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Abstract—In this paper we present a new analysis of energy
consumption in cellular network and we focus on the distribution
of energy consumed by a base station. We first define the energy
consumption model, in which the consumed energy is divided
into two parts: the additive part and the broadcast part. The
additive part is served to communicate with different users while
the broadcast part is served to transmit the same information
to all users in the cell. We then model user’s activity as ON-
OFF process in time. We also model user’s mobility as a random
process and we define the high mobility regime in which users
move very fast. We are able to provide analytical expressions
for statistics of consumed energy and bounds on the distribution
of energy in motionless case. We then consider the impact of
mobility and we mobility reduces moments and central moments
of the additive part. We also show that high mobility regime, the
variance of energy tends to zero. This is a strong result as it holds
true for almost any mobility model. We are able to characterize

the convergence decay rate of the variance in function of user’s
speed. We propose two applications of the model. The first one
is to dimension cell radius in the economical point of view and
the second one is to dimension cell battery in the sites that do
not have access to electricity.

I. INTRODUCTION

A. Motivation

Cellular communications have had a phenomenal progres-

sion due to recent technological advances in both cellular

networks and cellular telephone manufacturing. They will

experience even more growth in the next decade. Data traffic

is becoming more and more dominant in mobile networks. For

the first time in history, the volume of worldwide mobile data

traffic exceeded that of voice traffic in December 2009 ([1]).

Such demands, on both number of subscribers and traffic

capacity, are driving forces for the telecommunication in-

dustries to develop new technologies, and for operators to

invest more and more in infrastructures. According to several

studies, 0.5% of world-wide electrical energy is responsible

to cellular network and 80% of this is consumed at base

station sites. Up to 90% of cellular energy consumption is

operator’s operational expenditures (OPEX) ([2],[3],[4]). A BS

connected to electrical grid may cost approximately 3000$

per year to operate, while an off-grid BS may cost ten times

more. Considering the rising energy consumption of mobile

networks, it becomes clear that energy cost is critical for

operators’ OPEX. The expense for energy to run cellular

networks is expected to triple over the next seven years.

Consequently, one of the main objectives for new generation

of cellular network is to reduce energy consumption and

carbon emission and to improve energy utilization efficiency.

That leads to the concept of "green cellular network". The

interest of green cellular network is not limited to ecological

reasons but also includes on economical benefits. We refer to

[3], [5] and reference therein for green techniques for cellular

network.

B. Contribution summary

In this paper, we investigate different aspects, which sur-

prisingly have not been investigated in the literature. We are

interested in the distribution of energy consumed by a base

station during its operating period. As mobility is the main

issue in cellular network, we also take it into account. More

precisely, we model users’ initial position as a spatial Poisson

point process, users’ activity as ON-OFF random process and

users’ motion as random processes. We define the energy

consumption model in which the consumed energy consists

of the additive part to communicate different information to

different users and the broadcast part to transmit the same

information to all users in the cell. We are able to provide

analytical expressions for the moments of the additive part.

We provide bounds on the distribution of the consumed energy

and we show that mobility reduces central moments and

moments of the additive part. We also show that in high

mobility regime, the variance of consumed energy reduces to

zero and we characterize the convergence rate in the function

of users’ speed. We apply the achieved results to solve two

dimensioning problems. The first one is to dimension optimal

cell radius and the second one is to dimension base station’s

battery.

The rest of the present paper is organized in the following

way. In the section II we describes the model, including the

ON-OFF model and the mobility model. In the section III

we provide analytical results for the case of motionless users.

In the section IV we analyze the case where users move. In

the section V we refine some results in the section IV to

the case where users’ speed is constant. In the section VI

we consider two applications of the model: dimensioning cell

radius and dimensioning base station’s battery. Here is the list

of mathematical notations appeared in this paper:
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Symbols Definition

R+ [0,∞)
D differential operator
P(A) probability of event A
E [X] expectation of random variable X
V [X] variance of X

mn [X] nth order moment of X

cn [X] nth order central moment of X
B(x, r) ball of radius r centered at x (in d dimension)
1{A}(x) indicator function

C [X, Y ] covariance of two random variable X, Y

Q(u) 1√
2π

∫
u

−∞ e−
x2

2 dx

Q(u) 1√
2π

∫ ∞
u

e−
x2

2 dx

g(u) (1 + u) ln(1 + u)− u

Table I
MATHEMATICAL NOTATIONS.
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Figure 1. Power consumption model.

II. SYSTEM MODEL

A. Model for energy consumption

We suppose that there is a cellular network with multiple

base stations on Rd and there is a base station located at

the origin o administering a geographical region C around

o. Practically speaking, base stations are deployed on a plane.

Hence d = 2. However for the sake of generality, we compute

the formulas for any value of d. Note that considering d = 3
can be interesting if we study the deployment of wireless

access points in a building. We assume that there exists

0 < R1 < R such that B(o,R1) ⊂ C ⊂ B(o,R) and C is

convex and compact. We define Rinf = infR{C ⊂ B(o,R)}
For a given spatial configuration of active users on Rd at an

instance, denoted by η, users located inside C will be served

by o, users outside this region will be served by another base

station (or in outage regime). The power consumed by the

battery of the base station o can be divided into two parts:

• the power dedicated to transmit, receive, decode and

encode the signal of any active user. The cumulated

power over the whole configuration is then of the form
∑

x∈η φ(x), where φ is a function to be defined later.

