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ABSTRACT: An equivalent electrical circuit (EEC) is commonly ds® model the electrochemical aspect of a
battery. Its structure can be more or less compdidadepending on the needs of the application. tapee
measurements obtained by electrochemical impedapeetroscopy need non integer order impedance deroto
correctly model passivation film and diffusion pberena. ldentification of the parameters of the EEGmM
electrochemical spectroscopy is difficult becaut@an unicity of the solution and lack of convergermf standard
algorithms. The study of the experimental measunésnshows that each chemical phenomenon is sedidih a
precise waveband. We propose thus three approdohegprove the identification convergence dependingvhether /
how we introduce information on the frequency ot. nn the first one, we identify all the parametén the whole
waveband (classical approach). The second and tbivds (alternative approaches) split the waveband @entify
only the corresponding excited parameters. In laflse cases, the identification of the parameteth@fEEC should
use a non linear method and must lead to an aceumsult. The Levenberg-Marquardt algorithm is aalpin this
study. A statistical study shows that the firstrapgh can’t converge strongly while the second tidl one converge
with the presence of a bias. Thus we propose tptaloew method of identification based on a tvepsialgorithm.

KEYWORDS: optimization method, Levenberg-Marquardt algorithrattery modelling, equivalent electrical circuit,
electrical impedance spectroscopy, battery monitpsystem.

1 INTRODUCTION

The battery is a critical element in HE\hyprid electric ~ integer derivatives to accurately modelize the dri-i
vehicld as in EV €lectric vehiclg. The lithium ion  battery behaviour. We propose to identify the EEC
battery has several advantages among other teciiesjo  parameters with a new double steps algorithm, which
such as high power density and high energy densityimproves the rate of convergence usually obtaired f
(Wakihara M. and Yamamoto O., 2008) (Kazunori O., this optimization problem. The validity of the peature
2009). Thus, it is an excellent candidate for ti&vHand is demonstrated experimentally for an A123 lithiion
EV applications. Due to its frequent charges and iron-phosphate battery inside a large range ofeslof
discharges, a BMS Battery Management System current intensity and state-of-charge.
becomes very important. The BMS is necessary to
predict the battery SOCSfate Of Charge SOH Gtate 2 BATTERY MODELS
Of Health and finally ensure security. These factors are
generally used to diagnose and manage the bateess  Modelling aims to reproduce the electrical behawiol
and to increase its lifetime and reliability. Untibw, batteries through equivalent electrical circuitsigisting
various methods and models have been proposed tof passive (resistors, capacitors, inductors, @orist
predict these states. For example, diverse equivale phase elements) and active (voltage and curremtssu
electrical circuits have been used to modelizeohi-i elements. For electrical engineers, such circuts a
battery behaviour. However, accurate descriptiothef =~ common to characterize electrochemical phenomena,
complex nonlinear electrochemical processes ocmyrri and they lead to perform a quick analysis and ptiedh
in such systems is still fficult. of the battery behaviour in frequency as in timendms.

A large variety, more or less complex, of equivalen
This paper focuses on the identification of an emjeivt electrical circuits is found in the literature. the next
electrical circuit whose parameters are schedutethe  Section we present some of the most known models
SOC, temperature, and current intensity and doacti  (Urbain M., 2009).
This equivalent electrical circuit (EEC) introducesn
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2.1 Thebasic Thevenin type model

The simplest model (Figure 2-1) consists of a \gdta
source (OCV foiOpen Circuit Voltaggand a resistance
R in series. The variability of these parameterth whe
effect of the state of charge and temperature cbeld
taken into account by tabulation or empirical law.

However, this model does not modelize the dynamical spectroscopy measurements.

behavior of battery voltage. Nevertheless, it canvéry
useful for some applications, especially for aplmn
with low variations of current solicitation .

