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ABSTRACT: An equivalent electrical circuit (EEC) is commonly used to model the electrochemical aspect of a 
battery. Its structure can be more or less complicated depending on the needs of the application. Impedance 
measurements obtained by electrochemical impedance spectroscopy need non integer order impedance in order to 
correctly model passivation film and diffusion phenomena. Identification of the parameters of the EEC from 
electrochemical spectroscopy is difficult because of non unicity of the solution and lack of convergence of standard 
algorithms. The study of the experimental measurements shows that each chemical phenomenon is sollicited in a 
precise waveband. We propose thus three approaches to improve the identification convergence depending on whether / 
how we introduce information on the frequency or not.  In the first one, we identify all the parameters in the whole 
waveband (classical approach). The second and third ones (alternative approaches) split the waveband and identify 
only the corresponding excited parameters. In all these cases, the identification of the parameters of the EEC should 
use a non linear method and must lead to an accurate result. The Levenberg-Marquardt algorithm is adopted in this 
study. A statistical study shows that the first approach can’t converge strongly while the second and third one converge 
with the presence of a bias. Thus we propose to adopt a new method of identification based on a two-steps algorithm. 
 
KEYWORDS: optimization method, Levenberg-Marquardt algorithm, battery modelling, equivalent electrical circuit, 
electrical impedance spectroscopy, battery monitoring system. 
 

1 INTRODUCTION 

The battery is a critical element in HEV  (hybrid electric 
vehicle) as in EV (electric vehicle). The lithium ion 
battery has several advantages among other technologies, 
such as high power density and high energy density 
(Wakihara M. and Yamamoto O., 2008) (Kazunori O., 
2009). Thus, it is an excellent candidate for the HEV and 
EV applications. Due to its frequent charges and 
discharges, a BMS (Battery Management System) 
becomes very important. The BMS is necessary to 
predict the battery SOC (State Of Charge), SOH (State 
Of Health) and finally ensure security. These factors are 
generally used to diagnose and manage the battery states, 
and to increase its lifetime and reliability. Until now, 
various methods and models have been proposed to 
predict these states. For example, diverse equivalent 
electrical circuits have been used to modelize Li-ion 
battery behaviour. However, accurate description of the 
complex nonlinear electrochemical processes occurring 
in such systems is still difficult.  
 
This paper focuses on the identification of an equivalent 
electrical circuit whose parameters are scheduled on the 
SOC, temperature, and current intensity and direction. 
This equivalent electrical circuit (EEC) introduces non 

 
 
 
integer derivatives to accurately modelize the Li-ion 
battery behaviour. We propose to identify the EEC 
parameters with a new double steps algorithm, which 
improves the rate of convergence usually obtained for 
this optimization problem. The validity of the procedure 
is demonstrated experimentally for an A123 lithium ion 
iron-phosphate battery inside a large range of values of 
current intensity and state-of-charge. 

2 BATTERY MODELS 

Modelling aims to reproduce the electrical behaviour of 
batteries through equivalent electrical circuits consisting 
of passive (resistors, capacitors, inductors, constant 
phase elements) and active (voltage and current sources) 
elements. For electrical engineers, such circuits are 
common to characterize electrochemical phenomena, 
and they lead to perform a quick analysis and prediction 
of the battery behaviour in frequency as in time domains. 
A large variety, more or less complex, of equivalent 
electrical circuits is found in the literature. In the next 
section we present some of the most known models 
(Urbain M., 2009). 
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2.1 The basic Thevenin type model  

The simplest model (Figure 2-1) consists of a voltage 
source (OCV for Open Circuit Voltage) and a resistance 
R in series. The variability of these parameters with the 
effect of the state of charge and temperature could be 
taken into account by tabulation or empirical law. 
However, this model does not modelize the dynamical 
behavior of battery voltage. Nevertheless, it can be very 
useful for some applications, especially for application 
with low variations of current solicitation . 
 

 

Figure 2-1: The basic Thevenin type model 
 
2.2 The first order Thevenin type model 

This model enhances the previous one. It introduces a 
R1//C1 element in series with R to modelize dynamical 
phenomena that occur in a battery while charging or 
discharging (Figure 2-2). 
 