• the power dedicated to broadcast messages. In order to

guarantee that all active users receive these messages, the

power must be such that the farthest user in the cell is

within the reception range (if the system performs power

control) or all the cell is within reception range (if the

system does not performs power control). Thus, the power

is a function of maxx∈η∩C |x| where |x| is the Euclidean

norm of x (the power is equal to 0 if η ∩ C = ∅). This

function is constant if power control is not performed.

It follows that the total consumed power is given by:

P (η) = PA(η) + PB(η), (1)

where PA(η) =
∑

x∈η φ(x) and PB(η) = ψ(‖η‖), ‖η‖ =
maxx∈η∩C |x| if η ∩ C 6= ∅ and ‖η‖ = 0 if η ∩ C = ∅ (the

subscript A stands for "additive" and B stands for "broadcast").

For a very simple propagation model (without fading and

shadowing), the Shannon’s formula states that for a receiver

located at x, the transmission rate is given by

W log2(1 + Pel(x)),

where W is the bandwidth, Pe is the transmitted power and

l(x) is the pathloss function. Generally, the function l : Rd →
[0,∞] takes the form l(|x|) where l : [0,∞] → [0,∞] is a non

decreasing function. This implies that in order to guarantee a

minimum rate at position x, Pe must be proportional to l(x).
Thus, it is sensible to choose φ as

φ(x) = a.l(|x|)1{x∈C}

with a > 0. The function ψ is chosen as

ψ(x) =

{

b.l(|x|)1{x∈C}, if power control is performed;

b.l(Rinf ), if power control is not performed.

We can divide models for path loss into two categories:

• singular path loss model l(x) = K |x|−γ where γ is the

exponent path loss parameter and K is a positive constant.

• non-singular path loss models like l(x) = K(r0 ∨ |x|)−γ
or l(x) = K(1 + |x|−γ)−1.

More generally, we make the following assumption:

Assumption 1. The transmitted power depends only on the

distance to the base station φ(x) = φ(|x|)1{x∈C}. Further-

more, φ and ψ are continuous non decreasing function on

R+.

We denote ψ(x) = ψ(|x|)1{x∈C}. This implies that φ and

ψ are always bounded function. Apart from the above model

for power consumption, we can define a power consumption

as a general functional depending on the configuration of users

PG : ΩR
d −→ [0,∞].

If ω = (ωt, t ≥ 0) is a process of time varying configura-

tions, the total consumed energy between time 0 and time T
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is given by

JT := JT (ω, T ) =

∫ T

0

P (ωs)ds·

As previously, we also define JA and JB by:

JA := JA(ω, T ) =

∫ T

0

PA(ωs)ds

and

JB := JB(ω, T ) =

∫ T

0

PB(ωs)ds·

The same definition for JG(ω, T ) if the system applies power

consumption PG(.).
Also we denote C(r) = C ∩ B(o, r) and C(r) = C ∩

B(o, r). For a configuration ν, we denote xν the point of ν
such that |xν | = ‖ν‖ (if there are more than one point then

xnu is randomly chosen among these points).

B. Model for mobility of users

In this section, we introduce the mobility models for users.

Consider the functional space D(R+,Rd) of rcll functions

on Rd equipped with the Skorohod topology(see, for example

[6], page 369). It is well known that D(R+,Rd) is a Polish

space. The subset D0(R
+,Rd) = {f ∈ D(R+,Rd), f(0) =

o} equipped with the Skorohod topology is also a Pol-

ish space. We consider a probability distribution PM of

a random variable M = (M(t), t ∈ R+) defined on

the associated Borelian σ−field of the space D0(R
+,Rd).

Each realization of M can be represented as a rcll tra-

jectory of on Rd. Also, this probability is completely de-

termined by the distributions of finite marginal distributions

P (M(t1) ∈ ., ...,M(tn) ∈ .) (t1, ..., tn > 0). In some situa-

tion, for convenience we can assume that M(t) = o for t < 0.

M is said to satisfy the property T if P(M(t1) =M(t2)) = 0
for any 0 ≤ t1 < t2.

If mobility is considered, then each user is associated with

a mobility process on Rd. We make the following assumption:

Assumption 2.

• Motion trajectories of users are i.i.d mutually indepen-

dent and have the same distribution as that of M .

• Motion trajectories of users do not depend on the initial

position of users.

More precisely, consider a user i initially arriving at xi is

associated with an independent version of M , namely Mi and

an arrival time Ti. This user will move during its sojourn along

Mi, i.e the position of this user at time t ≥ Ti is x+Mi(t−
Ti). The random process (Mi)i∈N are mutually independent.

Examples for mobility model are as follows:

• Motionless users: M(t) = o, ∀t ∈ R.

• Brownian motion users: M(t) = c(t)Bd(t) where c(t) ∈
R is a continuous function in R+ and Bd is a standard

Brownian motion on Rd.

• Completely aimless users: M(t) = tv where the speed

of user v is random whose direction is chosen randomly

and uniformly over the d-dimensional unit sphere and |v|
is a positive random variable.

• Combination of two above models: M(t) = tv +
c(t)Bd(t).