Figure 2-1: The basic Thevenin type model
2.2 Thefirst order Thevenin type model

This model enhances the previous one. It introdweces
R1//C1 element in series with R to modelize dynainic

phenomena that occur in a battery while charging or

discharging (Figure 2-2).
. —l c1

AAA
\AAJ
ibat I
ocv'l'

Figure 2-2: First order Thevenin type model
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2.3 PNVG (Partnership for a New Generation of
Vehicles) Thevenin type model

This model (Urbain M., 2009) introduces a new cé#yac
1/OCV' to take into account the variation of thesop
circuit voltage with respect to the state of chaifgigure
2-3). We can note that a tabulation of OCV with SOC
could have offered the same functionnality without
adding this component.

c1

1/0CV’ R _|
—wW\—
ibat u
R1
OCV-l-

Figure 2-3: PNVG Thevenin type model

2.4 Adapted Randles model

This is the model adopted in our study (Figure 2#4)

was developed and used in the work led by DONG K.

(Dong K., 2010). It includes the modelization of
connectors and electrolyte, passivation film, cbkarg
transfer and double layer phenomena. The OCV isngiv
in a look up table with respect to the current ristyy
and the battery state of charge . This circuitoiditices
constant phase elements (CPE) to accurately reéfect
behaviour of the battery observed on impedance
(Oustaloup A., 1995)
(Oustaloup A., 2005). A CPE is a component that
traduces a partially capacitive and resistive bihay It
includes two parameters and p, where 0< p<1, its

impedance is given by Eqg. (1). As it can be noted,
corresponding component is a capacitorffor 1 and a
pure resistance fqr= 0.

_ 1 (1)
Zere (1) = 112707

CPEdI
Rtc

Zdc

Figure 2-4: Adapted Randles model

2.4.1 Electrolyte and connectorsimpedances

The passage of any current through the battery some
along with voltage drops due to connectors and
electrolyte resistance. Although these resistanmes
weak, they are the main cause of Joule losseseirkil
battery. Consequently, they are modelized in tHCE
thanks to the parameter R. Identifying resistive
(dissipative) elements in the equivalent circuitkkesthe
link between a purely dynamic model and a thermal. o
Due to the connectors, an inductive behaviour is
observed while exciting the battery with high
frequencies. This leads to introduce an inductdnde
series with the resistance R to modelize this phemmn
(Kuhn E., Forgez C. and Friedrich G., 2004).

2.4.2 Double layer capacitance

The double layer capacitance is the electrical
representation of the electrode-electrolyte intefa
which is proportional to the area of the electrplige. In
this electrical circuit, the double layer capacitans
modelized through the constant phase elementyCPE
(Kuhn E., Forgez C. and Friedrich G., 2004).

2.4.3 Chargetransfer phenomena

Charge transfer phenomena correspond to the flux of
oxydising and reducing species from one electrade t
another (Kuhn E., Forgez C. and Friedrich G., 2004)

in the fisrt order Thevenin type model, they aredeited
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by a resistance Rtc in parallel with the previoositde v(t) =V, sin(27t — ¢). Therefore, we can express the

max>
layer component. voltage/current ratio in the frequency domain as a
complex impedance as in equation (2):
2.4.4 Diffusive phenomena
= Vi & ; 2
During charge and discharge -cycles, concentrationZeS‘(f)_K expi9) @
gradients of electroactive species appear whichgbri
about mass transport phenomena and thus modifySince batteries are in general non linear systeans,
electrochemical potentials. Such phenomena areconstraint is set on,ix to avoid charge modification
peculiarly active when the cell is operated in vy during measurement. This mode of operation is known
frequencies, or in high currents (Kuhn E., Forgeal as the galvanostatic mode, by opposition to the
Friedrich G., 2004). Dfusion is more important as potentiostatic mode where the battery voltageesitput
electrodes potentials féér strongly from their ~ and its current the output. When applying this rodtto
equilibrium values, and mostly appears at very low & Set of different frequ”enmes, we obtain the deda
frequencies. Generally, this phenomenon is modédjed  |mPedance Spectrum”, a complex numbers(g
a transfer function called “Warburg Impedance”,enbt depending on the frequency f and whose theoretical
Zw in Figure 2-4. In this study we consider higher SNape is shown in Figure 3-1 (a).

