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Abstract: The paper deals with the development of a bounded control law for Flapping-
wing Micro Aerial Vehicles (FMAVs) that mimics a strategy adopted by animal flapping
flyers to stabilize their orientation. The control consists on generating torques about
the body’s principal axes by means of a modulation of the wing angle amplitudes. It is
known that flapping flyers orient their body without any numerical computation or esti-
mation of their current attitude. Therefore, the proposed control law is computed using
the direct measurements of on-board sensors mimicking animal sensitive organs, more
specifically the halteres, legs sensilla and magnetic sense. The technological equivalents
of these biological sensors are respectively three rate gyros, a tri-axis accelerometer and
a tri-axis magnetometer. Besides, the control signal is bounded to keep the wing angle
amplitudes below the maximal values. Owing to its simplicity, this control law is suitable
for applications where on-board computational resources are limited. The stability of
the closed loop system is proved based on Lyapunov analysis and averaging theory. The
effectiveness of the proposed control law is shown in simulations. The robustness with
respect to external disturbances is also shown emphasizing the importance and need of
the bounded control.

1. Introduction

Animal flapping flyers depict several techniques to achieve flight and maneuvers moving
their wings, body and legs (Dudley 2002). Principally, these techniques get benefit of the
wing morphology, aerodynamic effects, sensory and actuating systems, flight control and
obstacle avoidance mechanisms. For example, insects are able to change, very quickly,
their speed and direction of flight, within almost 100ms especially during predatory
phases (Dudley 2002). They are also able to accomplish a transitory lateral or back-
wards flight. These maneuvers are performed by a displacement of the abdomen or an
asymmetrical evolution of the wings using an amplitude modulation (Nachtigall & Wil-
son 1967; Alexander 1986) or phase modulation (Mountcastle & Danie 2010), frequency
modulation occurs very rarely (Nachtigall & Wilson 1967).

Besides, the flapping flyer is endowed with information, issued from multiple sensitive
organs, about its state, interaction with the environment as well as local destination to

† The paper lies within the scope of the project OVMI/EVA sponsored by the French National
Research Agency.
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determine the way to reach it. For insects, one can cite the ocelli, the compound eyes
and other biological sensors detailed in the following (Dudley 2002; Alexander & Vogel
2004; Campolo et al. 2009) (and references therein):

• Halteres: are gyroscopic biological sensors, present at the wing bases, that detect
the rotational movement of the body and allow to determine its angular velocity along
the three axes,
• Sensilla: are cuticular sense hair detecting chemical or mechanical stimuli. They are

present on the antenna, wings and legs. Legs sensilla, for example, allow to determine
the direction of the gravity field with respect to the insect’s body,
• Magnetic sense allows to determine the direction of the earth magnetic field with

respect to the insect’s body.

Using a fusion of information issued from these organs, the insect determines its trajectory
and adapts its body’s velocity and orientation to track it. One should emphasize that
these actions are executed by the insect without any instantaneous numerical knowledge
of its position, orientation or velocity.

Insects performance has encouraged the design of Flapping-wing Micro Aerial Vehicles
(FMAVs). The micro aerial vehicle is a small size aircraft, having a maximal dimension of
6 inches†, and intended to perform an autonomous flight, thanks to an onboard control
system, comprising a set of sensors and a dedicated integrated circuits. Due to their
small size and flapping movement, FMAVs fly in zones characterized by low Reynolds
numbers (102 − 104). They develop, therefore, extra non-stationary aerodynamic forces,
which help them reduce the forces generated by the actuators to accomplish the flight and,
consequently, reduce the energetic consumption. FMAVs produce low noise. They are able
to accomplish vertical taking-off and landing as well as stationary flight in hovering mode.
However, their major drawback is still the difficulty of identifying and implementing the
complex mechanisms carried out by insects to perform maneuvers (Dudley 2002; Hedrick
& Daniel 2006). The FMAVs are intended for use in areas inaccessible for people or that
require high accuracy of intervention.

The present paper deals with the modeling and attitude stabilization of a FMAV for
scenarios necessitating to maintain a stable orientation in front of a scene in order to
monitor or investigate it. A simple model mimicking the flapping flight is presented,
including the wings degrees of freedom, the sensorimotor system as well as the devel-
oped aerodynamic forces. The major contribution of this work is the development of a
biomimetically inspired control strategy aiming to stabilize the orientation of the FMAV.
The inputs of the control law are the direct measurements of on-board sensors, equiva-
lent to those which an insect is equipped with, without the need of an explicit attitude
reconstruction (represented by the Euler angles in R3, quaternion in S3 ⊂ R4 or rotation
matrix in SO(3)). Hence, unlike conventional approaches, the computational cost used
for the attitude estimation/reconstruction is avoided. Note that attitude estimation is
frequently carried out by means of Extended Kalman Filters or Nonlinear observers which
represent a high computational cost. The control law takes into consideration the wing
angle amplitude bounds, characterizing the animal species. It has the easiness of a PD
controller, the derivative term is obtained by means of the halteres (angular velocity) and
the proportional term by means of legs sensilla and magnetic sense (direct measurement
of attitude error). Moreover, the control is very simple and therefore is suitable to be
implemented in real time. It is also independent of the FMAV body’s inertia, modeling
or aerodynamic errors and robust with respect to external disturbances. Unlike fuzzy

† The definition is given by the DARPA (Defense Advanced Research Projects Agency).
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controllers or fractional PID, the bounds of the control signal are taken into account
explicitly and the stability properties are well established.

