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Abstract—Solutions to today energy challenges need to be 

explored through alternative, renewable and clean energy 

sources to enable a diverse energy resource plan. An extremely 

abundant and promising source of energy exists in oceans. 

There are several wave energy converters to harness this 

energy. Some of them, as in tidal applications, use the Doubly-

fed induction generator (DFIG). This paper deals then with a 

model-based predictive power control of a DFIG-based Wave 

Energy Converter (WEC). In the proposed control approach, 

the predicted output power was calculated using a DFIG 

linearized state-space model. The DFIG-based WEC power 

tracking performances further illustrates the dynamic features 

of the proposed predictive power control approach. 

 

Index Terms—Wave energy converter (WEC), doubly-fed 

induction generator (DFIG), predictive power control. 

 

I. INTRODUCTION 
 

The world energy demand is increasing at an alarming 

rate, and producing electricity from alternative or renewable 

energy sources is becoming a necessity. Among renewable 

energy harvesting technologies which are still being 

investigated through various industrial and academic group, 

wave energy harvesting technology has already shown to be 

practical, since oceans cover almost 70% of the earth's 

surface [1-2]. 

Numerous techniques for extracting energy from the sea 

have been suggested, most of which can be included in one 

of the following categories: wave energy, marine and tidal 

current energy, ocean thermal energy, energy from salinity 

gradients (osmosis), and cultivation of marine biomass. The 

global theoretical energy from waves corresponds to 1500 

TWh/year, which is about 100 times the total 

hydroelectricity generation of the whole planet [3]. 

To harness the power energy in waves present a different 

set of technical challenges and a wide variety of designs 

have been suggested. There are many devices which are 

generally categorized by the installation location and the 

power take-off. Therefore, most devices can be 

characterized as belonging to six types. These are 

attenuator, point absorber, oscillating wave surge converter, 

oscillating water column, overtopping device, and 

submerged pressure differential [4-5]. 

In all WECs, a mechanical interface is used to convert 

the slow rotational speed or reciprocating motion into high 

speed rotational motion for connection to a conventional 

rotating electrical generator as a DFIG (Fig. 1). 

The control of the active and reactive power is achieved 

with a rotor current controller. 
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Fig. 1. An illustrative example of DFIG-based WEC. 
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Several investigations have been carried-out for that purpose 

using cycloconverters and classical PI controllers. However, 

the problem in the use of PI controllers is gains tuning and 

DFIG terms cross-coupling in the whole operating range. 

Interesting methods to solve these problems have been 

presented in [6–10]. 

Predictive control is another control technique that was 

applied in machine drives and inverters [11-14]. This paper 

proposes then a Model-Based Predictive Control (MBPC) 

strategy for DFIG-based wave energy converters with the 

main objective to solve the above-cited control problems. 

 

II. DFIG MODEL AND ROTOR CURRENT CONTROL 
 

A. Nomenclature 
 

s, (r)   = Stator (rotor) index; 

d, q   = Synchronous reference frame index; 

V (I)   = Voltage (Current); 

ψ    = Flux; 

R    = Resistance; 

L    = Inductance; 

Lm    = Magnetizing inductance; 

σ    = Leakage coefficient, σ = 1– Lm
2
/LsLr; 

Ȧs (Ȧmec)  = Synchronous speed (rotor speed) 

(Ȧsl = Ȧs – pȦmec); 

p    = Pole-pair number; 

Te    = Sampling period; 

k    = Sampling time. 

 

B. DFIG Modeling 
 

For decoupled control, dynamic modeling is required. 

The DFIG dynamic model written in a synchronously 

rotating frame d-q is given by [6-7] 

 

( )

s dq

s s s s sdq dq dq

r dq

r r r s mec rdq dq dq

d
V R I j

dt

d
V R I j p

dt
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In this context, the DFIG active and reactive power are 

given by 
 

( )

( )

3

2

3

2

ds ds qs qs

ds ds qs qs

P V I V I

Q V I V I

⎧
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         (3) 

C. DFIG Control 
 

The DFIG power control aims independent stator active 

and reactive power control by means of rotor current 

regulation. Stator flux-oriented control is used and it 

consists in decoupling the d-q axis (ψds = ψs). In this 

context, the stator current are given by 

 

s m

ds dr

s s

m

qs dr

s

L
I I

L L

L
I I

L
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     ¨     (4) 

 

Using stator flux-oriented, with Vds = 0, leads to the 

following power expressions 
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Rotor currents control using (5), allows then the DFIG 

power control. 

Rotor voltages in (1) can be rearranged using (4) an 

become 
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The above equation can be rewritten in state-space form 
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where C is the identity matrix. 

The discretized form is given as 

 

( 1) ( ) ( ) ( )

( 1) ( )

d d d

d

x k A x k B u k G w k

y k C u k

+ = + +⎧⎨
+ =⎩      (8) 
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0

e
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Equation (7) can be discretized considering that the rotor 

voltage is constant during a control period of the PWM 

voltage source inverter. It can therefore be written as [11] 
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This DFIG linear discrete space-state model will 

thereafter be used to calculate the output power in the 

predictive control context. 

 

III. MODEL-BASED PREDICTIVE CONTROL 
 

A. Nomenclature 
 

Np  = Prediction horizon output; 

Nu  = Control horizon; 

Y  = Predicted output; 

U  = Input. 

 

B. MBPC 
 

Model-based predictive control involves a class of 

control techniques that consists of two main elements: the 

model of the system being controlled and the optimizer that 

determines the optimal future control actions. The system 

model is used to predict the future behavior of the system 

with control law obtained by optimizing a cost-function [11-

12]. The cost-function considers the effort needed to control 

the deviation between the expected and the real values. 
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Np choice is critical for the control performance. 

