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Abstract—In this paper we present a new analysis of energy
consumption in cellular networks. We focus on the distribution of
energy consumed by a base station for one isolated cell. We first
define the energy consumption model in which the consumed
energy is divided into two parts: The additive part and the
broadcast part. The broadcast part is the part of energy which
is oblivious of the number of mobile stations but depends on
the farthest terminal, for instance, the energy effort necessary
to maintain the beacon signal. The additive part is due to the
communication power which depends on both the positions,
mobility and activity of all the users. We evaluate by closed form
expressions the mean and variance of the consumed energy. Our
analytic evaluation is based on the hypothesis that mobiles are
distributed according to a Poisson point process. We show that
the two parts of energy are of the same order of magnitude and
that substantial gain can be obtained by power control. We then
consider the impact of mobility on the energy consumption. We
apply our model to two case studies: The first one is to optimize
the cell radius from the energetic point of view, the second one
is to dimension the battery of a base station in sites that do not
have access to permanent power supply.

I. INTRODUCTION

According to the GSM Association, more than 80% of

a typical mobile network operator’s energy requirements are

associated with operating the network. The typical annual CO2

emissions per average GSM subscriber is now about 25kg CO2,

which equates to the same emissions created by driving an

average European car on the motorway for around one hour.

However, the mobile industry continues to look for ways to

reduce energy needs. Air conditioning is being replaced by

fans or passive air flows whenever possible. Several programs

are aiming to deploy solar, wind, or sustainable bio fuels

technologies to 118,000 new and existing off-grid base sta-

tions in developing countries by 2012. Network optimization

upgrades currently can reduce energy consumption by 44% and

solar-powered base stations could reduce carbon emissions by

80%. Optimization of the physical network through improved

planning and the spectrum allocations for mobile broadband

can also contribute to significant energy savings.

As a consequence of the previous statements, it appears

clearly that energy consumption must be taken into consid-

eration at the very beginning of the conception of cellular

networks. For the development of cellular communications in

emerging countries, it is necessary to be as energy conservative

as possible by using the least possible number of base stations

for a given quality of service. As the size of a cell covered by a

given base station depends essentially on the emitting power of

its antenna, the smaller the size of a cell, the less the consumed

energy. However, when base stations cover a small region,

many of them are necessary to cover a given region. There

is thus a trade-off between the number and the coverage of

each base stations. In order to fix the optimal radius of a cell,

one must have quantitative models of the energy consumed at

a base station in terms of positions, locations and traffic of

the terminals. Furthermore, if we think about the deployment

of base stations in low populated regions without power

supply, base stations should be energetically autonomous, thus

powered by a battery, be it solar or chemical. The energy

consumed in such a situation is thus a key parameter in the

building of a cellular network. These are the two questions we

aim to answer in the following considerations.

Several measurement based analysis pointed out the dif-

ferent aspects in energy consumption (see [1], [2], [3], [4]

and references therein). In [5], some models are proposed

for the activity of a single terminal and the resulting energy

consumption. In [6], [7], the choice of the cluster heads in

Ad-Hoc networks integrates energy consumption consideration

and take into account the geometry of the terminals by consid-

ering the proximity graph. In [8], energy saving motivates to

use network coding in ad-hoc networks. As a conclusion, there

are many investigations about how to save energy but no model

seems to emerge in order to evaluate quantitatively the energy

consumption. There is however one notable exception which is

the paper [9]. In that work, a stochastic geometry based model

for energy consumption in a cellular network is considered.

It assumes that mobiles are connected to their closest base

stations and introduces an energy consumption model based

on the distance between base stations and mobiles, taking

into account interference due to the presence of several base

stations. We go further in this direction by considering a

refined model for the energy consumption in an isolated cell,

as it includes the energy devoted to broadcast messages (like

the beacon signal) and takes into account both traffic activity

and users mobility. Moreover, instead of relying on simulation

results, we give as much as possible closed form formulas

for different statistics of the energy consumption. This leads

to qualitative results showing the importance of the path-loss

exponent (see below for its definition).