Models of FMAVs existing in literature consider them as rigid bodies subject to ex-
ternal forces and torques generated by the flapping wings whose amplitudes may be
modulated (Deng et al. 2006a; Rakotomamonjy et al. 2010), phase or even both of them
(Chung & Dorothy 2010; Oppenheimer et al. 2010; Couceiro et al. 2012). Few works have
treated the problem of controlling the orientation of flapping aerial vehicles based on sen-
sor measurements. A proportional derivative output feedback is proposed in (Schenato
et al. 2004) based on ocelli and halteres measurements. A linear quadratic optimal control
is proposed in (Deng et al. 2003, 2006b) based on ocelli, magnetic compass and halteres
measurements. In (Epstein et al. 2007), halteres measurements are used to estimate the
pitch rate and stabilize the corresponding angle with a proportional derivative controller
with pole placement. Rate gyros, accelerometer and magnetometer sensors, representing
respectively the halteres, legs sensilla and magnetic compass, are used in (Campolo et al.
2009) to estimate the insect’s attitude (rotation matrix), used after, along with angu-
lar velocity measurement, in a state feedback control law. One should emphasize that,
in the aforementioned works, the proposed linear control laws cannot be sufficiently ro-
bust with respect to external disturbances representing wind for example. Note also that
building a control law using estimated attitude state is not a biomimetic approach. In
fact, insects have no numerical instantaneous determined orientation knowledge (angles
or rotation matrix) but only information issued directly from their biological sensors
(Chapman 1998).

The paper is organized as follows. In section 2, the model of the FMAV is proposed in
agreement with insect models, including the sensorimotor systems, aerodynamic forces
and body’s dynamics. A biologically inspired bounded control law, based directly on the
measurements of some embedded sensors and aiming to stabilize the orientation of the
FMAV, is presented in section 3. Simulation results are addressed in section 4 as well as
some robustness tests. Finally, conclusions are given in section 5 and future works are
introduced.

2. Insect flight versus biomimetic robot flight

The present section deals with the design and modeling of a flapping-wing micro aerial
vehicle. Design concerns mainly the choice of the sensors and actuators to embark on the
FMAV. Therefore, the insect’s sensorimotor system is shortly presented and correlated
to the technological corresponding equipments. Modeling concerns principally the estab-
lishment of a simple mathematical model allowing to represent the degrees of freedom of
the flapping flight as well as aerodynamic forces and mechanisms deployed by nature’s
flapping flyers to perform maneuvers. One should note that a beating wing is in interac-
tion with the surrounding air flow, which creates aerodynamic forces perpendicular to its
surface. These forces generate the linear and rotational movements of the FMAV’s body.

2.1. Wing degrees of freedom

The movement of a wing is a combination of several elementary actions (Thomson et al.
2009; Chapman 1998): flapping, feathering, lagging or elevation besides flexion and tor-
sion (Figure 1 and 2). Flapping is an up-and-down movement of the wing represented
by a rotation of the wing about its tangential axis ~t of a flapping angle φ. Feathering is a
rotation of the wing about its span-wise axis ~r of a rotation angle ψ. Lagging or elevation
is a forward-backward movement of the wing parallel to the body, modeled by a rotation
about a normal axis ~n of a deviation or elevation angle θ. Flexibility of the wing allows



4 H. Rifäı 1, J.-F. Guerrero-Castellanos 2, N. Marchand 3, G. Poulin-Vittrant 4

flapping

feathering

lagging

flapping axis

lagging axis

feathering axis

~r

~n

~t

Figure 1. Degrees of freedom of a wing: flapping, lagging (elevation) and feathering

it to resist to turbulence, provides a gentler flight and increases the aerodynamic force
relative to a same size rigid wing (Shyy et al. 2010). Torsion is a twist movement of the
wing, providing an aerodynamic stability (Senda et al. 2008).
The directions of the wing rotational axes are chosen such that ~r is oriented from the
wing base to its tip along the wingspan, ~t is parallel to the wing chord, oriented from
trailing to leading edge and ~n is perpendicular to the wing plane oriented so that the
three-sided frame Fw(~r,~t, ~n) is direct. Note that the frame Fw should be indexed, left
Fwl and right Fwr , relative to the left and right wings respectively.
Maneuvers of animal flapping flyers are performed primarily by asymmetrical movements
of the wings, a displacement of the abdomen and legs. The movement of the wings gener-
ates aerodynamic forces, which resultant is perpendicular to the wing surface. Therefore,
the flapping/rotation movements of the wings generate the vertical/longitudinal move-
ments of the insect, respectively. A difference in the amplitudes of the left and right flap-
ping/rotation angles allows to generate a roll/yaw movements, respectively (Figure 2).
The pitch movement can be created by controlling the wing’s elevation degree of freedom,
or by changing the center of gravity of the body tilting it upward or downward. The sec-
ond solution allows to reduce the number of embarked actuators and therefore is adopted
in the sequel. Finally, the lateral movement is generated by coupling the body vertical lift
force with the roll angle, maneuver performed by many birds and insect species (Dudley
2002).

The wing angles are characterized by their maximal amplitudes and their wingbeat
frequency within their predefined trajectory. These values are specific to each species.
Generally, flapping-wing flying creatures move their wings according to a sine function
with higher harmonics, the fundamental frequency is equal to the wingbeat frequency
(Dudley 2002). A wingbeat period is divided into two phases: the downward phase of the
flapping movement or downstroke and, the upward phase or upstroke (Chapman 1998;
Dudley 2002). During downstroke, the flapping flyer orients the dorsal side of the wing to
the flow. It orients the ventral side during the upstroke. The model proposed in this work
considers the wing as a rigid body, flapping in the mean stroke plane, defined by taking
the deviation angle θ to zero. This choice is motivated by the possibility to control insects
using only two wing angles (Lentink & Biewener 2010). Flapping and rotation angles,
φ and ψ, are assumed to vary according to saw tooth and pulse functions respectively,
such that the wing changes its orientation at the end of each half stroke (Figure 3).
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Figure 2. Coordinate frames: inertial fixed frame Ff (~xf , ~yf , ~zf ), body attached frame

Fb(~xb, ~yb, ~zb) and left wing attached frame Fwl (~rl,~tl, ~nl)

The time variation of the wing angles is given by (2.1):

φ(t) =

{
φ0(1− 2t

κT ) 0 ≤ t ≤ κT
φ0(2 t−κT

(1−κ)T − 1) κT < t ≤ T
ψ(t) = ψ0 sign(κT − t) 0 ≤ t ≤ T
θ(t) = 0 0 ≤ t ≤ T

(2.1)

where sign designates the classical sign function, T is the wingbeat period, κ is the ratio
of downstroke duration to the wingbeat period and should verify 0 < κ < 0.5 to produce
a positive aerodynamic lift force over a wingbeat period, φ0 and ψ0 are respectively the
amplitudes of flapping and rotation angles. φ0 and ψ0, considered for left and right wings,
will define the control inputs in the following. This choice is motivated by the fact that
wingbeats have generally fixed frequency, except during some maneuver phases. Turns
can be created by asymmetrically changing the left and right wing angle amplitudes
(Nachtigall & Wilson 1967; Alexander 1986).