• High mobility regime: let ǫ > 0 be a small parameter, the

high mobility regime consists of considering the mobility

process (M/ǫ)(t) = M(t)/ǫ and we want to study the

behavior of the system when ǫ→ ∞. The high mobility

regime of the completely aimless mobility model with

constant speed |v| is the same as considering |v| → ∞,

i.e when the user’s speed is very high.

C. ON-OFF model for users’ activity

An ON-OFF process on the real line alternates between

values 1 (for on state) and 0 (for OFF state). ON-periods (and

OFF-periods) are i.i.d positive random variables. Furthermore,

the sequences of ON-periods and OFF-periods are indepen-

dent. Each realization of an ON-OFF source is a rcll function.

An ON-OFF process is called exponential if ON-periods and

OFF-periods are exponential distributed.

More precisely, we consider an ON-OFF sources (I(t), t ∈
R) such that the ON-periods are continuous positive random

variable of mean µ−1
1 > 0 and the OFF-periods are continuous

positive random variable of mean µ−1
0 > 0 and denote by U

and V the generic ON-period and OFF-period. We can write:

I(t) =
∞
∑

i=−∞
1{T2i≤t<T2i+1}.

where ... < T3 < T2 < T−1 < T0 < T1 < T2 < T3 < ... such

that (T2i−T2i−1)
∞
i=−∞ are i.i.d and have the same distribution

as V , and (T2i+1 − T2i)
∞
i=−∞ are i.i.d and have the same

distribution as U . We can assume that T0 ∨ T1 ≥ 0. I can

be seen as a random variable on D(R,R) with probability

measure dPI . We assume that I is stationary. From [7] for

example, we have P(I(t) = 1) = µ0

µ0+µ1
, π1 and P(I(t) =

0) = µ1

µ0+µ1
, π0 for all t. Furthermore, we have

P (I(t) = 1∀t ∈ [0, u)) =
π1

E [U ]

∫ ∞

u

P (U > s) d s.

for all u > 0.

We make the following assumptions:

Assumption 3. The positions of users at t = 0 follow a

Poisson point process N = {Xi}i≥1 of intensity measure

λ dx. User i is associated with an ON-OFF process of activity

(Ii(t), t ∈ R),i.e users are active during their ON-periods and

are inactive during their OFF-periods. The activity processes

of users are assumed to be i.i.d and have the same distribution

as that of (I(t), t ≥ 0).

Following the above assumptions, the configuration of active

users at time t is

ωMt =
∑

i≥1

1{Ii(t)=1}δXi+Mi(t)·
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The system can be described by a Poisson point process on

Rd ×D(R,R)×D(R+,Rd)

ΦI,M = {(Xi, Ii,Mi)}i≥1·
of intensity λ dx × dPI × dPM . The consumed energy is

defined in the same way as in the previous subsection for the

time varying configuration process ωM = (ωM (t), t ≥ 0).
In particular, the additive part of consumed energy can be

rewritten as:

JA(ω
M , T ) =

∑

i≥1

∫ T

0

Ii(t)φ(Xi +Mi(t)) d t

and the broadcast part is:

JB(ω
M , T ) =

∫ T

0

ψ(
∥

∥ωMt
∥

∥) d t·

The total consumed energy is JT (ω
M , T ) = JA(ω

M , T ) +
JB(ω

M , T ).
When users are motionless, i.e Mi(t) = o, the system is

described as a Poisson point process

ΦI = {(Xi, Ii)}i≥1·
of intensity measure λ dx× dPI . In this case, we drop the

superscript. Thus, the configuration of users at time t is:

ωt =

n
∑

i=1

1{Ii(t)=0}δXi ·

The additive part of consumed energy is

JA(ω, T ) =
∑

i≥1

φ(Xi)

∫ T

0

Ii(t) d t

and the broadcast part is:

JB(ω, T ) =

∫ T

0

ψ(
∥

∥ωMt
∥

∥) d t·

The total consumed energy in this case is JT (ω, T ) =
JA(ω, T ) + JB(ω, T ). In the next two sections we present

analytical results on the motionless case and the general case.

III. MOTIONLESS CASE

In this section, we assume that users are motion-

less. We derive analytical expressions for the moments of

JA(ω, T ), JB(ω, T ), JT (ω, T ) in this case. Let G(h) =
∫

Rd h(x) dx for h : Rd → R.

Theorem 1. The moments of JA(ω, T ) and the central mo-

ments of JA(ω, T ) are given by:

mn [JA(ω, T )] =

Bn (λm1 [A(T )]G(φ), ..., λmn [A(T )]G(φ
n)) ,

and

cn [JA(ω, T )] =

Bn
(

0, λm2 [A(T )]G(φ
2), ..., λmn [A(T )]G(φ

n)
)

·

In particular, the expectation of JA(ω, T ) is given as:

E [JA(ω, T )] = λπ1

∫

Rd

φ(x) dx. (2)

Proof: The theorem is derived from theorem 13, see more

in details in [8] (section 7.3, theorem 31).

We see that, from the above theorem, the expectation of

JA(ω, T ) depends on the distribution of ON-periods and OFF-

periods only by the activity rate µ0/µ1.