This paper is organized as follows: In Section II, we rec-

ollect basic and advanced facts about Poisson point processes

in general spaces. We then present the system model based

on a Poisson point process including not only the positions

but also the traffic activity and the mobility pattern of each

user. In Section IV, we first evaluate the consumed energy for
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motionless users. We show, in Section V, that mobility does

not change the mean value but decreases the variance of the

consumed energy. Thus, as far as dimensioning is concerned,

it is conservative to consider that users do not move. We

apply these considerations in Section VI to two case studies:

Finding the optimal radius of a cell under energy constraints

and estimating the power of a battery to maintain a functioning

network during a given time.

II. A PRIMER ON POISSON POINT PROCESS

A Poisson process N on the real line admits a usual

description based on a sequence (Sn, n ≥ 1) of independent

exponentially distributed random variables. Denote by λ the

parameter of S1. The atoms of a Poisson process are the

sequence (Tn = S1 + . . . + Sn, n ≥ 1). Then, one can

prove [12] that the number of points in a domain of Lebesgue

measure l is a Poisson random variable of parameter λl.
Moreover, given N(D) = n, i.e. given the number of points

in D is equal to n, the atoms of N are independently and

uniformly distributed over D. This explains the definition of

a Poisson process in any dimension.

Definition 1. πµ a measure on the set configuration on E =
Rd, is a Poisson point process (PPP) of intensity ν if for all

sets (C1, · · · , Cn) of mutually disjoint compact subsets of E:

P(N(C1) = k1, · · · , N(Cn) = kn)

=

n
∏

i=1

(

e−ν(Ci)
(ν(Ci))

ki

ki!

)

. (1)

If ν( d z) = λ d z, πν is called the homogeneous Poisson point

process with intensity parameter λ on Rd.

Actually, words for words, this definition does not need that

E is an Rd-like space. For the mathematical details to work,

it is sufficient to have E a metric space with some weak

topological properties. It is a useful point of view since it

is often interesting to add some information to the location

of users when these are represented by the realization of

Poisson point process. For instance, one may want to add to

the position of a customer, the fading and/or the shadowing

he is experiencing, his traffic rate, etc. In the simplest case,

all these characteristics should be independent from one user

to the other and identically distributed. We then say that they

are marks of the Poisson process. Under the above mentioned

hypothesis of independence and identity in distribution, the

process whose particles are couples (x, v) is still a Poisson

process on the product space Rd×V where V is the space in

which the marks “live”. The intensity measure of this process

is the product of λ dx times the probability distribution of

the marks, denoted by dV(v). Many quantities we are longing

to compute are expressible as a sum over the points of a

realization of a deterministic function:

F =
∑

x∈η

f(x,m)

where η is a realization of πµ. The calculations of the

different moments of such a functional turn to be known and

resort to the Bell polynomials. The complete Bell polynomials

Bn(a1, ..., an) are defined as follows:

exp

{

∞
∑

n=1

an
n!
θn

}

=

∞
∑

n=1

Bn(a1, a2, ..., an)

n!
θn

for all a1, ..., an and θ such that all above terms are correctly

defined. The first four Bell complete polynomials are given

as:

B1(a1) = a1

B2(a1, a2) = a21 + a2

B3(a1, a2, a3) = a31 + 3a1a2 + a3

B4(a1, a2, a3, a4) = a41 + 4a21a2 + 4a1a3 + 3a22 + a4

Theorem 1 (Generalized Campbell’s formula). Let

νλ( dx, d v) = λ dx ⊗ dV(v) and n be an integer

and assume that f ∈ Lp(E, νλ) for p ≥ n. The moments of

F are given by:

E [Fn] = Bn

(
∫

E

f(z) d νλ(z), · · · ,
∫

E

fn(z) d νλ(z)

)

where z = (x, v).

Poisson point processes enjoy a lot of useful properties

for thinning, superposition and displacement which roughly

say that whatever one of these transformations we apply to a

Poisson point process, the resulting process is still a Poisson

point process with a tractable intensity measure (see [10] for

complete references). In the forthcoming computations, we

need a more recently established property. From [13], [14],

we have the following theorem.