Note that the wingbeat frequency has been taken equal to 100Hz considering in the
following the model of a diptera insect (Dudley 2002). Note also that the given angle
parametrization does not represent the real movement of the wings, but the desired
trajectory to be achieved by the wing actuators.

Remark 1. The wing angle parametrization adopted in the present work is not unique.
Other parameterizations can be used as well. The only condition is that they allow the
generation of an aerodynamic body lift force that, averaged over a wingbeat period, should
be positive and able to balance the FMAV’s weight. The control strategy and control law
proposed in the following remain always applicable.

Other non-symmetric wing-parametrizations have been proposed in the literature. In
(Chung & Dorothy 2010), all three angles have been modulated. However, embarking
many actuators is weight costly. Therefore, strategies have been oriented to decrease
their number. In (Oppenheimer et al. 2009), two actuators controlling the wings have
been used besides a bobweight actuator in the body. In (Oppenheimer et al. 2010), the
bobweight has been removed and the wings parametrization adapted to use only one
actuator per wing. This configuration necessitates the development of complex control
laws to stabilize the translational and rotational movement of the FMAV. In (Finio
et al. 2009), three actuators have been introduced, one principal and two secondary
to accomplish an asymmetric control of the wing angle amplitudes. Another work has
considered one active and one passive degrees of freedom allowing to control four wing
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Figure 3. Shape of the wing angle evolution through an illustrative example: The flapping (top)
and rotation (bottom) wing angles, the reference angles in dashed red line and the real angles
(delivered by the actuators) in continuous blue line.

angles, the aim is to ensure the vertical flight, the orientation, notably the roll and yaw
angles, is passively regulated (Sreetharan & Wood 2011).

2.2. Actuation

The periodic wingbeats are accomplished by the muscles, present at the wing bases or
in the thorax and, vibrating with a fixed frequency. This movement can be identified as
a vibration at the undamped natural frequency. Therefore, piezoelectric actuators are
the most suitable for this application. The reverse effect of piezoelectricity, consisting
on applying voltage and retrieving mechanical movement, is of interest. The alternative
voltage is delivered by an electronic converter designed specifically for piezoelectric actu-
ators. These actuators behave as reactive loads (Janocha & Stiebel 1998; Campolo et al.
2003) introducing some non-linearities (hysteresis, creep) that can be avoided using a lo-
cal control (Kuhnen et al. 2006). The controller inputs are the reference angles defined in
(2.1). The local closed loop of controller-actuator is regulated to behave as a first-order
filter having fast dynamics so that the influence of the actuator on the global system
dynamics is despised (Figure 3):

Ä = Är − λ1(Ȧ− Ȧr)− λ2(A−Ar) (2.2)

with A the amplitude of the flapping or rotation angles at the actuator’s output and Ar
is the reference amplitude at the actuator’s input. λ1 and λ2 are computed using pole
placement such that the time constant of the local closed loop is equal to τ = 0.1ms:
λ1 = 2

τ and λ2 = 1
τ2 .

Remark 2. Note that the piezoelectric actuators available on the market have very
fast dynamics with a time response reaching the microsecond range (PZT piezoceramic
actuators for example). The conservative hypothesis considered for τ = 0.1ms is therefore
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absolutely realistic even when the actuator is coupled to the wing. Note that if the time
response of the wing-actuator system is less than 0.1ms, it will be more advantageous
for the transparency of the actuator and its influence on the FMAV’s movement.

2.3. Sensory system

In attitude stabilization theory, the FMAV’s body should reach a desired orientation and
maintain it, which means that, at stationary hovering flight, the body axes should be
aligned to some reference axes with a null angular velocity. Within insect bio-sensors, the
halteres, legs sensilla and magnetic sense contribute to control the body’s orientation.
These sensitive organs have some technological equivalents: respectively, the rate gyros,
accelerometers and magnetometers.

Define a fixed frame in the space Ff (~xf , ~yf , ~zf ) and a mobile frame attached to the
FMAV’s body at its center of gravity Fb(~xb, ~yb, ~zb) (indexes f and b stand for fixed and
body, respectively) (Figure 2). Define also a rotation matrix R ∈ SO(3) = {R ∈ R3×3 :
RTR = I3,det R = 1} allowing the transformation from the fixed frame Ff to the body
frame Fb.

2.3.1. Rate gyros

Three rate gyros are mounted orthogonally on the FMAV’s body such that their axes
coincide with the body’s axes. The sensors deliver the angular velocity measurements
about the body’s axes. The measured angular velocity, ωG, is given by:

ωG = ω + ξG (2.3)

where ω ∈ R3 is the angular velocity of the body, ξG ∈ R3 is a white gaussian noise of
the rate gyros.

2.3.2. Magnetometer

A tri-axis magnetometer is mounted on the FMAV such that its axes coincide with
the body’s axes. The sensor gives the measurement of the fixed magnetic field in Fb:

s bM = Rs fM + ξM (2.4)

where s fM ∈ R3 is the magnetic field in the fixed frame Ff , R is the rotation matrix from
the fixed frame Ff to the body’s frame Fb and ξM ∈ R3 is a vector of gaussian white
noise. Note that the magnetic field in the fixed frame is considered constant and equal

to s fM = [ 1
2 , 0,−

√
3

2 ]T in the geographic zone where the simulations are performed.