Applying theorem 14, an error bound for Gaussian approx-

imation of JA(ω, T ) is found as follows:

Theorem 2. Let JA(ω, T ) =
JA(ω,T )−E[JA(ω,T )]

V[JA(ω,T )] then for any

u we have:

∣

∣P
(

JA(ω, T ) > u
)

−Q(u)
∣

∣ ≤ m3 [A(T )]G(φ
3)

√
λ (m2 [A(T )]G(φ2))

3
2

·

The above bound decays as Θ
(

1√
λ

)

as λ→ ∞. As shown

in Lemma 20, T 2 ≥ m2 [A(T )] ≥ π2
1T

2 and m3 [A(T )] ≤
T 3, so the bound decays as O(1) as T → ∞. We obtain a less

sharp bound but depending only on the activity rate π1 but not

on the distribution of ON-periods and OFF-periods and on T :

∣

∣P
(

JA(ω, T ) > u
)

−Q(u)
∣

∣ ≤
∫

Rd φ
3(x) dx

π3
1

√
λ
(∫

Rd φ2(x) dx
)

3
2

·

As already noted in the case of exponential ON-OFF source,

when T goes to infinity, m2 [A(T )] ∼ π2
1T

2 and m3 [A(T )] ∼
π3
1T

3. Consequently, in this case the bound has the following

limit when T → ∞:
∫

Rd φ
3(x) dx

√
π1λ

(∫

Rd φ2(x) dx
)

3
2

.

Theorem 3. The joint distribution of (‖ωt1‖ , ..., ‖ωtn‖) is

given by:

F(‖ωt1‖,...,‖ωtn‖)(u1, ..., un) =
n
∑

i=1

(−1)i−1
∑

1≤k1<...<ki≤n

e−π1,1,...,1(tk1 ,...,tki )Λ(C(max{uk1
,...,uki

}))·
In particular,

F‖ωt‖(u) = e−π1Λ(C(u))· (3)

The nth order moment of JB(ω, T ) are given by:

mn [JB(ω, T )] =

∫

[0,T )n
d t1... d tn

∫

(R+)n
ψ(u1)...ψ(un)

dF(‖ωt1‖,...,‖ωtn‖)(u1, ..., un)·

Proof: See [8] (section 7.3, theorem 33).

We have obtained closed form formulas for V [JB(ω, T )]
and V [JT (ω, T )], however it requires to solve triple integrals.

We now present bounds for V [JB(ω, T )] and V [JT (ω, T )],
which requires only one easily computed integral.

Theorem 4. We have:

V [JB(ω, T )] ≤ λm2 [A(T )]G(ψ
2), (4)
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and

λm2 [A(T )]G(φ
2) ≤ V [JT (ω, T )] ≤ λm2 [A(T )]G((φ + ψ)2).

Proof: The theorem is derived from theorem 16 and

theorem 17, see [8] (section 7.3, theorem 35).

The following theorem gives an upper bound on the distri-

bution of JT (ω, T ):

Theorem 5. Assume that φ(x) + ψ(x) ≤ K for all x ∈ Rd,

let

α2 = m2 [A(T )]

∫

Rd

(ψ(x) + φ(x))
2
dx

then

P (JT (ω, T ) > E [JT (ω, T )] + u) ≤

exp

{

−T
2K2

λ2α2
g

(

uTK

λ2α2

)}

for all u > 0.

Proof: The theorem is derived from theorem 18, see also

[8] (section 7.3, theorem 36).

IV. IMPACT OF MOBILITY

We have, by the lemma 19, when users move, the spatial

distribution of users remain the same as without mobility.

Following the previous lemma, we can prove that in both

cases with and without mobility, the consumed energy has the

same expectation, which is somewhat surprising.

Theorem 6. For any power allocation policy PG, and for any

mobility model M , the expectation of energy consumed is the

same as in motionless case, i.e:

E
[

JG(ω
M , T )

]

= E [JG(ω, T )] ·

In particular E
[

JA(ω
M , T )

]

= E [JA(ω, T )],
E
[

JB(ω
M , T )

]

= E [JB(ω, T )] and E
[

JT (ω
M , T )

]

=
E [JT (ω, T )].

Proof: See [8] (section 7.4, theorem 38).

The distribution of consumed energy in the mobility case is

clearly not the same as in the motionless case. Let

̥
M
n (f, T ) =

∫

Rd

E

[(

∫ T

0

f(x+M(t))I(t) d t

)n]

dx.

In the following theorem, we characterize the impact of

mobility on the distribution of the additive part of consumed

energy:

Theorem 7. The moments of JA(ω
M , T ) are given by

mn

[

JA(ω
M , T )

]

=

Bn(λ̥
M
φ (T, 1), λ̥Mφ (T, 2), ..., λ̥Mφ (T, n))

and

cn

[

JA(ω
M , T )

]

= Bn(0, λ̥
M
φ (T, 2), ..., λ̥Mφ (T, n))

Mobility reduces moments of JA; i.e

mn

[

JA(ω
M , T )

]

≤ mn [JA(ω, T )]

and

cn

[

JA(ω
M , T )

]

≤ cn [JA(ω, T )] .