Theorem 2. Let νλ( dx, d v) = λ dx ⊗ dV(v) and πνλ be

a Poisson process of intensity measure νλ. For some function

f sufficiently integrable, let F (η) =
∑

x∈η f(x, v) and

F̃ (η) =
F (η) −

∫

f(x, v)νλ( dx, d v)
(∫

f(x, v)2νλ( dx, d v)
)1/2

·

For any p ≥ 1, let

m(p, λ) = (

∫

C

f2(x, v)νλ(dx, d v))
−p/2

× (

∫

C

|f(x, v)|pνλ( dx, d v).

Let µ be the standard Gaussian measure on R and µ3, the

measure given by

dµ3(x) = (1 +
1

6
m(3, λ)H3(x)) dµ(x),

where H3(x) = 8x3 − 12x is the third Hermite polynomial.

Then,

sup
‖ψ‖

C3

b

≤1

∣

∣

∣

∣

E

[

ψ(F̃ )
]

−
∫

R

ψ dµ3

∣

∣

∣

∣

≤ Eλ
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where

Eλ =

(

m(3, 1)2

6
+
m(4, 1)

9

√

2

π

)

λ−1.

This means that for Eλ small, the distribution of F̃ is in

some sense very close to µ3.

III. SYSTEM MODEL

For the application we have in mind, i.e. deployment of a

cellular network in low populated region, one can consider an

isolated cell, neglecting the interference from adjacent base

stations. To simplify the computations, we consider that the

region covered by the base station, hereafter called the cell

and denoted by C, is circular of radius R, centered at the

base station o. The forthcoming analysis can be extended to

any bounded domain of coverage but the integrals would have

to be numerically evaluated. The terminals are identified to a

cloud of points, which we denote by η, whose elements are

the positions of each terminal in a domain larger than C.

The power consumed by the battery of the base station o
can be divided into two parts:

• The power dedicated to transmit, receive, decode and

encode the signal of any active user. The cumulative

power over the whole configuration is then the sum over

all terminals of the energy consumed for each one.

• The power dedicated to broadcast messages. In order to

guarantee that all active users receive these messages, the

power must be such that the farthest user in the cell is

within the reception range (if the system performs power

control) or all the cell is within reception range (if the

system does not perform power control). Thus, the power

is a function of the maximum distance between the base

station and the terminals or it is constant if power control

is not performed.

For a very simple propagation model (without fading and

shadowing), the Shannon’s formula states that for a receiver

located at x, the transmission rate is given by

W log2(1 + Pel(x)),

where W is the bandwidth, Pe is the transmitted power and

l(x) is the path-loss function. This implies that in order

to guarantee a minimum rate at position x, Pe must be

proportional to 1/l(x). Usual choices of path-loss functions

are of the form l(x) = |x|−γ (singular path-loss model) or

l(x) = (r0∨|x|)−γ or l(x) = (1+ |x|−γ)−1. The forthcoming

analysis does not depend on a particular choice, so we keep

it generic. It follows that for a user configuration η, the total

consumed power, in presence of power control, is given by:

P (η) = βA
∑

x∈η∩C,x active

l−1(x) + βB max
x∈η∩C

l−1(x)

:= PA(η) + PB(η),

where βA and βB are multiplicative factors defined below. The

subscript A stands for "additive" and B stands for "broadcast".

The term
∑

x∈η l
−1(x) means that we add over all points x of

b

b

b

b

b

b

bc

bc

bc

bc

bc

bc

C
o

Time

0

t

User1 2 3 4 5 6

Figure 1. Illustration of the model, each user is associated with a ON-OFF
process and a mobility process.

the configuration η, the value of l−1(x). Now, if the terminals

are moving, we denote by ηt the configuration at time t which

represents the locations of all terminals at this instant. Since

the energy is the integral of the power over time, the total

consumed energy between time 0 and time T is given by

JT := JT (η, T ) =

∫ T

0

PA(ηs) d s+

∫ T

0

PB(ηs) d s

= JA(η, T ) + JB(η, T ).