2.3.3. Accelerometer

A tri-axis accelerometer is mounted on the FMAV such that its axes coincide with the
body’s axes. The sensor measures the FMAV’s acceleration in Fb. It is given by:

s bA = Rs fA + ξA

where s fA = (a − ge3) with e3 = [0, 0, 1]T , g ∈ R and a ∈ R3 are respectively the
gravity and body’s acceleration vectors expressed in the fixed frame Ff . R ∈ R3×3 is the
rotation matrix from the fixed frame Ff to the body frame Fb. ξA ∈ R3 is a gaussian
white noise. Considering that the FMAV moves at low accelerations such that ‖a‖ � ‖g‖
and normalizing, the accelerometer measurement is given by:

s bA = Rgn + ξA (2.5)

with gn = s fA = [0, 0,−1]T the normalized gravity vector.
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Remark 3. The FMAV experiments acceleration along the body-fixed direction ~zb for
the taking-off, landing and translational horizontal movements. Because in the present
work, only the attitude stabilization is considered, the assumption ‖a‖ � ‖g‖ holds and
the tri-axis accelerometer can be used as a reference vector sensor. The gravity vector is
the reference vector and the acceleration is considered as a disturbance. If the translational
movement has to be considered, a compensation of the vertical acceleration should be
envisaged.

2.4. Aerodynamics

The flapping movement of the wings within a surrounding steady air flow generates quasi-
steady aerodynamic forces: a lift force, perpendicular to the wing, enhancing the flight and
a drag force, parallel and opposing to the air flow (Dudley 2002). Drag forces generated
by the wings are neglected in the present work considering that the wings are made of
materials having a sufficiently small friction coefficient and that the drag is generated
only by the body (Dudley 2002). In addition to the quasi-steady aerodynamic forces,
the flapping flyer is subject to unsteady aerodynamic forces generated by the rotation
of the wing about its radial axis ~r. This rotation creates vortices, adding air flow to the
following wingbeats, and creating additional forces. These forces allow the flapping-wing
animal to ensure maneuvers such as quick variations of velocity or flight direction and
instantaneous turns. All forces are considered applied at the wing’s center of pressure,
located at lr equal to 65% of the wing length L from the wing base (lr = 0.65L) and at
lt equal to 25% of the chord length Ch from the leading edge (lt = 0.25Ch) (Schenato
et al. 2003). The center of pressure is considered belonging to the radial axis ~r, given in
the wing frame Fw by pw = [lr, 0, 0]T .

2.4.1. Quasi-steady aerodynamic force

The quasi-steady force is generated by the pressure of the air flow exerted on the wing
surface. This force is perpendicular to the wing and is applied at the wing’s center of
pressure. It is oriented to the opposite direction of the wing’s velocity. The magnitude of
this force is given by:

fqs = −1

2
ρCwSwv

w|vw| (2.6)

with ρ the air density, Sw the wing surface and vw the wing velocity. Cw is the aerody-
namic coefficient of the wing. Cw = C(1 + Cf ) during downstroke and Cw = C(1− Cf )
during upstroke, with C ≈ 3.5 is the force coefficient derived empirically in (Dickinson
et al. 1999; Schenato et al. 2003) and Cf is a coefficient chosen so that the aerodynamic
force is 20% greater during downstroke relative to upstroke. This dissymmetry empha-
sizes the fact that the convex dorsal side of the wing is oriented to the flow during the
downstroke, while the concave ventral side of the wing is opposed to the flow during
upstroke. The wing camber alteration is due to the stroke reversal of the air circulation
around the wing, reducing the effective area of the wing (Dudley 2002). Therefore, the
downstroke force is presumably higher than the upstroke one.

2.4.2. Rotational force

The rotation of the wing about its radial axis deviates the surrounding air flow. The
wing reacts to this phenomenon by creating additional rotational circulation (Sane 2003)
and consequently a rotational force modeled by (Rakotomamonjy et al. 2010):

fr = πρlrC
2
h(

3

4
− lt
Ch

)vwψ̇ (2.7)



Biomimetic-based output feedback for attitude stabilization of a FMAV 9

with ψ̇ the first derivative of the rotation angle.

2.4.3. Added mass force

The added mass phenomenon is created by the acceleration of the additional fluid mass
surrounding the wing when it accelerates and rotates. It can be modeled by (Rakotoma-
monjy et al. 2010):

fm =
π

4
ρLlrC

2
hφ̈ (2.8)

with φ̈ the second derivative of the flapping angle.
In addition to these forces, the wing is subject to other phenomena like the wake

capture, delayed stall, wagner effect, etc. that have a minor contribution to the total
wing lift force and are difficult to model (Sane 2003).

The aerodynamic force generated by a wing is applied at its center of pressure, has
the direction of the normal vector of the wing ~n. Its expression in the wing’s frame Fw
is given by:

fw = fqs + fr + fm (2.9)

The total aerodynamic force f b ∈ R3, generated by the left and right wings, expressed
in the body frame Fb is given by

f b = Rbl f
w
l +Rbr f

w
r (2.10)

with Rbl,r are the rotation matrices from the left or right wing frames to the body frame.
The aerodynamic torque expressed in the body frame is given by

τ b = pbl × f bl + pbr × f br (2.11)

with pbl,r is the position of the left or right wing aerodynamic center in the body frame

computed by pbl,r = Rbl,rp
w. It is considered, in the present work, that the aerodynamic

and pressure centers coincide.
The left and right wing velocities, expressed in the body frame, are computed by

deriving the wing center of pressure positions vbl,r = ṗbl,r. Their projections in the wing

frames are obtained by a simple rotation vwl,r = Rl,rb v
b
l,r.