  

Figure 2-2: First order Thevenin type model 
 
2.3 PNVG (Partnership for a New Generation of 

Vehicles) Thevenin type model  

This model (Urbain M., 2009) introduces a new capacity 
1/OCV' to take into account the variation of the open 
circuit voltage with respect to the state of charge (Figure 
2-3). We can note that a tabulation of OCV with SOC 
could have offered the same functionnality without 
adding this component. 
 

 

Figure 2-3: PNVG Thevenin type model 
 
2.4 Adapted Randles model 

This is the model adopted in our study (Figure 2-4). It 
was developed and used in the work led by DONG K. 

(Dong K., 2010). It includes the modelization of 
connectors and electrolyte, passivation film, charge 
transfer and double layer phenomena. The OCV is given 
in a look up table with respect to the current intensity 
and the battery state of charge . This circuit introduces 
constant phase elements (CPE) to accurately reflect the 
behaviour of the battery observed on impedance 
spectroscopy measurements. (Oustaloup A., 1995) 
(Oustaloup A., 2005).  A CPE is a component that 
traduces a partially capacitive and resistive behaviour. It 
includes two parameters T and p, where 10 ≤≤ p , its 

impedance is given by Eq. (1). As it can be noted, the 
corresponding component is a capacitor for p = 1 and a 
pure resistance for p = 0. 
 

ZCPE f( )=
1

T( j2πf )p
                                     (1) 

 

 

Figure 2-4: Adapted Randles model 

2.4.1 Electrolyte and connectors impedances 
 
The passage of any current through the battery comes 
along with voltage drops due to connectors and 
electrolyte resistance. Although these resistances are 
weak, they are the main cause of Joule losses inside the 
battery. Consequently, they are modelized in this EEC 
thanks to the parameter R. Identifying resistive 
(dissipative) elements in the equivalent circuit makes the 
link between a purely dynamic model and a thermal one. 
Due to the connectors, an inductive behaviour is 
observed while exciting the battery with high 
frequencies. This leads to introduce an inductance L in 
series with the resistance R to modelize this phenomenon 
(Kuhn E., Forgez C. and Friedrich G., 2004). 

2.4.2 Double layer capacitance 
 
The double layer capacitance is the electrical 
representation of the electrode-electrolyte interface, 
which is proportional to the area of the electrode plate. In 
this electrical circuit, the double layer capacitance is 
modelized through the constant phase element CPEdl 
(Kuhn E., Forgez C. and Friedrich G., 2004). 

2.4.3 Charge transfer phenomena 
 
Charge transfer phenomena correspond to the flux of 
oxydising and reducing species from one electrode to 
another (Kuhn E., Forgez C. and Friedrich G., 2004). As 
in the fisrt order Thevenin type model, they are modelled 
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by a resistance Rtc in parallel with the previous double 
layer component.  

2.4.4 Diffusive phenomena 
 
During charge and discharge cycles, concentration 
gradients of electroactive species appear which bring 
about mass transport phenomena and thus modify 
electrochemical potentials. Such phenomena are 
peculiarly active when the cell is operated in very low 
frequencies, or in high currents (Kuhn E., Forgez C. and 
Friedrich G., 2004). Diffusion is more important as 
electrodes potentials differ strongly from their 
equilibrium values, and mostly appears at very low 
frequencies. Generally, this phenomenon is modelled by 
a transfer function called “Warburg Impedance”, noted 
Zw in Figure 2-4. In this study we consider higher 
frequencies and neglect such phenomenon (Dong K., 
2010). 

2.4.5 Passivation film  
 
When the potential of negative electrodes (resp. positive) 
is located outside the field of electrochemical stability, a 
partial reduction (resp. decomposition) of the electrolyte 
on the surface of the active material is then observed. 
This process involves the use of a portion of lithium and 
creates a solid layer on the surface of these electrodes, 
called "passivation film". In addition to an irreversible 
decrease in the capacity of the battery, the presence of 
this layer induces a decrease in available power due to 
the increase of the impedance of the electrode (Dong K., 
2010). A branch Rf//CPEf is used to modelize these 
complex phenomena. 
 
Finally, the adopted electrical equivalent circuit (Figure 
2-4) consists of eight parameters [R; L; Rf; Tf; Pf; Rtc; 
Tdl; Pdl] that should be optimized in order to correctly 
modelize the battery’s  behaviour. This is the aim of the 
next sections. 