We should also add a constant part for the energy associated to

operate the network but it doesn’t alter the statistical aspects

we aim to analyze.

For years, models for the locations of users in cellular

networks were left aside considering a sort of diffuse ether

from which a density of calls per unit of surface and unit

of time would emerge. After [10], [11], we know how to

represent users locations by a Poisson point process. Note that

according to the Mecke formula (2), the earlier fluid model can

be viewed as a space average of this refined description. As

is, one cannot expect to compute variances and higher order

statistics from this model. We hereby consider that terminals

are initially located according to a Poisson point process in

the plane, of intensity λ: for two disjoint bounded subsets

of the plane, the random variables counting the number of

users in each subset are independent and Poisson distributed

with parameter λ times the surface of the subset. We enrich

the Poisson point process description by adding traffic and

mobility characteristics. The traffic of the user initially located

at x, is an ON/OFF process, denoted by Ax, independent of

the position of the user. We assume, as usual, that all the

traffic processes of all users are independent and identically

distributed. Moreover, at the beginning of the time observation

window, they have all reached they stationary state (supposed

to exist). We denote by πON the probability for a given traffic

process to be in its ON phase at any given time. One simple

example of such a process is the exponential ON/OFF model,

in which exponentially distributed ON periods alternate with

exponentially distributed OFF periods. If we denote by µON
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and µOFF the parameters of the exponential distributions, then

πON = µOFF/(µON + µOFF). The choice of a traffic model

boils down to choose a probability measure on the space T

of piece-wise, two valued, functions. We denote by T this

probability measure, hence T ( d a) is the probability to have

a traffic process close to the process a and

∫

H(a) T ( d a) = E [H(A)] ,

means that we compute the mean value of a function H with

respect to all possible values of the generic traffic process A.

We also envision the impact of mobility on energy consump-

tion. We just assume that users move independently and are

statistically indistinguishable: If Mx denote the movement of

user initially located at x, so that its position at time t is

x +Mx(t), then we assume that the collection of processes

(Mx, x ∈ η0) are independent and identically distributed.

Besides the motionless situation where Mx(t) = o for any

t and any x, the simplest model is that constant speed

movement: Mx(t) = vxt where the vectors (vx, x ∈ η0) are

independent and identically distributed over R2. Choosing a

mobility model boils down to determine a probability measure

M on the space C of continuous functions on R2, starting

at o. Putting the pieces together means that we consider a

Poisson process of the product space R2×T×C with intensity

λ dx⊗T ( d a)⊗M( dm). In plain words, this means that a

user, say located at x, is equipped with a traffic process Ax
and a mobility process Mx such that all these processes are

independent and identically distributed among all users.

Moreover, the so-called Mecke formula stands that

E

[

∑

x∈η

ζ(x, Ax, Mx)

]

=

∫∫

ζ(x, a, m)λ dx T ( d a)M( dm), (2)

for any bounded function ζ. The configuration of users at

time t is

ηt =
∑

x∈η0

δx+Mx(t),

while the configuration of active users is

∑

x∈η0

Ax(t) δx+Mx(t).

In particular, the additive part of consumed energy can be

rewritten as:

JA(η, T ) =
∑

x∈η0

∫ T

0

Ax(t)l
−1(x +Mx(t))1x+Mx(t)∈C d t

(3)

and the broadcast part is:

JB(η, T ) =

∫ T

0

max
x∈ηt∩C

l−1(x+Mx(t)) d t. (4)

IV. MOTIONLESS USERS

When users do not move, from (3), we get

JA(η, T ) = βA
∑

x∈η0

1x∈C

(

∫ T

0

Ax(t) d t

)

l−1(x),

so that JA(η, T ) appears as a shot noise process. In view of

Theorem 1, we can compute easily the moments of any order

of the additive part.

