sequence of these
events to be achieved after ordering is this:

when collision then
reinit(velocity_of_b1, previous_velocity_of_b2);
reinit(velocity_of_b2, previous_velocity_of_b1);
reinit(velocity_of_b3, previous_velocity_of_b2);
reinit(velocity_of_b2, previous_velocity_of_b3);

end when;

The second issue concerns the instantaneous multiple
updates of the variables in the event handlers. In the ex-
ample, the term “previous_velocity_of_…” does not
necessarily denote the Modelica® operator pre(). It is
essentially a verbal expression which describes the pre-
vious velocity of a ball before a collision. In the sense of
a sequential algorithm, it is the value of a variable which
should be retained before manipulating the variable. In
the example, the variable previous_velocity_of_b2
should take a transient value according to the above al-
gorithmic execution sequence to ensure the correctness
of the result. The transient value is presented as a Dirac
pulse in the timing diagram of variables with collision at
time tE (Figure 8).

Retaining a variable value is easily done in an algorithm
by assigning the value to an auxiliary variable before
manipulating it. In the OO equation-based modeling,
objects use connectors to interchange variables. Howev-
er, the simulator itself takes charge of exchanging varia-
bles via connectors in the background. Since this proce-
dure is hidden for the modeler, it is not possible to order
the series of assignments systematically. As illustrated in
the code segment above, the variable previ‐
ous_velocity_of_b2 should be updated after the second
reinit(…). However, there is no explicit assignment to
update its value on the code level.

v

0
tE

v1

t

v2
v3

Figure 8. Timing diagram of the intended behavior of
Newton’s cradle

4.2 Possible solutions

Simplified physical dynamics (continuous approxima-
tion): Rather than modeling the instantaneous momen-
tum and energy exchanges between balls, we can use the
continuous approximation to describe the collisions
(Figure 9).

The ball is then modeled as a spring-mass-system. The
stiff spring between balls approximates the elastic de-
formation upon collisions. The main drawbacks of this

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

approach are the selection of spring constant and the
slow-down of the simulation speed.

v

0

v1

t

v2
v3

tE

Figure 9. Timing diagram of the balls’ velocities in New-
ton’s cradle modeled with continuous approximation

Special language support: According to the analysis in
section 3.2, Modelica® / Dymola® will handle the four
events caused by one collision in one single event itera-
tion. During the event iteration, the pre(…) value of a
variable cannot change and retains the value at the left
limit of the event time instant. Thus, the transient value
of velocity_of_b2 cannot be presented by the pre() op-
erator in current model construction.

Similar to the solution given in section 3.2, we can use
“when pre(condition)” to enforce event iteration and
update the value of pre(variable). The modified model
code is listed in following:

model Ball
⁞
when pre(collision_on_left_side) then
reinit(velocity, pre(velocity_of_left_ball));
end when;
when pre(collision_on_right_side) then
reinit(velocity, pre(velocity_of_right_ball));
end when;
end Ball;

This model enforces the re-calculation of variables be-
tween the collision series (collision between b1 and b2
→ collision between b2 and b3). In other words, the two
collisions (events) are not handled in a single event itera-
tion process but separately in two individual steps. This
allows the velocity of b2 being transiently updated after
the first event handling and thus produces the correct
simulation result.

Model re-construction: The instantaneous multiple
updates only has a local scope within a model object. In
order to ensure the oberservability of the temporary up-
dates, it is preferable to implement the series of events,
as long as they are simultaneous, into one single model
object. The re-constructed models are listed in the fol-
lowing:

model Ball
interface to Collisionmanager;
Equation
der(position)=velocity;
der(velocity)=0;
end Ball;

model Collisionmanager
n interfaces to n balls;
definition of the collision events as a Boolean array
collision[n‐1];
when collision then

for i in 1:(n–1) loop
if collision[i] then
preVelocity[i+1]:=velocity[i+1];
reinit(velocity[i+1], velocity[i]);
reinit(velocity[i], preVelocity[i+1]);
end if;

end for;
end when;
end Collisionmanager;

In this new construction, the Ball model describes its
own continuous dynamics between collisions, while the
interactive discrete-event behavior (the collisions and
resultant re-initializations) are handled in the Collision‐
manager model. Based on the explicitly defined declara-
tion order of the statements, the re-initializations of the
velocities are performed via auxiliary variables
(preVelocity[]) instead of via the pre() operator. This
arrangement guarantees a clear view of the expected re-
initialization procedures.