Furthermore, JA(ω
M , T ) is Laplace-smaller than JA(ω, T ),

i.e:

E
[

exp
{

αJA(ω
M , T )

}]

≤ E [exp {αJA(ω, T )}] (5)

for all α ∈ R. If M has the property T then the central

moments of JA goes to 0 in high mobility regime; i.e

cn

[

JA(ω
M/ǫ, T )

]

→ 0,

mn

[

JA(ω
M/ǫ, T )

]

→
(

π1λ

∫

Rd

φ(x) dx

)n

= (E [JA(ω, T )])
n

as ǫ→ 0·.
Proof: The expressions for the moments and central mo-

ments come from theorem 13. The Laplace-smaller property is

proved by the fact that eαu is a convex function for all α ∈ R.

The moments reducing property and the convergence to 0 is

derived thanks to lemma 22. For more details, see [8] (section

7.3, theorem 41).

The following theorem gives impact of high mobility on the

distribution of JB(ω
M , T ) and JT (ω

M , T ):

Theorem 8. The variance of JB(ω
M , T ) and JT (ω

M , T ) are

bounded as follows:

V
[

JB(ω
M , T )

]

≤ λ̥Mψ (T, 2)

λ̥Mφ (T, 2) ≤ V
[

JT (ω
M , T )

]

≤ λ̥Mφ+ψ(T, 2)·
Therefore, if M has the property T then in high mobility

regime, the variance of JB and JT tends to 0, i.e

V

[

JB(ω
M/ǫ, T )

]

,V
[

JT (ω
M/ǫ, T )

]

→ 0 as ǫ→ 0·

Proof: The theorem is proved thanks to theorem 17 and

lemma 22. See also [8] (section 7.4, theorem 42).

The above results say that, when users move the total

consumed energy by a base station does not change in average,

and the moments and central moments of the additive part are

reduced. Moreover, when users move very fast, the consumed

energy during a time period is almost constant. We can see

this fact as a consequence of weak central limit theorem.

When users move faster, the configuration of users takes more

"value" on ΩR
d

during a same period of time, thus converge

faster to the mean.

We find an error bound for Gaussian approximation of

JA(ω
M , T ) as follows:

Theorem 9. Let JA(ω
M , T ) =

JA(ωM ,T )−E[JA(ωM ,T )]
V[JA(ωM ,T )] then:

∣

∣P
(

JA(ω
M , T ) > u

)

−Q(u)
∣

∣ ≤
̥Mφ (T, 2)

√
λ
(

̥Mφ (T, 3)
)3/2
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Proof: This is a consequence of theorem 14. See also [8]

(section 7.4, theorem 43).

Theorem 10. Assume that φ(x) + ψ(x) ≤ K for all x ∈ Rd,

then

P
(

JT (ω
M , T ) > E

[

JT (ω
M , T )

]

+ u
)

≤

exp

{

− T 2K2

λ̥Mφ+ψ(T, 2)
g

(

uTK

̥Mφ+ψ(T, 2)

)}

for all u > 0.

Proof: This is a consequence of theorem 18. See also [8]

(section 7.4, theorem 43).

V. COMPLETELY AIMLESS MOBILITY MODEL

In this section, we consider the completely aimless mobility

model M with constant speed, i.e M(t) = tv where |v| =
constant and the direction of v is uniformly distributed. The

following theorem characterizes explicitly the convergent rate

to 0 of central moments of JA, as well as the variance of JB
and JT in function of user speed |v|.
Theorem 11. Consider the completely aimless mobility model

M(t) = vt with constant speed |v| then

1) V
[

JA(ω
M , T )

]

and V
[

JT (ω
M , T )

]

decay as Θ( 1
|v| ) as

|v| → ∞ and decay as O(T ) as T → ∞ . The coefficient

of variations CV (JA(ω
M , T )) and CV (JT (ω

M , T )) de-

cay as Θ( 1√
|v|

) as |v| → ∞ and Θ( 1√
T
) as T → ∞.

2) The error bound of Gaussian approximation in Theorem

9 decays as Θ(|v|2) as |v| → ∞ and decays as Θ( 1√
T
)

as T → ∞.

Proof: From the assumption 1 we have φ(x) ≤ c1 for all

x ∈ C, φ(x) ≥ c2 for all x ∈ C/B(o, R1

4 ) and 0 ≤ ψ(x) ≤ c3
for all x ∈ C for some finite positive constants c1, c2, c3. Now,

according to Theorem 8:

λ̥Mφ (T, n) = V
[

JA(ω
M , T )

]

≤ V
[

JT (ω
M , T )

]

≤ λ̥Mφ+ψ(T, n).

The results then follows from Lemma 23.

We also see that, if |v| is small, the variance of JT (ω
M , T )

is proportional to T
|v| while in the motionless case, it is

Θ(T 2). We also notice that mobility makes the Gaussian

approximation of JA more accurate when T is large as the

bound decays as Θ( 1√
T
) instead of Θ(1) in the motionless

case. In the motionless case the position of users are always

fixed over time, only their state change, thus the configuration

of active users can take only some possible values on ΩR
d

.

So it is intuitive that one cannot guarantee that the Gaussian

approximation is good if T is large. On the contrary, in the

mobility case, the configuration of active users can take all

possible values on ΩR
d

. When T grows larger, it take more

values. Thus, Gaussian approximation is better when T grows

larger. Quite surprisingly, when |v| is large, the variance of

JA tends to 0 but the bound on Gaussian approximation does

not decrease.