3 ELECTRICAL EQUIVALENT CIRCUIT 
IDENTIFICATION 

Electrochemical Impedance Spectroscopy (EIS) is a 
commonly used method to characterize electrochemical 
systems (Buller S., 2002). After a brief reminder of EIS 
applications in battery modelling, we will describe how 
the parameters of the EEC can be estimated thanks to 
this technique. 
 
3.1 An overview of impedance spectroscopy  

Impedance Spectroscopy is an experimental technique 
generally used as impedance characterization. The 
principle of EIS is the following (Gabrielli C., 1996): 
when adding a small sinusoidal current of frequency f  

i(t) = Imax sin(2πft) to a DC current at the input of the 
battery under test, its voltage response is 

v(t) = Vmax sin(2πft − ϕ) . Therefore, we can express the 
voltage/current ratio in the frequency domain as a 
complex impedance as in equation (2): 
 

Zest( f ) =
Vmax

Imax

*exp(− jϕ)        (2) 

 
Since batteries are in general non linear systems, a 
constraint is set on Imax to avoid charge modification 
during measurement. This mode of operation is known 
as the galvanostatic mode, by opposition to the 
potentiostatic mode where the battery voltage is the input 
and its current the output. When applying this method to 
a set of different frequencies, we obtain the so-called 
“Impedance Spectrum”, a complex number Zest(f) 
depending on the frequency f and whose theoretical 
shape is shown in Figure 3-1 (a). 
It is clear from Figure 3-1 that the EEC presented in 
Figure 2-4 is able to accurately modelize a true battery 
impedance spectrum (Figure 3-1 (b)) if its parameters are 
correctly optimized. The optimization procedure is 
described in the next section. 
 

 

Figure 3-1: (a) A simulated EEC impedance spectrum 
(b) An experimental Li-Ion battery impedance spectrum 
 
3.2 EEC parameters identification and optimization 

From experiental data, we define the identification by the 
search for mathematical models of the battery 
system. These models provide an approximation as 
accurate as possible of the behaviour of the underlying 
physical system in order to estimate the physical 
parameters and to design algorithms for simulation, 
supervision, diagnosis and control. The identification 
usually starts with a plan of experiments where the 
inputs/outputs are determined and measured and where 
the excitation signals are selected. Following this first 
step, a model is selected among linear candidates or not, 
taking into account the noise or not. From the chosen 
error signal, a condition is then selected from the 
different types of existing criteria (quadratic, absolute 
value, maximum likelihood, AIC, Young, Bayesian...). 
The estimation of the parameters is then achieved by 
minimizing this criterion. Techniques based on linear 
programming, such as least squares and instrumental 
variable, or based on nonlinear programming, such as the 
gradient method and all its variants, are commonly 
used. Finally, the resulting model is validated or 
invalidated by the tests.  
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In our study, the model is composed of the impedance of 
the equivalent electrical circuit. The input is the battery 
current which is a sinusoïd of variable frequency added 
to a DC component, and the output is the measured 
battery voltage. The criterion to minimize is the mean 
squared value of the error given by equation (3). This 
error corresponds to the difference between the phase 
and the logarithmic modulus of the impedance predicted 
by the model Zest and those obtained through 
measurements Zn. 
 

E( f ) =
ln Zn ( f )( )− ln Zest( f )( )
phase Zn ( f )( )− phase Zest( f )( )

 

 
 
 

 

 
 
 
             (3) 

 
Where:   Zn: Zsimulated+noise or  Z measured 

Zest: Z estimated by the model 

 
This method leads to a non-linear least squares 
optimization problem, whose optimal solution can be 
obtained thanks to the Levenberg-Marquardt algorithm 
(Canat S., 2009).  
This approach is summurized in Figure 3-2. 
 

 

Figure 3-2: Optimization method 
 
The convergence properties of this algorithm are 
reflected by the output parameter "exitflag" whose 
values are explained in Table 3-1 : Exitflag values.. 
 
Value Signification 

1 
Function exactly converged to a stable 
solution x. 

2 
Change in x between two iterations was less 
than the specified tolerance TolX (10-15 ).  

3 
Change in the criterion between two iterations 
was less than the specified tolerance TolFun 
(10-100).  

0 Number of iterations exceeded MaxIter (400) 

Table 3-1 : Exitflag values. 
 