2.5. Body’s dynamics

The body can be considered as a whole entity and is modeled as a rigid body, to which
are attached two wings. The wing inertia is neglected in the present work because their
mass is less than 5% of the body’s mass (Schenato et al. 2003). The effect of the wings’
inertia due to the high flapping frequency is considered beyond the scope of this paper.
Therefore, the FMAV is modeled as a rigid body subject to aerodynamic forces and
torques that generate its movement. It is subject also to viscous and gravitational forces.

The rotational kinematics and dynamics of the FMAV are given by (2.12,2.13). The
translational dynamics are not presented here for sake of simplicity. The aerodynamic
lift force balances the gravity effect in order to stabilize the FMAV in hovering mode.
For more details, readers can refer to previous works (Rifai et al. 2008).

Ṙ = Rω× (2.12)

ω̇ = J−1(τ b − ω×Jω) (2.13)

ω ∈ R3 is the angular velocity with respect to the mobile frame Fb. τ b ∈ R3 is the
aerodynamic torque vector defined in Fb. J ∈ R3×3 is the inertia matrix of the body
relative to Fb. R is the rotation matrix from the fixed frame Ff to the mobile frame
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Fb. ω× is the skew symmetric matrix associated to the vector ω and related to the cross
product × such that ω×a = ω × a, with a ∈ R3.

2.6. Control strategy

Aerodynamic forces are function of the wing angles, their derivatives and some geo-
metric and aerodynamic parameters. Controlling the orientation of the FMAV amounts
from controlling the amplitude or the frequency of the wing angles. Considering that
the nature’s flapping flyers use generally a fixed characteristic frequency except during
instantaneous maneuvers execution (Dudley 2002; Nachtigall & Wilson 1967), the wing
angle amplitude control is considered.

On the other hand, the wingbeat frequency adopted in the present work is relatively
high (100Hz). Aerodynamic forces and torques, which are generated at the wingbeat
frequency, affect the body’s movement only by their average values, computed over a
wingbeat period. This is proved based on the averaging theory (Khalil 2002; Bullo 2002;
Vela 2003) which is a strategy usually used in FMAVs control (Schenato et al. 2003).
Denote by u = (φl(t), φr(t), ψl(t), ψr(t)) the flapping and rotation angles for left and
right wings, v = (φl0, φ

r
0, ψ

l
0, ψ

r
0) the amplitudes of these angles (2.1), then u = v f2(t).

Denote also by x = (R,ω) the FMAV’s rotational state, the model given by (2.12-2.13)
can be written in a compact form as:

ẋ = f1(x, u) (2.14)

Let x̄ = (R̄, ω̄) denote the averaged state over a wingbeat period T . The compact form
of the FMAV’s model, averaged over a wingbeat period, is given by:

˙̄x = f̄1(x̄, v) (2.15)

Averaging theory shows that an exponential stable equilibrium state for the averaged
dynamics of a high frequency oscillating system (x̄ = xe) is also a stable equilibrium state
for the oscillating (time variant) system: there exists k > 0 such that ‖x(t)⊗ x̄(t)‖ < kT
for all t ∈ [0,∞), with ⊗ designates a comparison operator and T the wingbeat period
which is small in the present case.

As mentioned previously, the FMAV is controlled indirectly by means of the wing angle
amplitudes v that will be computed using a feedback h(·) of direct sensors measurements
ω and sk, k ∈ {1, . . . , n} with n the number of on-board reference sensors:

v = h(ω, sk), (2.16)

Using the inverse reasoning, the control strategy is defined as follows. On one hand,
based on the desired orientation and the current one measured by on-board sensors,
a control torque is computed. This control is actually equal to the average torque τ̄
over a wingbeat period: τ̄ = U(ω, sk). On the other hand, based on the expression
of the aerodynamic torque, a relation between the mean torque τ̄ and the wing angle
amplitudes is determined. Recall that the flapping and rotation angle amplitudes (φ0, ψ0)
are the control inputs. Therefore: τ̄ = Λ(φ0, ψ0). The inverse relation can be used to
compute the wing angle amplitudes, that should be applied at the beginning of a wingbeat
period, function of the control torque: (φ0, ψ0) = Λ−1(τ̄) = Λ−1(U(ω, sk)). Therefore,
h(·) = Λ−1(U(·)).

Two actuators are used for each wing to generate the flapping and rotation angles,
creating then the roll and yaw movements of the FMAV. The pitch movement is generated
by moving a small mass inside the body using the ElectroWetting On Dielectric (EWOD)
technology (Renaudin et al. 2004). A similar strategy using a bobweight actuator inside
the FMAV has also been adopted in (Oppenheimer et al. 2009).



Biomimetic-based output feedback for attitude stabilization of a FMAV 11

Remark 4. Analyzing only the rotational movement of the FMAV, the system can
be considered as fully actuated. However, when studying the translational movement,
the system will become underactuated and a coupling of the rotational and translational
dynamics should be performed to execute a three dimensional movement. Hence arises
the importance of the attitude control.

Computing the averaged roll and yaw torques, function of the flapping and rotation
angle amplitudes, one has the explicit form of the trigonometric function Λ(·):

τ̄1 = βlr

[
φr

2

0 cosψr0 − φl
2

0 cosψl0

]
τ̄3 = αlr

[
φr

2

0 sinψr0 − φl
2

0 sinψl0

] (2.17)

with

α = 2
T 2

1+(1−2κ)Cf

κ(1−κ) ρCSwl
2
r

β = 2
T 2

1−2κ+Cf

κ(1−κ) ρCSwl
2
r

Each species is characterized by maximum flapping and rotation angles. In a practical
point of view, this represents also a technological constraint because the actuators inputs
should be bounded to avoid their saturation. Therefore:

0 ≤ φ0 ≤ φ0max

0 ≤ ψ0 ≤ ψ0max

(2.18)

The roll and yaw torques are therefore bounded. Note also that the movement of the
mass inside the body is limited by the body length, the mass and velocity used within
the EWOD technology, therefore, the pitch control is bounded too. Resuming, τ̄ ∈
[−τmax, τmax].