Remark 1. From the above proof and using the properties

of Bell polynomial, we can prove that c3

[

JA(ω
M , T )

]

=
Θ( 1

|v|2 ), c4

[

JA(ω
M , T )

]

= Θ( 1
|v|2 ), c5

[

JA(ω
M , T )

]

=

Θ( 1
|v|3 ),...

VI. APPLICATIONS

A. Dimensioning optimal cell size

Consider an operator aiming to design the optimal cell

radius R to cover a region of total area (volume) S ∈ Rd.

We assume that the cells are circular. The average total cost

of the network is assumed to be the sum of the operation

cost during the life time of the network (says T ) and the

cost of facilities (base stations). We assume a fixed cost of

base station regardless of its transmission range. The number

of base station is then proportional to S
Rd , say C

Rd , so the

installation cost of base stations is c1
Rd with c1 > 0. The

operation cost is assumed to be proportional to the consumed

energy.

We assume that l(x) = K. |x|γ , φ(x) = a.l(x)1{x∈C},

ψ(x) = b.l(R) with K > 0 and furthermore γ ≥ d. From

results presented in previous sections and from lemma 24,

the expectations of the two parties of energy consumed by

a singe base station are E [JA(ω, T )] = λTa
′

Rγ+d and

E [JB(ω, T )] = Tb
′

Rγ with a
′

, b
′ ≥ 0. The energy consumed

by the network during its operating time is:

C

Rd
(

a′λTRd+γ + b′TRγ
)

= a1λTR
γ + b1TR

γ−d.

This is a increasing function of R, which means that small

cell systems will consume less energy than larger cell system.

The average total cost for the network is then

Cost(R) = a1λTR
γ + b1TR

γ−d +
c1
Rd

·

It is interesting for operator to find the optimal R in order to

minimize the cost function. As Cost(R) > 0 for all R > 0
and limR→0 Cost(R) = limR→∞ Cost(R) = ∞ there exists

a minimum for Cost. By differentiation, the optimal cell radius

is the unique positive solution of the following equation:

a1λγTR
γ+d
opt + b1T (γ − d)Rγopt = dc1

As the RHS is increasing in T , the optimal cell radius

Ropt must be a decreasing function of T . This reveals a

characteristic of the optimal choice of cell radius. In the

economical point of view, to operate a network with longer

life time it is preferable to exploit smaller cells system.

If b1 = 0, i.e the broadcast part of transmitted power is small

comparing to the additive part, then the problem reduces to

minimizing a1λTR
γ + c1

Rd . Simple manipulations yields:

Ropt =

(

dc1
γλa1T

)
1

γ+d

·

That is to say theoretically the optimal cell radius is propor-

tional to (λT )−
1

γ+d .
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B. Dimensioning cell battery

The proposed model can be used to dimension sites that do

not have access to power supply facilities. In this situation,

operators have to replace or reload base station’s battery for

each period T . We want to determine the energy level α of

battery so that the probability of running out of energy before

replacement(or reloading) be smaller than some threefold ǫ≪
1. We use results derived in the previous sections to find α.

Assume the mobility model M and that we are able to

estimate ̥Mφ (T, 2) and ̥Mφ+ψ(T, n). The problem is to find

α such that:

P
(

JA(ω
M , T ) > α

)

< ǫ.

From theorem 10, we deduce that the following value is a

solution:

α1 = Tπ1 +
u1̥

M
φ+ψ(T, 2)

TK

where u1 > 0 is the unique solution of the following equation:

g(u1) = −
λ̥Mφ+ψ(T, 2) ln ǫ

T 2K2
.

Now applying theorem 9, we can find another solution.

Assume that ψ(x) ≤ KB for all x ∈ C and

̥Mφ (T, 2)

√
λ
(

̥Mφ (T, 3)
)3/2

< ǫ

then JT (ω
M , T ) ≤ JA(ω

M , T ) +KBT and:

P
(

JT (ω
M , T ) > α

)

≤ P
(

JA(ω
M , T ) > α−KBT

)

.

Therefore, the following value is another solution:

α2 = λG(φ) + u2

√

λ̥Mφ (T, 2) +KBT

where u2 is the unique positive number such that:

Q(u2) = ǫ−
̥Mφ (T, 2)

√
λ
(

̥Mφ (T, 3)
)3/2

.

VII. CONCLUSION

Throughout this paper, we have presented a new analysis

of the energy consumed by a single base station in a cellular

network. we have assumed that each user is associated with

an ON-OFF process of activity. We have derived analytical

expressions for the distribution of energy consumed by a base

station. We have found that, with or without mobility, the base

station is expected to consume the same amount of energy in

average. We have proved that mobility reduced moments of

the additive part of energy. We have also proved that high

mobility leads the variance of energy to 0. These results are

strong since they hold for any mobility model. In the case

of completely aimless mobility model, we have characterized

the convergence rate to 0 of the variance, which is 1
|v| . The

mathematical framework presented in this paper is new and

can be served to further studies.
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APPENDIX

POISSON POINT PROCESS

Let E be a σ−compact metric space (i.e E can be parti-

tioned into a countable union of compact metric spaces) with

a diffuse Radon measure ν. The space of configurations of E
is the set of locally finite simple point measures

ΩE :=
{

w =
∑

ǫzi(at most countable), zi ∈ E
}

,

where ǫz denotes the Dirac measure at z ∈ E, i.e

δz(A) = 1{z∈A}, A ∈ B(E)·

Here, simple measure means that w({z}) ≤ 1 and locally finite

measure means that w(K) <∞ for all compact K ⊂ E. The

configuration space ΩE is endowed with the vague topology

and its associated σ-algebra denoted by FE .