The theoretical study of the convergence properties is 
out of the scope of this paper because the criterion that 
has to be minimized is strongly nonlinear, and presents 
many local minima. Therefore, these properties heavily 
depend on the initial vector value. 

In what follows, different ways to use the Levenberg-
Marquardt algorithm and to efficiently solve this 
optimization problem will be detailed in the next 
sections, and a statistical study is used to analyze the 
convergence properties of  the proposed algorithms. 

3.2.1 Classical approach 
 
The classical approach consists of identifying all the 
EEC parameters in the whole frequency band.  
To test the performance of this method, a statistical study 
is performed. Starting with a known vector of 
parameters, a complex impedance Z(f) is generated using 
a large amount of frequencies (from 5 mHz to 65 kHz). 
A complex-valued white noise is added to this 
theoretical impedance in order to modelize measurement 
noise. One hundred iterations of such noisy impedances 
are generated with the same signal to noise ratio. For 
each iteration, an initial vector is arbitrary chosen within 
limited values (Table 3-2). The results show that with 
such a method, the convergence of the Levenberg-
Marquardt algorithm is not guaranteed: this method is 
very affected by the choice of the initialization vector. 
An expert knowledge of specialists in batteries is 
required to correctly initialize the initial vector in order 
to improve the convergence rate of this algorithm and to 
accurately estimate the theoretical vector. 
Two criteria are used to compare the results: the relative 
mean errors RME (4) and the convergence rate CR (5).  

];;;;;;;[
V

)V-)(mean(V
*100RME

sim

simest

dldltcfff PTRPTRLRelementstheofoneisVwhere

=
       (4) 

iterationsofnumbertotal
iterationsConvergent

CR=
        (5) 

In Table 3-3 we present the RME (min and max) and the 
convergence rate for two cases : for the first one, the 
initial vector is selected without any expert knowledge of 
the batteries while for the second one, it was chosen 
carefully. In that case, the true parameters value should 
be approximately known. 
 

 Theoretical 
Value 

Initial vector  
(expert 
knowledge 
case) 

Upper_bound 
(low a priori 
knowledge case) 

R  (Ohm) 0.0130 10-2 1 

L  (H) 4x10-8 10-8 10-6 

Rf (Ohm) 0.004 10-3 1 

Tf 5.7 5 10 

Pf 0.53 0.1 1 

Rtc (Ohm) 0.04 10-2 1 

Tdl  700 100 1000 

Pdl 0.7 0.1 1 

Table 3-2 : Numeric values used on the simulation. The 
last column is used to generate a arbitrarly initial vector  

within [0  Upper_bound] limits. 
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Figure 3-3: Normalized histograms using the classical 
approach with an arbitrarly initial vector (green lines = 

theoretical values, yellow lines = estimated mean values) 
 
These results clearly show that less we know about the 
EEC parameters value, less the algorithm converges to 
the exact values. In  
Figure 3-3 we present the normalized histograms 
corresponding to the first case for the eight components 
of the chosen EEC (Figure 2-4). The green lines refer to 
theoretical parameters values while the yellow ones refer 
to mean parameters values estimated over all the 
iterations where the algorithm converged. 

3.2.2 Alternative approaches 
 
As we said before, in an identification process, an a 
priori  knowledge of the system can be injected. Figure 
3-4 shows that the part of the EEC which is excited by 
the input current depends on the input frequency. For 
example, passivation film effects only appear for 
frequencies lower than 10 kHz (see the green curve) 
while the double layer and charge transfer are only 
important for frequencies lower than 1 Hz (see the red 
curve). We can also note that the electrolyte and 
connectors impedance modelized by R and L are only 
dominating in the high-frequency band (see the blue 
curve, for frequencies higher than 10 kHz).  
 

 

Figure 3-4: Partial theoretical impedance modulus 
compared with an experimental impedance modulus 

 

 
This observation leads us to propose two alternative 
approaches to use this a priori knowledge in the 
optimization process. 

a) Frequency band segmentation 
In this approach, we split the whole frequency band in 
different parts and identify the excited parameters in the 
frequency band where their impedance in important (ie 
the parameters excited in low frequency band are 
identified using only low frequencies, those excited in 
medium frequency band using medium frequencies, and 
those excited in high frequency band using only high 
frequencies). 