3. Biologically inspired attitude stabilization

The attitude stabilization problem consists in reaching a desired orientation and main-
taining it all over the time. The error between the desired orientation defined by Rd and
the current orientation defined by R is denoted by Re = RRTd . Therefore, the attitude
stability condition is expressed as: {

ω → 0
Re → I3

with I3 the three dimensional identity matrix. The angular velocity can be directly ac-
cessed based on the measurements of the rate gyros. However, no measurement of the
rotation matrix can be obtained without using estimation strategies. Therefore, a biolog-
ically inspired technique is used in this work. It consists on defining the attitude error by
means of the FMAV’s on-board sensors which are equivalent to the animal flapping flyers’
sensitive organs as it was described earlier. It is actually equal to the error between the
on-board sensor measurements and the desired measurements without any computation
of the body’s orientation. Let sbk and sfk , k ∈ {1, . . . , n}, denote the measurement of the
on-board sensor k in the body frame Fb and fixed frame Ff , respectively, with n the
total number of the embarked reference sensors. The projections of the unit vector ~sk in
the body and fixed frames are linked through the rotation matrix R such as sbk = Rsfk .

Note that sbk is called vector observation and sfk reference vector. The attitude error γ is
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defined as:

γ =
1

n

n∑
k=1

(Rsfk)× (Rds
f
k) =

1

n

n∑
k=1

sbk ×Rds
f
k (3.1)

Reaching the desired attitude is expressed by a rotation matrix R equal to the desired
one Rd, i.e. relative to the accessible information γ = 0. Reversely, γ = 0 means that
sbk and Rds

f
k are collinear (3.1). Since ~sk is a unit vector, then sbk = ±Rdsfk . Two cases

can be identified: i) sbk = Rds
f
k i.e. the vectors observation have the same orientation of

the reference vectors desired direction in Fb which defines the final goal to reach, and
ii) sbk = −Rdsfk i.e. the vectors observation have the opposite direction of the desired
reference vectors direction Fb. Therefore, they are defined by a rotation of 180◦ (π rad)
with respect to a plane, axis or point. The symmetry surface depends actually on the
number of reference sensors or more precisely on the number of non-collinear reference
vectors n such that k ∈ {1, . . . , n}. Three cases are analyzed:

a) n = 1: If only one vector observation is afforded, it is linked to the reference

vector by means of the rotation matrix R as sb1 = Rsf1 providing a two-dimensional

constraint and unveiling any rotation about the axes sb1 or sf1 , in the body and fixed frames
respectively. Therefore, at least two different sensor measurements should be provided
instantaneously to have complete information about the attitude error (Markley et al.
2006): n ≥ 2. The case n = 1 is therefore excluded.

b) n = 2: The symmetry surface is limited to an axis ~n perpendicular to the plane

containing the two vectors Rds
f
k , k ∈ {1, 2}, at the vectors intersection. Therefore, sfk =

−Rdsfk = RsRds
f
k with Rs the rotation matrix defining the symmetry, i.e. the rotation

matrix about the axis ~n of 180◦. In the specific case where Rds
f
k belong to one of the

basis planes (ef1 , e
f
2 ), (ef1 , e

f
3 ) or (ef2 , e

f
3 ), then the rotation is performed respectively with

respect to the axes ~ef3 , ~e
f
2 and ~ef1 . These special cases chiefly facilitate the problem and

therefore, a choice of the reference sensors should be done this way. This technique is
adopted in the present paper. The matrix Rs is given by:

Rs ∈ {diag(−1, 1, 1), diag(1,−1, 1), diag(1, 1,−1)} (3.2)

c) n ≥ 3: sbk = −Rdsfk = SRds
f
k with S the reflexion matrix defined by diag(−1,−1,−1).

Note that S is not a rotation matrix because detS = −1 and TrS = −3. No rotation
matrix can therefore be identified and the configuration sbk = −Rdsfk cannot be reached.

Resuming, the set of couples (ω,R) for which the attitude stability is reached, (ω =
0, γ = 0), is given by:

E = {(ω,R) ∈ TSO(3) : ω = 0, R = PRd} (3.3)

with

P = {diag(1, 1, 1), diag(−1, 1, 1), diag(1,−1, 1), diag(1, 1,−1)} (3.4)

The block diagram of the closed loop attitude control is given in Figure 4 where the
different blocks have been defined previously. In the following, the control torques will
be addressed. The control forces are set such that they balance the gravity and ensure
no movement along the three axes of the fixed frame Ff .

3.1. Bounded attitude control

A bounded control torque computed using the direct measurements of on-board sensors
is proposed. This control takes into consideration the saturation of the actuators and is
simple to implement. First, the asymptotical stability of the rigid body is shown, then
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Figure 4. The block diagram of the FMAV’s attitude control based on sensors measurements.

the proof is extended to show the stability of the FMAV. It is assumed that there exist
at least two non-collinear vector observations embarked on the FMAV such that n ≥ 2.

Proposition 1. Consider the flapping micro-aerial vehicle’s rotational dynamics de-
scribed by (2.12-2.13). The attitude error γ between current and desired body’s orienta-
tions is defined by (3.1) with n ≥ 2. The FMAV body’s angular velocity ω = [ω1, ω2, ω3]T

is measured by three rate gyros. Define the bounded control τ̄ = [τ̄1, τ̄2, τ̄3]T by:

τ̄j = −satNj

(
λω̄j
ρj

+ λγ̄j

)
, j ∈ {1, 2, 3} (3.5)

with ω̄, γ̄ are respectively the averaged angular velocity and attitude error computed over
a wingbeat period T , Nj is the bound of the control torque component τ̄j, satNj

(·) is a
classical saturation function, λ is a positive real parameter such that 0 < λ ≤ min(Nj/2)
and ρj, j ∈ {1, 2, 3}, are positive scaling parameters. The control torque (3.5) stabilizes
the FMAV at (ω,R) = (0, Rd) with a domain of attraction equal to TSO(3)\{(0, RsRd)},
Rs is given in (3.2).

