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ABSTRACT: This communication presents the validation of a methodology to compute good approximations
of minimal energy controllers under constraint of average speed. The application is an electric bicycle travelling
along a given 3D path. The proposed method consists to 1) intelligently sample the research space then 2)
apply A* (Astar) optimal pathfinding algorithm with an efficient heuristic. The results of this method are
compared to the exact solution computed by continuous optimal control theory of an academic but relevant
problem stated in an analytical smooth form. The approximate method provides results similar to the exact
one with a significantly shorter computation time. The advantage of the A* algorithm is that it deals with
unsmooth functions, inequality constraints, and long travels. This study is a milestone in a more global study
about hybridization of human energy.
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1 INTRODUCTION

Using (electric) bicycles for short travels (less than
20km/day) is spreading up in large agglomerations,
often in complement with mass public transporta-
tions. It is relevant for two reasons. The former is
a societal one: for a given travel demand, it decreases
the emissions of polluting and greenhouse effect gases
together while lowering traffic congestion. The lat-
ter is an individual one: the body of the transported
person takes an active part to the travel which gives,
for active people with sedentary jobs, the opportunity
to have a reasonable physical training which is surely
good for individual health. For small travels in flat
cities, the usual bicycle is undoubtedly the healthier
and minimal energy solution. For long or hilly trav-
els, the electric bicycle is a good compromise between
comfort and low energy transportation.
Timmermans et al. (2009) report in an objective
benchmark that torque and energy consumption per-
formances are very variable (from 4.8 Wh/km to 16.7
Wh/km for energy consumption). Only a few models
are ranked fully satisfying.
Concerning constraints, numerous European coun-
tries regulations impose upper bounds for both the
mechanical power of the electric motor (< 250W) and
the speed (<25km/h). Within this legal framework,
electric bicycle manufacturers have sufficient degrees
of freedom to develop good controllers.

The electric bicycle is obviously a hybrid (human
& electric) powered vehicle. Numerous studies deal
with fuel consumption minimization on hybrid ther-
mal/electric vehicle. An electric motor supplied by a
battery constitutes a reversible embedded source of
power. The energy has to be split optimally between
the engine and the electric machine to minimize fuel
consumption. Off line optimal controls are usually
designed with a power demand specified by a priori
known velocity and altitude profiles. Lin et al. (2003)
compute the optimal power split of a hybrid electric
truck with a dynamic programming method. This
method samples the command and the state space.
Such method implies heavy computation. Delprat
et al. (2004) and Kim et al. (2011) use a method based
on classical optimal control theory to build an opti-
mal offline control applied to a hybrid car.
The present study is a part of a global one concern-
ing the hybridization of human and electric energies
that satisfies comfort or physical training prescription
while optimizing the autonomy and availability of the
device. Nevertheless, because optimal control is the
relevant theory to deal with constrained problems of
optimal autonomy, we propose here to first consider
a limit case without human power. It gives an easier
framework to validate a practical computation of a
minimal energy control.
A realistic usage imposes a lower bound constraint
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for the average speed. This problem has been tack-
led in a railway context by Văsak et al. (2009) who
use dynamic programming to compute the optimal
control of an electric train with a fixed arrival time
constraint.
In this study, we propose to validate a design method
of minimal energy control by comparing it to the ex-
act solution in the case where it can be computed i.e.
when all terms of the problem, including the slope of
the road, are described by analytic expressions. The
practical relevance of the study is based upon the fact
that the model of the electric bicycle has been cali-
brated from experiments with a real device and that
the validated approximate method can take into ac-
count digitized travel profiles available in Geograph-
ical Information Systems Taylor and Blewitt (2006).
With this aim in mind, this paper is organized as fol-
lows.
In section 2, the structure of a generic model of an
electric bicycle is presented and its parameters are
calibrated. Considering an analytical road profile,
an exact continuous time optimal control is first pre-
sented in section 3. It is based upon the Pontryaguin
maximum principle and the computation is possible
because the model, objectives and constraints are
all given as analytical smooth functions. Section 4
presents a second method that can use punctual spec-
ifications of the road profile. It is based upon the A*
algorithm with an appropriate heuristic function and
the discretizing policy to implement it is defined. Fi-
nally, section 5 validates this second practical method
by comparing its performances with those of the exact
method on the same test bench.