b) Frequency band extension 
In this second approach, we also split the whole 
frequency band in three parts, but during each step we 
extend the limits of the intervals of frequencies (ie the 
parameters excited of the medium waveband are 
identified using the low and medium frequencies, and 
those excited in high waveband using all the 
frequencies).  
The main difference between the classical approach and 
these two alternative approaches is located in the nature 
of the a priori knowledge necessary to make the 
optimization algorithm converge. For the classical 
approach, the initial vector of EEC parameters has to be 
set with values close to the true ones. Unfortunately, this 
kind of knowledge is only accessible to expert people. 
For the proposed alternative approaches, only the 
approximate values of the different frequency bands has 
to be known, which is a much more simple knowledge to 
obtain. A statistical test similar to the one done in section 
3.2.1 has been done to study the performance of these 
alternative approaches. The obtained results (Figure 3-5 
and Figure 3-6) prove that these alternative approaches 
strongly enhance the rate of convergence, but the 
estimated parameters are then biased. As it is shown in 
Table 3-4, the frequency band segmentation approach 
leads to better results than the extension one in term of 
bias, with an equivalent convergence rate. 
 

 

Figure 3-5: Normalized histograms using frequency band 
segmentation approach (green lines = theoretical values, 

yellow lines = estimated mean values) 
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Figure 3-6 Normalized histograms using frequency band 
extension approach (green lines = theoretical values, 

yellow lines = estimated mean values) 
 

3.2.3 The new approach: two-steps identification 
 
Based on the previous results, a new algorithm has been 
elaborated; it is called « identification in two steps with 
an a priori knowledge in the frequency domain ». The 
principle is based on the fusion of the classical approach 
and the frequency band segmentation one in order to 
make use of their respective advantages.  As a first step, 
we use the frequency band segmentation approach. The 
resulted identified vector of parameters will be used as 
the initial vector of the second step while applying the 
classical approach. And thus we make use of the high 
convergence rate of the segmentation approach and of 
the estimation accuracy of the classical one. Once again, 
a statistical study is done to evaluate the performance of 
this new approach. The results shown in Figure 3-7 and 
Table 3-5 prove that the identification process is 
achieved with a high convergence rate and an enhanced 
relative mean error rate. The bias of the identified 
parameters is less than 1 % for 96 % of all the cases. 
 

 

Figure 3-7: Normalized histograms using the two-steps 
identification method (green lines = theoretical values, 

yellow lines = estimated mean values) 
 

Initial vector RME in % [min,max] Convergence rate 

Low a priori 
knowledge 

[ 0.2    ,  3] 2 % 

Expert 
knowledge 

[0.006 , 0.4] 30% 

 Table 3-3: Relative mean errors and convergence 
rates (1st  row: arbitrary initial vector; 

2st row: initial vector selected with expert knowledge) 
 
 
Alternative 
approach 

RME in %  [min,max] Convergence rate 

frequency band 
segmentation 

[ 2    ,  11 ] 96 % 

frequency band 
extension 

[ 2    ,  30 ] 96% 

Table 3-4: Relative mean errors and convergence rates 
(alternative approaches) 

 
 
 RME in % [min,max] Convergence rate 

new approach [2x10-4    ,  0.7 ] 96 % 

Table 3-5: Relative mean errors and convergence rate 
using the two-steps identification method 

 
3.3 Experimental Results 

In order to validate the new algorithm, we used it to 
identify a set of experimental spectrometry data. The 
results prove that this algorithm is able to correctly 
identify the true battery spectrum impedance. It had been 
tested on a large amount of available experimental data 
for different current intensities and different states of 
charge. Figure 3-8 shows the results for few cases. It is 
important to note that the variabilty of the EEC 
parameters with respect to charge/discharge current and 
to SOC has been the subject of the study realized by 
Dong (Dong K., 2010)( Dong K., 2011). 
 

 

 Figure 3-8: Experimental and estimated impedance 
spectrum for two different current intensities and SOCs 
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4 CONCLUSION AND FUTURE WORKS 

In this work, a new optimization method has been 
proposed in order to accurately estimate the parameters 
of a battery EEC from experimental impedance 
measurements. This method consists of a two-steps 
optimization algorithm. It reaches high convergence 
rates and good estimation performance without the need 
of expert a priori knowledge concerning EEC 
parameters values. In future works, this method needs to 
be extended to characterize a pack of batteries, and a real 
time version will be developped to be used for 
automotive on-board applications. 
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