frequencies and neglect such phenomenon (Dong K.t iS clear from Figure 3-1 that the EEC presenied
2010). Figure 2-4 is able to accurately modelize a trutteba

impedance spectrum (Figure 3-1 (b)) if its paransedee
correctly optimized. The optimization procedure is

24.5 Passivation film described in the next section.

When the potential of negative electrodes (respitipe)

is located outside the field of electrochemicab#ity, a LS e B S
partial reduction (resp. decomposition) of the etdgte :
on the surface of the active material is then oleser '
This process involves the use of a portion ofithiand g gj

creates a solid layer on the surface of theserelies,
called "passivation film". In addition to an irregéle
decrease in the capacity of the battery, the poeser : !
this layer induces a decrease in available powertdu A ol 7 S
the increase of the impedance of the electrode ¢xan

2010) A branch Rf//CPEf is used to modelize these Figure 3-1: (a)Asimu|ated EEC impedance Spectrum
complex phenomena. (b) An experimental Li-lon battery impedance spettr

Finally, th.e adoptfed electrical equivalent ciroitgure 3.2 EEC parametersidentification and optimization
2-4) consists of eight parameters [R; L; Rf; Tf; Rfc;

Tdl; Pdl] that should be optimized in order to eutly From experiental data, we define the identificatigrthe
modelize the battery’s behaviour. This is the ainthe search for mathematical models of the battery

next sections. system. These models provide an approximation as
accurate as possible of the behaviour of the uyiderl

3 ELECTRICAL EQUIVALENT CIRCUIT physical system in order to estimate the physical

IDENTIFICATION parameters and to design algorithms for simulation,

supervision, diagnosis and control. The identifarat
Electrochemical Impedance Spectroscopy (EIS) is aysyally starts with a plan of experiments where the
commonly used method to characterize electrochémicajnpyts/outputs are determined and measured andewher
systems (Buller S., 2002). After a brief remindeE¢S  the excitation signals are selected. Following thrist

applications in battery modelling, we will describew  step, a model is selected among linear candidatastp
the parameters of the EEC can be estimated thanks ttaking into account the noise or not. From the ehos

this technique. error signal, a condition is then selected from the
) ) different types of existing criteria (quadratic,salute
31 Anoverview of impedance spectroscopy value, maximum likelihood, AIC, Young, Bayesian...)

The estimation of the parameters is then achiewed b
Impedance Spectroscopy is an experimental techniquéninimizing this criterion. Techniques based on dine
generally used as impedance characterization. Theprogramming, such as least squares and instrumental
principle of EIS is the following (Gabrielli C., #8):  variable, or based on nonlinear programming, ssdhe
when adding a small sinusoidal current of frequerficy  gradient method and all its variants, are commonly

i(t) =1, sin(27ft) to a DC current at the input of the _usedl. Finally, the resulting model is validated or
battery under test, its voltage response is Invalidated by the tests.
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In our study, the model is composed of the impeédanic
the equivalent electrical circuit. The input is thattery
current which is a sinusoid of variable frequendgex

In what follows, different ways to use the Leverer
Marquardt algorithm and to efficiently solve this
optimization problem will be detailed in the next

to a DC component, and the output is the measuredsections, and a statistical study is used to amathe

battery voltage. The criterion to minimize is thean
squared value of the error given by equation (3)sT
error corresponds to the difference between thesepha
and the logarithmic modulus of the impedance ptedic
by the model &; and those obtained through
measurements,Z

o) oIz (D)=In(z.() 3)

phase( 7 (1)) - phase( Z.(1))

Where: Z: Zsimulated+n0i59r z measured

Zest Z estimated by the model

convergence properties of the proposed algorithms.
3.2.1 Classical approach

The classical approach consists of identifying thi
EEC parameters in the whole frequency band.