2 MODEL DESCRIPTION

2.1 Mechanical model

The altitude profile z(s) of the considered travel is
presented on figure 1 where the position of the bicy-
cle is termed by the curvilinear abscissa s. It shows
downhill and uphill phases with variable lengths and
slopes and it is described analytically by a C∞ func-
tion.

Figure 1: Altitude profile of the trip

For the sake of analytic simplicity and without loss of
generality, we use in the sequel the angular position

of the motor x1(t) in place of the curvilinear abscissa
s(t). The relation between these variables is: s(t) =
Rwx1(t) where Rw denotes the radius of the wheel
hub motor. Let us classically consider (1) as the state
vector.

~x(t) =

(
x1(t)
x2(t)

)
=

(
x1(t)
ẋ1(t)

)
(1)

The bicycle is only powered by the electric motor and
is subject to the air drag, the rolling resistance of the
tires and the gravity (Martin et al. (1998)). The wind
speed is assumed to be null. The second Newton’s law
gives:

J
dx2

dt
= Tm(u, x2) + TR + Tg(x1) + α.(x2)2 (2)

where the terms are:

• u(t): the control input which is the voltage of
the electrical motor,

• α.(x2)2: the torque induced by the air drag,

• Tm(u, x2): the torque of the electrical motor,

• Tg(x1) : the torque induced by the slope,

Tg(x1) = −mg dz
dx1

(x1) (3)

Table 1 sums up the parameters values of the experi-
mental setup.

rolling resistance torque TR −1.9N.m
air drag coefficient α −0.02N.m.rad−2.s2

equivalent inertia J 10kg.m2

mass (bicycle + cyclist) m 115kg
gravity g 9.81m.s−2

wheel radius Rw 0.33m

Table 1: Bicycle parameters

2.2 Electric model

The electric bicycle is powered by a synchronous mo-
tor. This kind of motor can be efficiently modeleled
by a Direct Current motor model:

Torque of the motor:

Tm(t) = ki
u(t)− kvx2(t)

Rc
+ Tf (4)
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Electric power:

Pe(t) = u(t)
u(t)− kvx2(t)

Rc
(5)

Mechanical power:

Pm(t) = Tm(t)x2(t) (6)

The parameters of the model have been identified by
using a test bench depicted on figure 2.

Figure 2: The motor test bench

In this experimental setup, the motor is loaded by a
constant resistive torque. Angular velocity, voltage
and current are measured simultaneously in order to
compare the mechanical power output with the elec-
trical power input.

Figure 3: Calibration of the motor model

Current constant ki 1.43.N.m.A−1

Speed constant kv 1.5V.rad−1.s
Coil resistance Rc 1Ω

Internal friction torque Tf −0.7N.m

Table 2: Bicycle parameters

Table 2 sums up the parameters value of the motor
and figure 3 shows the relevance of the calibration.
The parameters TR and α have been calibrated by

using an instrumented bicycle running down a slope
with a non-pedaling cyclist. The result of the calibra-
tion of the bicycle model is displayed on figure 4.

Figure 4: Calibration of the complete model

T0 = TR + Tf denoting an equivalent friction torque,
the state space model (7) sums up equations (2, 4).