5 INTELLIGENCE RE-ALLOCATION

Among the methods discussed in sections 3.2 and 4.2,
the model re-construction re-structures the code seg-
ments (behavioral intelligence of objects) for allowing
the modeler to define the causality explicitly. In compar-
ison with the continuous approximation, it highlights the
causality declaration and improves the readability of the
model codes. Meanwhile, it utilizes no special language
elements, which potentially extends the applicability of
the model among different simulators. We name this
method intelligence re-allocation according to its work-
ing scheme, which is generalized in Figure 10.

Object1

a()
Object2

b()

c()

d()

Object1*

a()

Object 2*

Observer
for b()

c()

b()
d()

Object1*

a()

Object 2*

Observer
for b()

c()
Observer

for d()

d()

b()
Object 3*

Intelligencere-allocation

using existing model forming an additional model

Figure 10. Intelligence re-allocation

Firstly, the code segments are analyzed and categorized
in two parts: eigenbehavior intelligence (no shadow) and

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

causality-related intelligence (shadowed). Subsequently,
the causality-related code segments are either re-
allocated in one readily available model (lower left part)
or in a new model (lower right part). Additionally, these
code segments have to be ordered explicitly to build the
desired causality b()→d(). Furthermore, for a convenient
usage of the models, observer interfaces to monitor the
relevant variables are defined in the model objects defin-
ing the continuous behavior.

Intelligence re-allocation gives a good compromise be-
tween the OO structure and the interpretable causality.
On one hand, OO structure is preserved according to
carefully code analysis. On the other hand, the causality-
related events are clearly ordered by their declaration
order within a single model. Since the centralized han-
dling of causality-related code rounds the causality-
resolving mechanism provided by certain simulation
tools, this modeling scheme can be more easily mastered
without solid knowledge about the working principles of
the used simulator.

One remaining argument about this approach is that the
resultant models are no more strictly conform to the ob-
ject definition in the computer science, which defines
clear scopes of the respective variables and methods.
However, in the OO modeling, the structure-conserving
principle is preserved by applying appropriate connect-
ors. The connectors (observer interfaces mentioned in
Figure 10) extends the scopes of concerned variables,
thus the use of the models remains intuitive for end us-
ers.

6 SUMMARY AND CONCLUSION

In the simulation of hybrid system, the handling of itera-
tive events must be highly valued. In the object-oriented
(OO) modeling paradigm, it is easily error-prone and
thus a systematic solution is required. The following two
core issues were studied in this paper:

 Algorithmic loop, i.e. iterative, mutually dependent
events in different objects that are enclosed in a loop,
causes problems for which special language support
(‘pre’ operator) is only limitedly suited with respect
to model code understandability.

 Instantaneous multiple updates, i.e. the value of a
variable undergoes multiple updates at an event time
instant, while the temporal values may trigger new
events across model objects. Handling this problem
requires the exact adherence to a specific execution
sequence of algorithms which are distributed over di-
verse objects. However, since the intercommunica-
tion of the variables over objects is executed by the
simulator in the background, the correct execution
sequence cannot be clearly enforced.

We have discussed the applicability of three methods:
Continuous approximation, the tool-specific ‘pre’ opera-
tor and intelligence re-allocation. Besides these solu-

tions, model flattening, which completely sacrifices the
advantage of the OO modeling paradigm, is considered
to be a valid but antiquated solution. Depending on the
structure and size of the respected hybrid system, differ-
ent solutions can be well-suited, limitedly suited, or un-
suited (cf. Table 1). In compact hybrid systems (cHS),
the flat-model solution (a.) or the modeling and simula-
tion effort of the parameter-intensive and numerically
inefficient solution (b.) can still be feasible. In large-
scale models, like CPS, a feasible solution must preserve
the OO paradigm to the largest extent possible (as in
solution c. and d.).

Algorithmic loop Instantaneous multiple
updates

cHS CPS cHS CPS

a. Flattening of
the model + o/− + o/−

b. Continuous
Approximation o o/− o o/−

c. ‘pre’ operator
(tool-dependent) + + o o

d. Intelligence
re-allocation + + + +

Solution is: + (well-suited); o (limitedly suited); − (unsuited)

Table 1. Applicability of solutions for causality recon-
struction in compact Hybrid Systems (cHS) / Cyber-

Physical Systems (CPS).

A precise and conscious use of the ‘pre’ operator re-
quires a deep understanding of its tool-specific imple-
mentation details—far beyond the knowledge necessary
to define the “normal”, continuous model behavior,
which is comparably easy to learn, well documented, and
for which OO modeling is widely appreciated.

Among the four solutions given in the survey, intelli-
gence re-allocation is the only method which is advanta-
geous for all considered systems and both types of event
iteration (algorithmic loop and instantaneous multiple
updates). Due to the clarity and genericity of its struc-
ture, this approach achieves the widest applicability and
highest scalability. In the implementation of ‘NCLib’,
the solutions c and d have been deployed. Although both
of them achieve correct results in the simulation of vari-
ous heterogeneous CPS, the intelligence re-allocation
solution, due to the highlighted causality assignments,
has shown remarkable advantage regarding the building,
debugging and maintenance of the models.