The control law is obtained by minimizing the following 

quadratic cost-function [12-13] 

 

( ) ( )
T T

ref y ref u
J Y Y W Y Y U W U= − − +      (13) 

 

If Nu = 1, the entries magnitude represents an average 

value that allows the outputs to follow the references. 

Moreover, if Nu > 1, the output will closely track the 

reference. However, big values will increase the 

computational costs. The minimal value of J is obtained 

when 
 

0
J

U

∂
=

∂
 

 

For each control cycle, matrices N, D, and H must be 

updated. The substitution of Y from (11) into (13), allows 

determining an analytical solution of U. 

 
1

( ) ( ( ) )
T - T

y u y ref e
U = H  W  H +W   H  W  Y - Nx k - DW  (14) 

 

The above proposed sensorless MBPC control strategy is 

illustrated by the block diagram in Fig. 2. 

 

IV. WAVE MODEL FOR THE EXTRACTED REFERENCE POWER 
 

Wave motion and wave energy absorption are composed 

of time-varying oscillatory phenomena. For the study of 

regular waves, it is necessary to take into account wave 

climate spectrum that indicates the amount of wave energy 

at different wave frequencies. Then, the regular wave is 

modeled and is typically described in terms of power per 

meter of wave front (wave crest length) [5] 
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Fig. 2. The proposed DFIG predictive power control strategy. 

 

2 21

8
wf

P g A T= ρ
π

          (15) 

 

where ρ is the water density, g is the gravity acceleration, A 
is the wave amplitude, and T the wave period. 

For the proposed control strategy illustration, it has been 

chosen five successive regular waves, which are different in 

amplitude and period (Fig. 3). This wave model allows 

defining the extracted reference power. 
 

V. SIMULATION RESULTS 
 

The proposed MBPC strategy has been tested for 

validation using the DFIG whore ratings are given in the 

Appendix [11]. 

The weight matrices Wu and Wy elements should be 

carefully adjusted. 
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Fig. 3. Wave model for the extracted reference power. 

Wu matrix is related the control effort and its elements must 

be nonzero because they could cause high overshoots. Wy 

matrix emphasizes each individual prediction of the output 

that would improve the system time response. According to 

the above considerations, the following matrices are chosen 

 

15 0 0.002 0
and

0 45 0 0.01
y uW W

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  

 

Moreover, the adopted sampling time Te = 0.0131 sec. 

 

A. Dynamic Response Tests 
 

Initial simulations are carried-out to test the proposed 

MBPC strategy dynamic response performances. For that 

purpose, a simple power reference is considered: P = – 3120 

W and Q = 0 VAR. The achieved performances, with Nu = 

1, are illustrated by Fig. 4. According to Fig. 4a illustrating 

the dynamic response of both active and reactive powers, it 

could be easily concluded that the proposed control strategy 

achieves satisfactory dynamic performances. 
 

B. Tests using the Wave Model 
 

In this case, the wave model of Fig. 3 is adopted. It 

allows generating a specific power reference. Figure 5 

clearly shows the good power tracking performances and 

therefore confirms the effectiveness of the proposed model-

based power predictive control strategy. 

As in [11], extra simulation tests have been carried-out 

to further asses the effectiveness of the MBPC strategy. 
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(a) Active and reactive power responses. 
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(b) Capacitor voltage response. 
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(c) Rotor current and voltage responses. 
 

Fig. 4. Step test reponses. 
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Fig. 5. Generated active and reactive powers. 

 

In this context, various power steps are applied (i.e. from – 

6 kW to – 15 kW). 

As clearly shown in Fig. 6, good tracking performances 

are achieved in terms of DFIG active and reactive powers 

(Fig. 6a) as well as rotor currents (Fig. 6b). 

 

VI. CONCLUSION 
 

This paper dealt with a model-based predictive power 

control of a doubly-fed induction generator-based wave 

energy converter. In this context, the control law was 

derived from an objective function optimization (quadratic 

error between the predicted active/reactive powers and the 

specific references that are control-dependent. The predicted 

active/reactive powers were calculated using a linearized 

state-space model. 

The obtained preliminary results clearly show the MBPC 

approach effectiveness in terms of DFIG active/reactive 

power tracking performances. 

Further investigations are required to further asses the 

effectiveness of the proposed MBPC for different WECs 

[5]. 

 

APPENDIX 
 

RATED DATA OF THE SIMULATED DFIG 
 

 

149.2 kW, Vn = 575 V, p = 2 

Rs = 0.002475 Ω, Rr = 0.0133 Ω 

Ls = 0.000284 H, Lr = 0.000284 H, Lm = 0.01425 H 

J = 2.60 kg.m² 
 

 

REFERENCES 
 

[1] J. Crus Ed., Ocean Wave Energy: Current Status and Future 

Perspectives. Springer, Berlin, 2008. 

2012 2nd International Symposium on 
Environment-Friendly  Energies  and  Applications (EFEA)

Northumbria University

316



0 0.5 1 1.5
-2

-1.5

-1

-0.5

0

0.5

1
x 10

4

 

 

P[W]

Pref[W]

Q[VAR]

Qref[VAR]

Time (sec)

P
o

w
e
r 

(W
/V

A
R

)

0 0.5 1 1.5
-2

-1.5

-1

-0.5

0

0.5

1
x 10

4

 

 

P[W]

Pref[W]

Q[VAR]

Qref[VAR]

Time (sec)

P
o

w
e
r 

(W
/V

A
R

)

 
 

(a) Active and reactive power responses. 
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(b) d-q rotor current responses. 
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(c) Capacitor voltage response. 
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(d) Rotor current and voltage responses. 

 

Fig. 6. Step test reponses with different operating speeds. 
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