Theorem 3. For motionless users, the moments of JA(η, T )
are given by:

E [JA(η, T )
n] = Bn(α1, · · · , αn)

where

mk (A, T ) = ET





(

∫ T

0

A(s) d s

)k


 for k ≥ 2.

and

αk = λβkAmk (A, T )

∫

C

|l−1(x)|k dx.

In particular, for the singular path-loss model,

E [JA(η, T )] =
2βA
γ + 2

ρRγ T (5)

where n = λπR2 is the mean number of terminals into the

cell and ρ = n πON is the mean number of active customers

in the cell C of radius R.

We now show how to determine βA. If Pe denotes the power

emitted by a mobile located at x from the base station, since

we do not take into account interference, shadowing and fad-

ing, the received power at the base station is Pr = PeK l(x)
where K = (c/4πfdref )

2dγref , f is the frequency of the radio

transmission, c is the light celerity and dref is the so-called

reference distance. Since the base station can detect a signal of

power greater than P r
min, this requires that Pe is greater than

P r
min/Kl

−1(x). One can consider that the same considerations

hold for the downlink channel so that βA = 2P r
min/K . In

practical situation, P r
min is of the order of 10−9 mW and f

around 2 GHz, hence βA varies between 2.10−10 for γ = 5
to 2.10−8 for γ = 3.

On the other hand, without power control, let P ′
r the power

sufficient to ensure a reception at any point of the cell. If

we denote by P b
min the minimum power for the beacon to be

detected by a mobile at distance R from the base station, we

should have
KP ′

r

Rγ
≥ P b

min.

This amounts to say that we can take βB = P b
min/K . Usually,

P b
min is around 10−8 mW. In the usual frequency bands, we

obtain βB varying from 10−9 for γ = 5 to 10−7 for γ = 3. If

there is no power control, the energy consumed for the beacon

is thus equal to

J0
B(η, T ) = βBR

γT. (6)
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If power control is used, the power should be adjusted for the

farthest terminal to be able to receive the beacon signal:

P b
min

K
max
x∈η∩C

l−1(x) = βB max
x∈η∩C

l−1(x).

Hence, in absence of movement,

JB(η, T ) = βBT max
x∈η∩C

l−1(x).

Since all the usual path-loss functions depend only on the

distance between x and o, let L be defined as L(‖x‖) = l(x).
From the remark that

( max
x∈η∩C

‖x‖ ≤ u) = (η(B(o,R)\B(o, u)) = 0),

it follows from (1) that the random variable δ =
maxx∈η∩C ‖x‖ has probability density function:

fδ(u) = 2λπe−λπR
2

u eλπu
2

.

The next result follows.

Theorem 4. For motionless users, with power control, the

consumed energy to maintain the beacon signal, denoted by

JpB has moments given by:

E
[

(JpB(η, T ))
k
]

= (βBT )
k
∫ R

0

(L−1(u))k fδ(u) du,

for any k ≥ 1. (7)

For the singular path-loss function, we obtain

E [JB(η, T )] = e−n
n
−γ/2

∫

n

0

vγ/2ev d v J0
B(η, T ).

Thus the gain of power control does depend only on the

mean number of terminals whatever the radius, be it a few

meters or some kilometers. Figure 2 shows that, as expected,

the gain is higher for lower load.

0 10 20 30 40 50

Mean number of terminals

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

G
a
in

Figure 2. The energy gain with power control.

In view of (5) and (6), we have

κ :=
E [JA(η, T )]

J0
B(η, T )

=
2

γ + 2

ρβA
βB

=
2

γ + 2

ρP r
min

P b
min

· (8)

Since ρ, the mean number of active users is of the order of

10 to 50, in view of the values of βA and βB , (8) says that κ
depends essentially of the ratio between P r

min and P b
min. For

the values we considered, this means that JA and JB are of

the same order of magnitude.

V. IMPACT OF MOBILITY

For the sake of simplicity for the proofs, we now assume

that JB is constant, equal to J0
B given by (6). We now evaluate

the impact of mobility on energy consumption.