REFERENCES

Bergero, F., E. Kofman, 2011. PowerDEVS: a tool for

hybrid system modeling and real-time simulation.
SIMULATION: Transactions of the Society for
Modeling and Simulation International, vol. 87.

Cellier, F.E., 1979. Combined Continuous / Disrete

System Simulation by Use of Digitl Computers:

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

Techniques and Tools. PhD Thesis, ETH, Zurich,
Switzerland.

Cellier, F.E., H. Elmqvist, 1993. Automated Formula

manipulation Supports Object-Oriented Continuous-
System Modeling, IEEE Control Systems, 13(2), pp.
28-38.

Derler, P., E.A. Lee, and A.L. Sangiovanni-Vincentelli,

2011. Addressing Modeling Challenges in Cyber-
Physical Systems. Technical Report, University of
California at Berkley, p.12.

Elmqvist, H., S.E. Mattsson, and M. Otter, 2001. Object-

Oriented and Hybrid Modeling in Modelica. Journal
Européen des systèmes automatisés, vol. 35, p. 395-
404.

Fritzson, P., 2004. Principles of Object-oriented

modelling and simulation with Modelica 2.1, Wiley-
IEEE Press, ISBN 0-471-471631.

Henriksson, Dan; H. Elmqvist, 2011. Cyber-Physical

Systems Modeling and Simulation with Modelica. In
Proc. of the 8th International Modelica Conference,
Dresden, Germany.

Henzinger, T.A., 1996. The theory of hybrid automata.

In Proc. of the 11th Annual Symposium on Logic in
Computer Science(LICS), IEEE Computer Society
Press, 1996, p. 278-292.

Henzinger, T.A., P.-H. Ho, and H. Wong-Toi, 1997.

HyTech: A Model Checker for Hybrid Systems.
International Journal on Software Tools for
Technology Transfer, vol. 1, Springer-Verlag, p. 110-
122.

Lee, E.A., 2008. Cyber Physical Systems: Design

Challenges. Technical Report No. UCB/EEECS-
2008-8.

Liu, L.; G. Frey, 2008. Feasibility Analysis for

Networked Control Systems by Simulation in
Modelica. In Proc. of the 13th IEEE International
Conference on Emerging Technologies and Factory
Automation (ETFA 2008), Hamburg, Germany, p.
729-732.

Lundvall, H., P. Fritzson, 2003. Modeling Concurrent
Activities and Resource Sharing in Modelica, In
Proc. of The 44th Scandinavian Conference on
Simulation and Modeling (SIMS2003), Västerås,
Sweden.

Mosterman, P.J., M. Otter, H. Elmqvist, 1998. Modeling

Petri Nets as Local Constraint Equations for Hybrid
Systems Using ModelicaTM, In Proc. of Summer
Computer Simulation Conference, Reno, Nevada,
USA, p. 314-319.

Mosterman, P.J., 1999. An Overview of Hybrid

Simulation Phenomena and Their Support by
Simulation Packages, In Proc. of the second
International Workshop on Hybrid Systems:
Computation and Control, p. 165-177.

Nikoukhan, R., 2007. Hybrid Dynamics in Modelica:

Should all Events be Considered Synchronous. In
Proc. EOOLT Workshop at ECOOP’07, Berlin,
Germany.

Otter, M., H. Elmqvist, S.E. Mattsson, 1999. Hybrid

Modeling in Modelica based on the Synchronous
Data Flow Principle, In Proc. of IEEE Symposium
on Computer-Aided Control System Design, Hawaii,
USA., p. 151-157.

Reuterswärd, P, J.Åkesson, A.Cervin, K-E.Årzén, 2009.

TrueTime Network—A Network Simulation Library
for Modelica. In Proc. of the 7th International
Modelica Conference, Como, Italy, p. 657-662.

Sanz, V., A. Urquia, S. Dormido, 2010. Integrating

Parallel DEVS and Equation-Based Object-Oriented
Modeling. In Proc. of the Spring Simulation
Multiconference, Orlando, FL, USA.

Wagner, F.; L. Liu.; G. Frey, 2008. Simulation of

Distributed Automation Systems in Modelica. In
Proc. of the 6th International Modelica Conference,
Bielefeld, Germany, Vol. 1, p. 113-122.

Zeigler, B.P., H. Praehofer, and T.G. Kim, 2000. Theory

of Modeling and Simulation, 2nd ed., New York:
Academic Press.