Φ
∆
=


dx1

dt = x2

dx2

dt = 1
J

[
ki
Rc
u− kikv

Rc
x2 + T0+

α.(x2)2 + Tg(x1)
] (7)

3 EXACT OPTIMAL CONTROL

3.1 Definition of the optimization problem

The energy consumption is defined as the integral of
the power (5). Considering a constant efficiency of
the battery gives the cost function to be minimized
as:

Ee =

∫ tf

t0

Pe(t)dt =

∫ tf

t0

u(t)
u(t)− kvx2(t)

Rc
dt (8)

The trip to be performed is specified by 1) a 3D path,
2) a given time interval [t0, tf ]. According to the
choice (1) of state variables, starting with a zero ini-
tial velocity is expressed as:

{ x1(t0) = 0
x2(t0) = 0

(9)

The final time tf is chosen but both final position
x1(tf ) and speed x2(tf ) are free variables. In the
sequel, a lower bound for the average velocity of the
bicycle is chosen as 15km/h which corresponds to:

x̄2 =
1

tf − t0

∫ tf

t0

x2(t)dt ≥ 12.5rad.s−1 (10)

3.2 Necessary conditions for the optimal con-
trol

The exact design of an optimal control is achieved
by maximizing, at any time, the Hamiltonian func-
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tion (11) (Lewis and Syrmos (1995) and Pontryaguin
(1974)).

H = − u2

Rc
+ kv

Rc
x2u+ γx2 + λ1x2+

λ2
1
J

[
ki
Rc
u− kikv

Rc
x2 + T0 + α.(x2)2 + Tg(x1)

] (11)

The term − u2

Rc
+ kv

Rc
x2u represents the opposite of

the electric power. The maximisation of the Hamil-
tonien function leads to the minimization of the
integral of the electric power along the path i.e. the
minimisation of the cost function Ee (8). The term
γx2 tunes the average speed along the path (10).

The co-state vector ~λ(t) may be thought a Lagrange
parameter vector associated with the state equation
(7) concidered as an equality constraint. The term
λ1x2 adresses the first line of the state equation

and λ2
1
J

[
ki
Rc
u− kikv

Rc
x2 + T0 + α.(x2)2 + Tg(x1)

]
adresses the second one. Maximizing the Hamilto-
nian yields the necessary conditions (12, 13) on the

co-state ~λ(t).

Ψ
∆
=


dλ1

dt = − ∂H
∂x1

dλ2

dt = − ∂H
∂x2

dλ1

dt
= − 1

J
λ2
∂Tg
∂x1

(12)

dλ2

dt
= − kv

Rc
u− γ − λ1 + λ2

1

J

(
kikv
Rc
− 2αx2

)
(13)

The control u(t) maximizes the Hamiltonian. This
implies the relation (14) in the interior of its definition
domain, e.g. when it does not saturate.

∂H

∂u
= − 2

Rc
u+

kv
Rc
x2 +

ki
JRc

λ2 = 0 (14)

Taking into account the saturation, equation (14)
leads to the exact optimal control:

u = sat

(
kv
2
u+

kv
2J
λ2

)
(15)

3.3 Implementation of the optimal control

Differential relations governing the state (7) and
the co-state (12, 13) are nonlinear, strongly coupled
and must thus be integrated in parallel. Although
Van Keulen et al. (2011) and Kim et al. (2011) present

different methods to compute analytically the co-
state by using a simplified model, we prefer to in-
tegrate the non-simplified one with a numerical inte-
gration method whose main lines is described by the
Matlab Simulink R© block-diagram (figure 5). This
implies the knowledge of the initial values of both
state and co-state. The former is a priori given (9)
but the later must be estimated.

Figure 5: Computing the control. Block-diagram de-
scribing the simultaneous integration of the state and
co-state. Each block is designed to compute a specific
variable.