According to the displacement theorem for Poisson pro-

cesses, we known that for each time t, the point process

ηMt = (x + Mx(t), x ∈ η0) is a still a Poisson point

process with intensity λ dx. It follows that the expectation

of consumed energy does not depend on the mobility model

and is equal to the value for motionless users.

However, for higher order moments, the correlations be-

tween positions at different instants are to be taken into

account so that the variance and other moments are different

for truly mobile users. Let

̥
M
n (f, T ) =

∫

R2

ET ,M

[(

∫ T

0

f(x+M(t))A(t)1x+M(t)∈C d t

)n]

dx.

The following theorem uses the same techniques of proof as

before but in a more involved fashion.

Theorem 5. The moments of JA(η, T ) with mobility are given

by

ET

[

JA(η
M, T )n

]

=

Bn(λ̥
M
1 (βA l

−1, T ), λ̥M2 (βA l
−1, T ), · · · , λ̥Mn (βA l

−1, T )).

It follows that mobility reduces moments of JA; i.e

ET ,M [JA(η, T )
n] ≤ ET , 0 [JA(η, T )

n] . (9)

Proof: The first part of the proof follows from Theorem 1.

Let f(x) = βA l(x) 1x∈C . Since the Lebesgue measure is

translation invariant,
∫

R2

f(x+ y) dx =

∫

R2

f(x) dx.

If we combine that remark with Hölder inequality, we get that

for y1, · · · , yn in R2,

∫

R2

n
∏

j=1

f(x+ yj) dx ≤
n
∏

j=1

(

∫

R2

f(x+ yj)
n dx)1/n

=

∫

R2

f(x)n dx. (10)
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For the sake of presentation, we denote by d t the product

measure ⊗nj=1 d tj According to (10), we get

̥
M
n (f, T )

=

∫

R2

∫

[0, T ]n
ET ,M

[

n
∏

i=1

(f(x+M(ti))A(ti))

]

d t dx

=

∫

R2

∫

[0, T ]n
EM

[

n
∏

i=1

f(x+M(ti))

]

ET

[

n
∏

i=1

A(ti)

]

d t dx

=

∫

[0, T ]n
ET

[

n
∏

i=1

A(ti)

]

∫

R2

EM

[

n
∏

i=1

f(x+M(ti))

]

dx d t

≤
∫

[0, T ]n
E

[

n
∏

i=1

A(ti)

]

∫

Rd

f(x)n dx d t

= E

[(

∫ T

0

A(t) d t

)n]
∫

R2

f(x)n dx

= mn (A, T )

∫

R2

f(x)n dx.

Since the coefficients of Bell polynomials are non-negative,

(9) follows.

We now study the limiting variance when the speed of

particles is large (for instance, terminals in a high speed

train). We say that a movement distribution M has property T

whenever P(M(s) =M(t)) = 0 for all s 6= t. We denote by

M ǫ the accelerated version of M (and Mǫ the corresponding

probability distribution on C): M ǫ(t) = M(t)/ǫ. The full

proof of the next result is given in [15].

Theorem 6. If M has the property T then in high mobility

regime, the variance of JA tends to 0, i.e

V

[

JA(η
Mǫ

, T )
]

→ 0 as ǫ→ 0.

The above results say that, when users move the total

consumed energy by a base station does not change in average,

and the moments of the additive part are reduced. Moreover,

when users move very fast, the consumed energy during a time

period is almost constant. We can see this as a consequence

of weak central limit theorem. When users move faster, the

configuration of users is more mixing during a same period

of time, thus converge faster to the mean.

VI. APPLICATIONS

A. Dimensioning optimal cell size

Consider an operator aiming to design the optimal cell

radius R to cover a region of total area S ⊂ R2. We assume

that the cells are circular. The average total cost of the network

is assumed to be the sum of the operating cost during the life

time of the network (say T ) and the cost of facilities (base

stations). We assume a fixed deployment cost for any base

station regardless of its transmission range. The number of

base stations is then roughly equal to S R−2 so the installation

cost of base stations is c1 SR
−2 with c1 > 0. The operating

cost is assumed to be proportional to the consumed energy.