To test the performance of this method, a statisstudy

is performed. Starting with a known vector of
parameters, a complex impedance Z(f) is generatied u
a large amount of frequencies (from 5 mHz to 65)kHz
A complex-valued white noise is added to this
theoretical impedance in order to modelize measerém
noise. One hundred iterations of such noisy impeesan

This method leads to a non-linear least squaresare generated with the same signal to noise r&to.

optimization problem, whose optimal solution can be
obtained thanks to the Levenberg-Marquardt algorith
(Canat S., 2009).

This approach is summurized in Figure 3-2.

Initialization
Vi

Model result
Estimation: V

Zineasured (f)
Or Zyimuiatedrnoiself)

Optimization
Levenberg-Marquardt

Criterion E(f)
E*(h)
Mean Square Error
iy

Zes((f)

Figure 3-2: Optimization method

The convergence properties of this algorithm are
reflected by the output parameter "exitflag" whose
values are explained in Table 3-1 : Exitflag values

each iteration, an initial vector is arbitrary ceoswithin
limited values (Table 3-2). The results show thahw
such a method, the convergence of the Levenberg-
Marquardt algorithm is not guaranteed: this metiod
very affected by the choice of the initializatiorctor.
An expert knowledge of specialists in batteries
required to correctly initialize the initial vectar order
to improve the convergence rate of this algorithmd
accurately estimate the theoretical vector.

Two criteria are used to compare the results: ¢tetive
mean errors RME (4) and the convergence rate CR (5)

- 4

RME = 100% (meansgg) V) 4)
whereV is one of th(sémelements{R; LR:T P R:T,: P

(®)

CR= Convergentiterations
- total numberof iterations

In Table 3-3 we present the RME (min and max) dued t
convergence rate for two cases : for the first dhe,
initial vector is selected without any expert knedde of
the batteries while for the second one, it was ehos
carefully. In that case, the true parameters vahmuld

Value Signification be approximately known.
Function exactly converged to a stable - —
1 solution x Theoretical | Initial  vector | Upper_bound
’ Value (expert (low a priori
] ] ] knowledge knowledge case)
2 Change in x between two iterations was less case)
than the specified tolerance TolX (1. R (Ohm) | 00130 ) 1
8 8 6
Change in the criterion between two iterations L (1) 4x10 10 10
3 was less than the specified tolerance TolfFun | Rf(Ohm) | 0.004 16 1
(10, T 5.7 5 10
. . Pf 0.53 0.1 1
0 Number of iterations exceeded Maxlter (400) Rtc (Ohm) | 0.04 18 1
Tdl 700 100 1000
Table 3-1 : Exitflag values. Pl 0.7 0.1 1
The theoretical study of the convergence propelises . .
Y 9 prop Table 3-2 : Numeric values used on the simulafidre

out of the scope of this paper because the crtdtiat
has to be minimized is strongly nonlinear, and @nés
many local minima. Therefore, these properties igav
depend on the initial vector value.

last column is used to generate a arbitrarly invtetor
within [0 Upper_bound] limits.
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Normalized histograms classical approach
0.2

. This observation leads us to propose two alteraeativ
: approaches to use thia priori knowledge in the
||l ||| optimization process.

N N T a) Frequency band segmentation

In this approach, we split the whole frequency band
i " | | ” | Il ! different parts and identify the excited parametarthe
g”_I_L_Ii ! LL_LL frequency band where their impedance in important (

|
|
005 04
|
|

1 O

00120 00120 0013 0013 00131 00131 00132 00132 3.96 397 3.98 3.