3.4 Defining the co-state initial conditions

The state space of the optimal process (state + co-
state, figure 5) is 4 dimensional but only 2 initial con-
ditions are a priori given (9) and the initial value
~λ(t0) of the co-state and the Lagrange’s parame-
ter γ remain to be determined. A first simplifica-
tion stems from a change of variables. Considering
(12, 13), we merge γ and λ1(t) into a new variable:
λ′1(t) = γ + λ1(t). Since γ is a constant, the time
derivative of λ′1(t) is the same as the one of λ1(t).
The search for initial conditions is now restricted to
only 2 parameters, (λ′1(t0), λ2(t0)) instead of the 3
original ones, (γ, λ1(t0), λ2(t0)). Delprat et al. (2004)
solve a similar problem with only one boundary con-
dition by using a bisection search, making profit of
the monotonicity of the cost function.

Figure 6: Energy consumption mapping
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To get an insight of the 2 parameters search
in the present case, consider figure 6 where the
(λ′1(t0), λ2(t0)) plane is split in 2 regions: 1) a non-
admissible one, where the average speed constraint
(10) is not fulfilled and 2) an admissible one, where
the value of the cost function Ee (λ′1(t0), λ2(t0)) is
computed and displayed in grayscale. The limit be-
tween the two zones is described by a boundary curve
B where the constraint is saturated. Examine the cost
function along the boundary curve B on figure 7, it
appears as a convex function. The global minimum
can then found by using a 2 steps algorithm using
bisection.

Figure 7: Energy consumption mapping

3.5 Performance of the optimal control

(λ′1(t0), λ2(t0)) being known, the optimal control is
obtained by integrating the process of figure 5. We
propose here to illustrate the benefit gained from the
optimal control by comparing it to a constant con-
trol (16) that satisfies the same limit conditions and
saturates the average speed constraint.

 ∀t, u(t) = uc

x̄2 = 12.5rad.s−1
(16)

Results are displayed on figure 8. The optimal control
saves 10.5% of energy with respect to the constant
control policy. In particular, let us notice that the
optimal control uses regenerative breaking to convert
kinetic energy into electric energy at the end of the
trip. Van Keulen et al. (2011) report a similar be-
haviour.
These results need a twice differentiable analytical al-
titude profile whereas the experimental data are just
sequences of points. This motivates the interest for
the discrete approach detailed in the next section.

4 A* SUBOPTIMAL CONTROL ALGO-
RITHM

In robotics, optimal control is often used for
path planning among obstacles Latombe (1991) and
LaValle (2006). The practical way to compute the so-
lution often consists to discretize the problem before

Figure 8: Comparison of performances between con-
stant control and optimal control

applying an optimal graph search technique. It be-
gins by sampling the time, the control and the state
space Thrun et al. (2005).

4.1 sampling time and state

Fist, the time is uniformly sampled with a period ∆t.

k ∈
{

0; ...; kf = ceil
(
tf−t0

∆t

)}
tk = t0 + k∆t

(17)

Second, the state variables are too uniformly sampled.

~xk =

 x1,k ∈ {0; ∆x1; ...;xmax1 }

x2,k ∈ {0; ∆x2; ...;xmax2 }
(18)

At each time sample tk the computed continuous state
~x(tk) is rounded to the nearest discrete state ~xk. The
maximum available velocity depends on the maxi-
mum control and the altitude profile. The rotary
speed is upper bounded by xmax2 = 25rad.s−1 which
correspond to a 29.7km.h−1 velocity. The maximum
available position is xmax1 = xmax2 tf . Aliasing errors
on both position and velocity occur due to the quan-
tization. For coherence sake, sampling space periods
(∆x1,∆x2) are chosen so that ∆x1 = ∆x2∆t.
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4.2 Sampling the control

Optimal energy controls are continuous ones whereas
a discrete control strategy chooses inside a finite set
at each time sample. We thus propose to define the
control signal as a continuous piecewise affine func-
tion (figure 9).