We assume that l is the singular path-loss function, i.e.

l(x) = ‖x‖−γ . From the previous results, the mean energy

consumed by the network during its operating time is:

S

R2
(1 + κ)βBR

γT.

This is an increasing function of R, which means that small

cell systems will consume less energy than larger cell systems.

The average total cost for the network is then

Cost(R) = S(1 + κ)βBTR
γ−2 +

c1 S

R2
. (11)

Note that κ implicitly depends on R, as the larger the cell,

the higher the mean number of active customers. Equation

(11) shows that there are two antagonist trends: large radius

cells minimize the deployment cost whereas they increase the

operating cost.

If we keep κ constant, i.e. we may have larger cell providing

that the mean number of customers per unit of surface is

decreasing in such a way λR2 is constant; the optimization

problem has a solution obtained by differentiation:

Ropt =

(

2c1
(γ + 2)(1 + κ)βBT

)1/γ

·

As expected, the optimal radius depends heavily on the value

of γ which is linked to the density of obstacles in the path of

radio waves.

B. Dimensioning cell battery

The proposed model can be used to dimension sites that do

not have access to power supply facilities. In this situation,

operators have to replace or reload base station’s battery at

each period T . We want to determine the energy level α
of battery so that the probability of running out of energy

before replacement (or reloading) be smaller than some given

threshold ǫ. We use results derived in the previous sections to

find α. The problem is to find α such that:

P
(

JT (η
M , T ) > α

)

< ǫ.

In order to simplify the problem, we assume JB to be constant

equal to KB = βBR
γT and that the users are motionless.

In view of Theorem 4, it may be thought as a pessimistic

point of view without the economy due to power control.

Hence, JT (η
M , T ) = JA(η

M , T ) + KB . One could resort

to the Bienaymé-Tcebycev inequality and use Theorem 3 to

bound the variance of JT but this approach is known to

give imprecise results. Otherwise, one can use the Gaussian

approximation of Theorem 2. We can apply this theorem to

the function

f(x, a) = βA l−1(x)

∫ T

0

a(t) d t,

and hence,
∫

C

∫

T

f(x, a)kνλ( dx, d a) = mk (A, T )
(βAR

γ)k

γk/2 + 1
n.
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It follows that for any k ≥ 3,

m(k, λ) =
γ + 1

γk/2 + 1

mk (A, T )

m2 (A, T )
k/2

n
1−k/2.

Since the process A is supposed to be ergodic, it is well known

that mk (A, T ) ∼ (πON T )
k as T goes to infinity or at least if

T is large compared to the cycle duration of A, i.e. the time

between two successive communications plus the length of a

communication. Since that is usually so, we get:

m(k, λ) =
γ + 1

γk/2 + 1
n
1−k/2.

Note that m(k, λ) depends weakly on the geometric properties

of the domain which are summarized by γ and on the traffic

pattern but mainly on the mean number of customers in the

cell. The procedure is then the following: We first verify that

Eλ is negligible compared to ǫ. Then, we solve the equation

in α,

µ3([α, +∞)) = ǫ

and take

ζ = m1 (A, T )
βAR

γ

γ/2 + 1
n+ α

√

m2 (A, T )
βAR

γ

√
γ + 1

√
n

∼
(

1

γ/2 + 1
+

α√
γ + 1

√
n

)

βAρR
γT. (12)

With this procedure, we get a simple way to determine

the threshold ζ which guarantees that the real value of

P
(

JT (η
M , T ) > α

)

is smaller than ǫ. In Figure 3, we analyze

the variations of ζ with respect to γ. Once again, we see that

the provisioning of resources, i.e. energy for the time being,

is exponentially dependent of γ, the path-loss exponent.

VII. CONCLUSION

We have shown how to model energy consumption in a

cellular network taking into account both communication and

signaling traffic. The closed form formulas we obtained may

be used for several purposes mainly in order to dimension cells

or batteries under energy constraints. We pointed out the great

importance of the domain geometry which is summarized by

the path-loss parameter γ.
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