Proof. Let’s first prove the stability of a rigid body whose state vector is the averaged
state vector of a flapping FMAV. The dynamics of the rigid body are then given by
(2.12-2.13) where the angular velocity is denoted by ω̄, the rotation matrix by R̄, the
control torque by τ̄ and the attitude error by γ̄. Note that the derivative of an averaged
vector observation s̄bk is linked to the vector by means of

˙̄sbk = s̄bk × ω̄ = −ω̄ × s̄bk (3.6)

Note also that the reference vectors are well known and fixed vectors; the average over a
wingbeat period is equal to the vector.
Consider first the following definite positive Lyapunov function:

V =
1

2
ω̄TJω̄ (3.7)

J is the inertia matrix of the body. V is trivially positive definite and radially unbounded.
The derivative of (3.7) along the trajectories of the closed-loop system is given by

V̇ = ω̄TJ ˙̄ω = ω̄T (−ω̄×Jω̄)︸ ︷︷ ︸
=0

+ω̄T τ̄ = ω̄T τ̄ =

3∑
j=1

ω̄j τ̄j (3.8)

One gets from τ̄j in (3.5) and (3.8) that
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V̇ = −
3∑
j=1

ω̄jsatNj

(
λω̄j
ρj

+ λγ̄j

)
Let Φ = {ω̄ : |ω̄| ≤ ρ+ε} for some ε > 0 and ρ = [ρ1, ρ2, ρ3]T . Outside Φ, i.e. |ω̄j | > ρj+ε,
using the unitary condition |γj | ≤ 1, it follows that |λ ω̄j

ρj
+λγ̄j | ≥ λ ε

ρj
and that λ

ω̄j

ρj
+λγ̄j

and ω̄j have the same sign. Therefore,

V̇ = −
3∑
j=1

ω̄jsatNj

(
λω̄j
ρj

+ λγ̄j

)
≤ −

3∑
j=1

λε

ρj
|ω̄j | < −

3∑
j=1

λε(ρj + ε)

ρj
< −3λε < 0

Consequently, ω̄ enters in Φ. During this time, γ̄j cannot diverge since it is structurally
unitary and therefore bounded.
Once in Φ, one has:

∣∣∣∣λω̄jρj + λγ̄j

∣∣∣∣ ≤ 2λ+
λε

ρj

Taking ε sufficiently small and using the assumption that 2λ < Nj , then:∣∣∣∣λω̄jρj + λγ̄j

∣∣∣∣ ≤ Nj
Consequently, satNj

operates in a linear region, and the control torque becomes:

τ̄j =
λ

ρj
(ω̄j + ρj γ̄j) (3.9)

In Φ, consider the Lyapunov function W defined by:

W =
1

2
ω̄TJω̄ +

λ

n

n∑
k=1

[1− (R̄sfk)(Rds
f
k)] (3.10)

W is a continuous and positive definite function on TSO(3) becauseW > 0 andW (0, Rd) =

0. Since s̄bk = R̄sfk and sfk constant, the derivative of (3.10) is given by:

Ẇ = ω̄TJ ˙̄ω − λ

n

n∑
k=1

( ˙̄sbkRds
f
k) (3.11)

By means of (3.1, 3.6) and the fact that ω̄T (−ω̄×Jω̄) = 0, (3.11) becomes:

Ẇ = ω̄T τ̄ +
λ

n

n∑
k=1

ω̄T (s̄bk ×Rds
f
k)

= ω̄T τ̄ + λω̄T γ̄

=

3∑
j=1

(ω̄j τ̄j + λω̄j γ̄j) =

3∑
j=1

Ẇj (3.12)
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Analyzing Ẇj for j ∈ {1, 2, 3}, one gets from τ̄j in (3.9) and (3.12) that:

Ẇj = −ω̄j
(
λω̄j
ρj

+ λγ̄j

)
+ λω̄j γ̄j

= − λ

ρj
ω̄2
j

and

Ẇ =

3∑
j=1

Ẇj = −λ
3∑
j=1

ω̄2
j

ρj
≤ 0 (3.13)

The derivative of the Lyapunov function W is negative semidefinite. Recall that TSO(3)
is compact. Therefore, for any initial condition (ω̄(0), R̄(0)) ∈ TSO(3), the set:

Ω = {(ω̄, R̄) ∈ TSO(3) : W (ω̄, R̄) ≤W (ω̄(0), R̄(0))}

is a compact, positively invariant set of the closed-loop. From LaSalle Invariance Princi-
ple, it follows that all solutions that start in Ω converge to the largest invariant subset of
Ω̄ belonging to Ω. Ẇ (ω̄, R̄) ≡ 0 implies ω̄ ≡ 0, then, substituting this last identity into
the closed-loop system (2.12,2.13,3.5), one has

Ω̄ = {(ω̄, R̄) ∈ TSO(3) : ω̄ ≡ 0, γ̄ ≡ 0}

with γ̄ defined in (3.1) over the averaged measurements. Then, the largest invariant
subset of Ω̄ is given by E (3.3, 3.4).

Therefore, E defines the set of equilibrium points for which the Lyapunov function W
(3.10) represents a minimum (W = 0) and a local maximum (W = 2λ) corresponding
respectively to the rotation matrices R̄ = Rd and R̄ = RsRd with Rs given in (3.2). If
the system is at one of these points at t0 = 0, it will remain there for all t ≥ t0. The
control law acts then to ensure the convergence of the closed-loop solutions, whose initial
conditions do not verify (ω̄, R̄) = (0, RsRd), to the stable equilibrium point given by
(ω̄, R̄) = (0, Rd) and corresponding to W = Ẇ = 0.
Therefore, the rigid body is asymptotically stable with a domain of attraction equal to
TSO(3) \ {(0, RsRd)}.