Figure 9: Example of the continuous piecewise affine
function u(t)

At any time tk, a value of the control uk+1 is chosen
among a uniformly sampled set of controls.

uk+1 ∈ {0; ∆u; ...;umax} (19)

The saturation of the control is given by the voltage
of the battery umax = 40V . The continuous control
function u(t) (20) is defined from the elements of the
list {u0, u1, ..., uf} by a piecewise affine function.

k ∈ {0; 1; ...; kf − 1}

u(t) = uk + uk+1−uk

∆t (t− tk) t ∈ [tk, tk+1]
(20)

4.3 Rewriting of the optimal control problem

The optimal control problem consists now to com-
pute the sequence {u0;u1; ...;uf} that minimizes the
cost function Ee while satisfying the average speed
constraint (10). At each sampled state ~xk, the new
sampled control uk+1 is chosen and the state evolu-
tion during the time interval [tk, tk+1] is computed
by first, integrating the state equation (7) submitted
to the control (20) and then rounding into the new
discrete state ~xk+1. The state evolution is thus de-
scribed by a graph where the states ~xk are the nodes
and each admissible control defines a link (figure 10).
This graph is dynamically built.
The valuation of the links between ~xk and ~xk+1 is the
energy consumption between tk and tk+1.
The optimal control problem consists now in
finding the minimal cost path in the graph be-
tween the initial state and the final domain.
From a complexity point of view, note in (21) that

Figure 10: Example of a sampled space state with
different available paths. The gray squares represent
the nodes, the arrows represent the links.

the number of a priori available paths nav increases
drastically when refining the quanta ∆u and ∆t.

nav =
(umax

∆u
+ 1
)( tf

∆t +1
)

(21)

4.4 Optimal pathfinding using A* algorithm

The Dijkstra’s Algorithm solves optimal pathfinding
problems in graphs with a breadth first search strat-
egy which implies the exploration of all possible paths
with the consequence of huge computation times.
The A* algorithm (Dechter and Pearl (1985)) is based
on Dijkstra’s method but it explores first the most
promising path. The keypoint to qualify a promising
path consists to compute an estimate of the optimal
valuation for each examined node. This criterion is
the sum of current criterion associated with the path
from the beginning to the current node plus a heuris-
tic guess h(~xk) of the part of the criterion associated
with remaining path to the goal.
Usually, this directed depth first search strategy
shortens the computation time. The definition of the
heuristic h(~xk) is the keystone of the computational
efficiency. This heuristic must be designed accord-
ing to contradictory guidelines: 1) it must be a lower
bound of the energy left to spend from the current to
the final nodes and 2) the more the heuristic is accu-
rate the faster the algorithm will converge.
The heuristic presented here is based on a balance
between the work of mechanical loss (friction and air
drag) and the available mechanical energies (kinetic
and potential). The work of friction resistance Wr is
given by:

Wr =

∫ tf

tk

T0x2(t)dt = T0(x1,f − x1,k) (22)
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The work of the air drag Wa is upper bounded by:

Wa =

∫ tf

tk

α [x2(t)]
3
dt ≤ α (x1,f − x1,k)3

(tf − tk)2
= Wmax

a (23)

Notice that both mechanical works Wr and Wa are
negative. The kinetic energy is a mechanical available
energy given by the expression:

T =
1

2
J(x2,k)2 (24)

The potential energy of gravity Ug is deduced from
the sampled altitude profile z(x1,k) = zk.

Ug =

∫ tf

tk

Tg(x1)x2(t)dt = mg(zk − zf ) (25)

To link the mechanical energy with the cost function,
we use the motor efficiency defined by:

η(u, x2) =
Pm(u, x2)

Pe(u, x2)
(26)

The expression (26) can be upper bounded by a con-
stant:

ηmax = max
u,x2

[η(u, x2)] ≤ ki
kv

(27)

Considering (22), (23), (24), (25) and (27), the heuris-
tic is defined:

h =
kv
ki

(−Wr −Wmax
a − Ug − T ) (28)

4.5 RESULTS

To compare the exact optimal control and the A*
algorithm, four different simulations have been
performed with different travelled distance: 250m,
500m, 750m and 1000m. The A* algorithm needs a
sampling strategy in order to compute in reasonable
time a near optimal solution. Good results have
been obtained with a control quantum ∆u = 4V
and a speed quantum ∆x2 = 0.5rad.s−1. The time
period ∆t is a tuning parameter. It has been reduced
regularly in order to check if the computation
converges. The energy curve reaches an asymptot
for a computation time that does not exceed 300s
(figure 11).