.7 38 39 4 41 42 43 4 45 5 55 6 6.5 7 .5
o Rf X0’ " Ll the parameters excited in low frequency band are
""J_“”"I | || | B | identified using only low frequencies, those extiia
I” | I medium frequency band using medium frequencies, and
s o um R ohmoom oaw ';:é oz 0M4 0Ms those excited in hlgh frequency band USing Onlyhhlg

v u frequencies).

o o b) Frequency band extension
1 I In this second approach, we also split the whole

R Moo ®  frequency band in three parts, but during each step
extend the limits of the intervals of frequenciés the
Figure 3-3: Normalized histograms using the cladsic =~ parameters excited of the medium waveband are
approach with an arbitrarly initial vector (greémels = identified using the low and medium frequenciesd an
theoretical values, yellow lines = estimated mealnes) ~ those excited in high waveband using all the
frequencies).
These results clearly show that less we know atimut ~ The main difference between the classical appraach
EEC parameters value, less the algorithm conveiges these two alternative approaches is located imé#tare
the exact values. In of the a priori knowledge necessary to make the
Figure 3-3 we present the normalized histograms Optimization algorithm converge. For the classical
corresponding to the first case for the eight congmes ~ @pproach, the initial vector of EEC parametersthase
of the chosen EEC (Figure 2-4])he green lines refer to set with values close to the true ones. Unfortdylatbls
theoretical parameters values while the yellow aeésr ~ kind of knowledge is only accessible to expert peop
to mean parameters values estimated over all theFor the proposed alternative approaches, only the

iterations where the algorithm converged. approximate values of the different frequency bainais
to be known, which is a much more simple knowletige
3.2.2 Alternative approaches obtain. A statistical test similar to the one damsection

3.2.1 has been done to study the performance skthe

As we said before, in an identification process,aan alternative approaches. The obtained results (Eigub
priori knowledge of the system can be injected. Figure @nd Figure 3-6) prove that these alternative agres

3-4 shows that the part of the EEC which is excigd ~ Strongly enhance the rate of convergence, but the
the input current depends on the input frequenay. F estimated parameters are then biased. As it is rshow
example, passivation fim effects only appear for Table 3-4, the frequency band segmentation approach
frequencies lower than 10 kHz (see the green Cur\,e)leads to better results than the extension onerim of
while the double layer and charge transfer are onlybias, with an equivalent convergence rate.

important for frequencies lower than 1 Hz (see ribe

CUI’VE). We can also note that the electrolyte and ) Normalizedhistogramswaveband[s‘segmentationapproach
connectors impedance modelized by R and L are only | 1 W

dominating in the high-frequency band (see the blue “I . “

curve, for frequencies higher than 10 kHz). e e e

o
- o {
Partial EEC contribution with respect of wavebands - EE‘ |
w0’

I R R R R TR

o . . . o . . . .
o | ot
] ot
== oz 1
—R+L | oo
” 2| | 1 2!
=—R+L+Zfilm ]
AL s i o5 0 03 o4 fETm oes b oome oG om0

—R+L+Z mm+Z e

modulus

. .
? g o 1 st i
oz | 1 oot |
L s ) |
o) ) 1 oot I
) o |
bR : T mEm MWW a @ @ G5 0w oom & oom o oW om o om0
o R Tdl Pdl
@ F < s

F(i:lz)
Figure 3-5: Normalized histograms using frequergayd
segmentation approach (green lines = theoretidatsa

Figure 3-4: Partial theoretical impedance modulus ) :
yellow lines = estimated mean values)

compared with an experimental impedance modulus
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.. Normalized histograms wavebands extension approach Initial vector RME in % [min,max] | Convergence rate
|
o Low a priori 0
—_J‘L knowledge 02,3 2%
T R ‘ R R Expert [0.006 , 0.4] 30%
knowledge

o I||
i
T T

S Table 3-3: Relative mean errors and convergence
Rf 10’
Pt )

rates (I row: arbitrary initial vector;
2%'row: initial vector selected with expert knowledge)

0
)