For convenience, it is quite often to identify an element

w =
∑

ǫzi with its corresponding support, i.e the unordered

set {z1, ..., zn}, n ∈ N ∪ {+∞}. Also, w(A) counts the

number of points in A ∈ B(E). The distribution of point

process w is characterized by the family of finite dimensional

distributions (w(A1), ..., w(An)) where A1, ..., An are mutu-

ally disjoint compact subsets of E.
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Definition 1. w is a Poisson point process (PPP) of intensity ν
if for all set (A1, ..., An) of mutually disjoint compact subsets

of E:

P(w(A1) = k1, ..., w(An) = kn) =

n
∏

i=1

(

e−ν(Ai)
(ν(Ai))

ki

ki!

)

·

If E = Rd; B is Borel algebra of Rd and ν( d z) = λ d z,

we will call w the homogenous Poisson point process with

intensity parameter λ on Rd.

Roughly speaking, the number of points of w falling into

a subset A follows Poisson distribution of parameter ν(A),
and the number of points falling into 2 disjoint subsets are

independent.

LINEAR FUNCTIONAL

We call F a linear functional of w if there exists f : E → R

such that

F =

∫

E

f(z) dw(z) =
∑

z∈w
f(z)·

We assume that f ∈ L1(ν). In this section we are interested

in the distribution of F .

Let Lw(.) be the Laplace functional of w, i.e:

Lw(u) = E

[

e−
∫
E
u(z) dw(z)

]

(6)

Theorem 12. ([9]) The Laplace functional of w satisfies:

Lw(u) = e−
∫
E
(1−e−u(z)) d ν(z), u ∈ L1(ν)· (7)

From the above theorem the moment generating function

(MGF) of F is expressed as follows:

E

[

e
∫
E
f dw

]

= e
∫
E
(ef(z)−1) d ν(z)· (8)

The complete Bell polynomials Bn(a1, ..., an) are defined

as follows:

exp

{ ∞
∑

n=1

an
n!
θn

}

=
∞
∑

n=1

Bn(a1, a2, ..., an)

n!
θn

for all a1, ..., an and θ such that all above terms are correctly

defined.

The first four Bell complete polynomials are given as:

B1(a1) = a1

B2(a1, a2) = a21 + a2

B3(a1, a2, a3) = a31 + 3a1a2 + a3

B4(a1, a2, a3, a4) = a41 + 4a21a2 + 4a1a3 + 3a22 + a4

The Bell polynomials helps us to express central moments and

moments of F in a simple fashion:

Theorem 13 (Generalization of Campbell’s formulas). As-

sume that f ∈ ∩ni=1L
i(E, ν). The cumulants of F =

∫

E
f dw

is κFi =
∫

E f
i(z) d ν(z) (i = 1..n). The moments and central

moments of F are given as:

mi [F ] =

Bi

(
∫

E

f(z) d ν(z),

∫

E

f2(z) d ν(z), ...,

∫

E

f i(z) d ν(z)

)

(9)

and

ci [F ] = Bi

(

0,

∫

E

f2(z) d ν(z), ...,

∫

E

f i(z) d ν(z)

)

(10)

for i = 1, 2, ..., n.

Proof: [8].

As a direct consequence, one can easily obtain from the

above theorem two useful formulas (Campbell):

Corollary 1. Let F =
∫

E
f dw then

E [F ] =

∫

E

f(z) d ν(z), f ∈ L1(ν)

V [F ] = E
[

(F −E [F ])2
]

=

∫

E

f2(z) d ν(z), f ∈ L2(ν)·

We have now expressions for moments and central moments

of F . We note that the central moments of F is always non

negative as f is supposed to be non negative. One can ask if

there is mean to compute the tail distribution of F . Gaussian

approximation seems to be a first answer one can think of

due to the central limit theorem (CLT). An error bound of

Gaussian approximation for sum of n i.i.d random variables

is known as BerryEsseen theorem. It is possible to find an

alternative version of this error bound for linear functional

of PPP. Let Q(a) = 1√
2π

∫ a

−∞ e−u
2/2 du be the CDF of a

standard Gaussian random variable and Q be its CCDF.

Theorem 14. ([10], [8]) Consider F =
∫

E f dw with f ∈
L2(ν). Let F = F−E[F ]

V[F ] , then:

∣

∣P(F ≤ a)−Q(a)
∣

∣ ≤
∫

E
|f(z)|3 d ν(z)

(
∫

E f
2(z) d ν(z))3/2

· (11)

We have presented the Gaussian approximation and Edge-

worth expansions for linear functionals. We are now interested

in upper bounds on the distribution of F , which can be called

concentration inequality.

Theorem 15. ([11], [8]) Let M,a > 0.