The shape of the control obtained by the A* algo-
rithm converge to a piecewise affine function that fits

Figure 11: Convergence of the A* compared with the
optimal reference

the optimal one in every case (figures 12 to 15). The
performances of energy minimization are compared
in table 3. The relative difference of performance
between A* algorithm and optimal control is mainly
1.2% and does not exceed 1.35%.
The A* algorithm converges to a solution that is
sub optimal, with a much shorter computation time
(table 4). The benefit of using the proposed heuristic
(28) is evident when one considers the computation
time of a Dijkstra’s algorithm exploring all available
links. Its computation time can be estimated with
the computation time of a link (0.5 ms) multiplied
by the number of links available (21).
The computation time of the A* algorithm strongly
depends of the heuristic function accuracy. The
presented heuristic function neglects a huge number
of links in order to explore only the more promising.
For example, among a nav ≈ 3.45 ∗ 1013 maximum
number of links, the A* algorithm only explores
nex ≈ 3.48 ∗ 105 ones.
On the energy consumption curves (figures 12 to 15)
the heuristic is also depicted. Notice for example that
in figure 15 at the begining of the trip, the heuristic
estimated the energy left to spend at h(~x0) = 5Wh.
To verify this estimation notice that the real energy
consumed at the end of the trip is Ee(~xf ) = 7.53Wh.
The relative difference is about 33%. This good
accuracy of the heuristic function explains such good
performances in terms of computation time.

distance optimal A* relative
(m) (Wh) (Wh) difference
250 2.54 2.56 1.10 %
500 4.54 4.59 1.27 %
750 5.64 5.78 1.35 %
1000 7.53 7.62 1.07 %

Table 3: Comparison of the energy consumption

5 CONCLUSION AND PERSPECTIVES

In this communication, a practical minimal energy
control computation has been validated with respect
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Figure 12: Comparison between optimal control and
A* algorithm for a travelled distance of 250m.

Figure 13: Comparison between optimal control and
A* algorithm for a travelled distance of 500m.

Figure 14: Comparison between optimal control and
A* algorithm for a travelled distance of 750m.

Figure 15: Comparison between optimal control and
A* algorithm for a travelled distance of 1000m.



MOSIM’12 - June 06-08, 2012 - Bordeaux - France

distance optimal A* Dijkstra’s
(m) (s) (s) estimation
250 786 4 886 s
500 1212 42 547 years
750 1590 53 547 years
1000 1784 312 547 years

Table 4: Comparison of computation times, optimal
algorithm and A* are measured, Dijkstra’s one is es-
timated

to a single energy electric bicycle. The main original-
ity of the method is the definition of the heuristic cost
function used by the A* algorithm that performs the
search of the optimal path in the discretized search
space. The validation has been obtained by compar-
ing the results of the proposed algorithm with those
of the exact solution when they are both applied to
an academic realistic case.
The relevance of the method to practical cases stems
from the fact that 1) it can use digital maps to com-
pute optimal paths, 2) the computation time is rea-
sonable and 3) the process model has been calibrated
with real data.
The incoming studies will face the energy hybridiza-
tion problem by using more realistic models of the
electrical bicycle including the behaviour of the cy-
clist proposed by Grossoleil and Meizel (2010). The
dynamic model of the battery proposed by Tremblay
and Dessaint (2009) could be interesting to build a
more realistic cost function. Finally, optimizations
applied at long travels with a profile of altitude mea-
sured in real conditions will be performed with the
validated A* Algorithm.
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