R o R T

‘ - ) | Alternative RME in % [min,max]| Convergence rate
Illl i 'Iliﬂl 1 approach
s i e et HRH 06 M. frequency band [2 ,11] 96 %
Tdl Pdl segmentation
_ _ _ _ frequer_wy band [2 ,30] 96%
Figure 3-6 Normalized histograms using frequenaydba | extension

extension approach (green lines = theoretical &lue
yellow lines = estimated mean values) Table 3-4: Relative mean errors and convergenes rat
(alternative approaches)

3.2.3 Thenew approach: two-stepsidentification

RME in % [min,max] | Convergence rate
Based on the previous results, a new algorithmbleas

g SUS, IS« : new approach 2x1b , 0.7 96 %
elaborated; it is called « identification in twaegs with PP [ ] >
an a priori knowledge in the frequency domadn The ] .
principle is based on the fusion of the classiggiraach Table 3'_5' Rﬁlatlve mean %rror_?_ an(_JI converzgznee rat
and the frequency band segmentation one in order to using the two-steps identification metho

make use of their respective advantages. As astiep, _
we use the frequency band segmentation approagh. Th3-3 EXxperimental Results
resulted identified vector of parameters will bedisas ) ) )
the initial vector of the second step while appythe ! order to validate the new algorithm, we usedoit
classical approach. And thus we make use of thh hig dentify a set of experimental spectrometry datae T
convergence rate of the segmentation approach ind o/€Sults prove that this algorithm is able to caiyec
the estimation accuracy of the classical one. Grgzn, identify the true battery spectrum_lmpedance._d baen
a statistical study is done to evaluate the perémae of tested on a large amount of available experimede
this new approach. The results shown in Figureahd for dlffere_nt current intensities and different teta _of
Table 3-5 prove that the identification process is charge. Figure 3-8 shows the results for few cases.
achieved with a high convergence rate and an eedanc ImPortant to note that the variabilty of the EEC
relative mean error rate. The bias of the identifie Parameters with respect to charge/discharge cuamaht
parameters is less than 1 % for 96 % of all thesas to SOC has been the subject of the study realized b
Dong (Dong K., 2010)( Dong K., 2011).

Normalized histograms identification in two steps
e . . . [ it bidec, —
| N i 1=-0.023A for SOC=84.66 1=-0.023A for SOC=32.98
oo oot
B ooz R 0005 P
Illl N N
RIS ] IILIL.... I ... 5 By oot |
R w g g - : !
oo - foosp ¥ & ¥ =T oo
LIS il 1 .
oo | ag, - 3 ag _
| Bom oo oo wr wom oa oom ois Yo 5o 508 otz oom ou 09m oim o%
| Re(2Z) Re(Z)
|

Rf ot . T 1=-0.0675A for SOC=84.16 ~ 1=-0.0575A for SOC=29.96

| [ 0005 o
| [ 0005
g | L &
| o L
faTE™%e 05 om o os 0% 0@ Db 0@ 0m fE 0w on o bE o G 0% s
00 !
Pf Rtc T T 0005

Re(2) Re(Z)
) = Experimental Impedance Spectrum

Tdi Pdl i == Two steps identified Impedance Spectrum

Imag(Z)
Imag(Z)

Figure 3-7: Normalized histograms using the tweste
identification method (green lines = theoreticdles,
yellow lines = estimated mean values)

Figure 3-8: Experimental and estimated impedance
spectrum for two different current intensities &8@Cs
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4 CONCLUSION AND FUTURE WORKS

In this work, a new optimization method has been
proposed in order to accurately estimate the pamame
of a battery EEC from experimental impedance
measurements. This method consists of a two-steps
optimization algorithm. It reaches high convergence
rates and good estimation performance without tedn
of expert a priori knowledge concerning EEC
parameters values. In future works, this methodisnee

be extended to characterize a pack of batteriesaaral
time version will be developped to be used for
automotive on-board applications.
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