Assume that |f(z)| ≤M ν−a.s and f ∈ L2(E, ν), then

P(F > E [F ] + a) ≤ exp

{

−V [F ]

M2
g

(

a.M

V [F ]

)}

(12)

GENERAL FUNCTIONAL

We now consider a general class of functional L2(ΩE ,P)
(not necessarily linear). Define the difference operator D as

follows:

DzF (w) = F (w + ǫz)− F (w), dP× d ν a.e.·
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for F ∈ L2(ΩE ,P), w ∈ ΩE and z ∈ E. Note that if F =
∫

E
f(z) d z then DzF (w) = f(z).

Using the difference operator D, we can bound the variance

of a functional F as follows:

Theorem 16. ([9], [11]) ∀F ∈ L2(ΩE ,P) we have:

V [F ] ≤ E

[
∫

E

|DzF |2 d z

]

· (13)

Equality occurs if and only if F is linear.

Corollary 2. ∀F ∈ L2(ΩE ,P) such that |DzF | ≤ f(z) for

some non negative measurable function f : E → R for all

z, w then:

V [F ] ≤
∫

E

f2(z) d ν(z)· (14)

Theorem 17. ([9],[12]) Consider two functionals

F1, F2 ∈ L2(ΩE ,P) (not necessarily linear). Assume

that DzF1, DzF2 ≥ 0, P× ν a.s. then

C [F1, F2] ≥ 0.

As a consequence, V [F1 + F2] ≥ V [F1] +V [F2].

Recent results concerning Edgeworth’s expansion for func-

tionals depending on Poisson point processes can be found in

[13] and [8].

Theorem 18. [11], Let F ∈ domD. Assume that |DF | ≤
M , P × ν a.s., for some M ≥ 0 and

∫

E
|DzF |2 d ν(z) ≤

α2,P−a.s. Then for all u > 0 we have

P(F −E [F ] ≥ u) ≤ exp

{

− α2

M2
g

(

u.M

α2

)}

(15)

for M > 0 and

P(F −E [F ] ≥ a) ≤ exp

{

− α2

2u2

}

(16)

for M = 0 where g(t) = (1 + t) ln(1 + t)− t.

LEMMAS

Lemma 19. ωMt is a Poisson point process of intensity

measure π1λ dx for all t.

Proof: Consider the point process
∑

i≥1 δXi+Mi(t). By

the displacement theorem ([14]), it is a Poisson point process

of intensity measure dΛt(x) characterized by:

Λt(A) = λ

∫

Rd

P(x +M(t) ∈ A) dx

= λ

∫

Rd

dx

∫

Rd

pM(t)(y)1{x+y∈A} d y

= λ

∫

Rd

pM(t)(y) d y

∫

Rd

1{x+y∈A} dx

= λld(A).

Thus, it is a Poisson point process of intensity λ dx. Now

by thinning property, ωMt =
∑

i≥1 1{Ii(t)=1}δXi+Mi(t) is a

Poisson point process of intensity π1λ dx.

Lemma 20. We have, for all T

πn1 T
n ≤ mn [A(T )] ≤ T n.

Proof: Since A(T ) ≤ T a.s. we have mn [A(T )] ≤
T n. Now mn [A(T )] ≥ (E [A(T )])

n
= πn1 T

n by

Cauchy−Schwarz inequality.

For a non negative function f ∈ Ln(Rd) and t1, ..., tn ∈ R

and f(x) = 0 if x ∈ Rd/C. Define

ΦMn (f, t1, ..., tn) =

∫

Rd

E [f(x+M(t1))...f(x +M(tn))] dx.

Lemma 21. We have ΦMn (f, t) =
∫

Rd f(x) dx and:

ΦMn (f, t1, ..., tn) ≤
∫

Rd

fn(x) dx·

Moreover, if M has the property T and n ≥ 2 then

φ
M/ǫ
n (f, t1, ..., tn) → 0 as ǫ→ 0 with n ≥ 2.

Proof: See [8] (section 7.4, lemma 39).

Lemma 22. We have:

̥
M
n (f, T ) ≤ mn [A(T )]

∫

Rd

fn(x) dx·

If M has the property T then ̥
M/ǫ
f (T, n) → 0 as ǫ→ 0 for

n ≥ 2.

Proof: See [8] (section 7.4, lemma 40).

Lemma 23. Let f(x) be a positive measurable function on Rd

such that f(x) = 0 for x ∈ Rd/C, f(x) ≤ c1 for all x ∈ C
and f(x) ≥ c2 for all x ∈ C/B(o, R1

4 ) where c1, c2 > 0 are

constant then

̥
M
n (f, T ) = Θ

(

1

|v|n−1

)

, |v| → ∞

and ̥Mn (f, T ) = Θ(T ), T → ∞ for n ≥ 2.

Proof: See [8] (section 7.4, lemma 45).

Lemma 24. Denote Vd = πd/2

Γ( d
2+1)

the volume of a ball of

radius 1 in Rd, and V
′

d = dVd then

∫

B(o,R)

|x|k dx = V
′

d

Rk+d

k + d

for all real k > −d.

Proof: We have:
∫

B(o,R)

|x|k dx =

∫ R

0

rk d
(

Vdr
k
)

=

∫ R

0

V
′

dr
k+d−1 d r

= V
′

d

Rk+d

k + d
·