Once the asymptotic stability of the rigid body proven, the stability of the FMAV
subject to the control torque (3.5) and computed over the averaged dynamics of the
system (ω̄, R̄) will be presented. For that, the averaging theory recalled in §2.6 is used.
It states that for a high frequency oscillating system, the averaged and time varying
dynamics are very close and therefore, a stable equilibrium of the averaged dynamics is
also a stable equilibrium of the time varying dynamics: ‖ω−ω̄‖ < k1T and ‖RR̄T ‖ < k2T
for k1,2 > 0 and T the wingbeat period. In other words, the state vector (ω,R) of the
FMAV, subject to the control torque (3.5), converges to the equilibrium point (0, Rd)
with a domain of attraction equal to TSO(3) \ {(0, RsRd)}.

4. Simulations and robustness tests

Two strategies have been adopted in the literature to test the control laws developed
for animal flapping flyers. The first is based on models of the flapping flight including
aerodynamics, body and wing dynamics (Deng et al. 2006a; Rakotomamonjy et al. 2010;
Oppenheimer et al. 2010; Couceiro et al. 2012). Note that well developed models of
flapping flight do not exist because the aerodynamics at low Reynolds numbers have not
been yet perfectly identified (Dudley 2002). The second strategy consists on testing the
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Figure 5. Yaw torque versus roll torque, defining the saturation set Ωτ̄1,τ̄3 approximated to
an ellipse Er then to a set Ωr.

control in real time on a prototype (Finio et al. 2011; Perez-Arancibia et al. 2011) where
simple models are proposed and identified. One should emphasize that at microscopic
scale, only the vertical movement has been performed on a flapping flyer prototype (Perez-
Arancibia et al. 2011) where the pitch movement is avoided by attaching the FMAV using
some wires, the laser sensor measuring the vertical altitude is external as well as the
power system. Vertical movement control of a 101mg FMAV has been also presented in
(Duhamel et al. 2012). Note that very challeging mass and size of FMAVs can be reached
nowadays with the progress of microelectronics. The on-board electronic circuit developed
within the OVMI/EVA project weighs 100mg and is composed of a microprocessor,
inertial and optic flow sensors. Piezoelectric actuators can reach 10mg and are used
within FMAVs (Steltz & Fearing 2007). Other low size and weight microelectronic devices
exist on the market for such applications. The power supply remains very difficult to
embark.

In the present work, the first strategy is adopted. For simulations, the physical data
of a dipteran insect are used (Dudley 2002). The mass is of 200mg and the wingbeat
frequency of 100Hz. The maximum amplitudes for flapping and rotation angles are
taken respectively to φ0max = 60 ◦ and ψ0max = 90 ◦. The wingspan and wings surface
are assumed respectively to 2L = 3 cm and 2Sw = 1.14 cm2, allowing to generate a
vertical ascendant movement using admissible flapping angles amplitudes.

Based on the defined numerical values, the admissible set for control torques Ωτ̄1,τ̄3
can be determined (2.17) and plotted (Figure 5).

Ωτ̄1,τ̄3 is approximated to the largest ellipse Er that fits inside Ωτ̄1,τ̄3 (Figure 5)
for computation simplification reasons. The control torques τ̄1 and τ̄3 respect then an
ellipsoidal admissible set defined by

[τ̄1 τ̄3]Q[τ̄1 τ̄3]T ≤ 1 (4.1)

where Q is a diagonal definite positive matrix defining the ellipse’s semi-axes denoted
ar and br. Practically, if τ̄1 ≥ ar (3.5), τ̄1 could be saturated to ar, and τ̄3 will be
equal to zero. A privilege is given to the roll control in order to bring the FMAV to the
horizontal plane. To avoid having a null yaw control torque and to give preference to the
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roll movement, 70% of ar is attributed to N1, τ̄3 will be calculated by (4.1) defining then
a set Ωr (Figure 5).

The control torque (3.5) is applied to the FMAV to be validated in simulation. Three
sensors are embarked on the FMAV to mimic a part of the sensory system of an insect
(halteres, legs sensilla and magnetic sense): three rate gyros, a tri-axis accelerometer
and a tri-axis magnetometer whose models are given by (2.3, 2.5, 2.4), respectively. The
sensors measurements are not perfect, additive white gaussian noise is considered hav-
ing a standard deviation of σG = 10−3 rad/s for the rate gyros, σA = 10−4m/s2 for
the accelerometer and σM = 0.01mgauss for the magnetometer. Because of the low in-
ertia of the FMAV, the developed control torque has also very small values of almost
10−5N · m (Figure 5). Since the control law is computed through a feedback of di-
rect sensor measurements, the sensors should have a remarkable precision in order to
guarantee a reasonable signal to noise ratio. Note that sensors with suitable precision
or sensibility have already been developed (Cheinet et al. 2008). Even if the averag-
ing of the angular velocity and attitude error reduce the noise influence, it can not
be totally eliminated. The tuning parameters considered in simulations are given by
(N1, N2, N3) = (0.7 ar, 10−5, brar

√
a2
r − τ̄2

1 ) with (ar, br) = (1.859 · 10−5, 5.843 · 10−5),

λ = 5 · 10−6, (ρ1, ρ2, ρ3) = (2.2·10−3

ar
, 15.5, 5·10−4ar

br
√
a2r−τ̄2

1

).

The evolution of the roll, pitch and yaw angles as well as the angular velocities mea-
sured by the rate gyros and the control torques are plotted in Figure 6. Note that
the body’s angles are not used in the control torque, they are plotted only to show the
convergence of the FMAV’s orientation. The initial orientation is (−40 ◦,−25 ◦, 50 ◦) for
the roll, pitch and yaw angles, respectively. The initial angular velocity is null. The sen-
sor measurements are presented in Figure 7 and the wing angle amplitude envelops in
Figure 8. The stability is reached in a sufficiently fast time which makes the control law
suitable for real-time implementation on a FMAV. Moreover, it presents comparable val-
ues to those observed in true insects (Dudley 2002). The rate gyros noise is detectable in
Figure 6. The accelerometer’s noise is more detectable than that of the magnetometer.

Their measurements converge to s fA = [0, 0,−1]T and s fM = [ 1
2 , 0,−

√
3

2 ] at the equi-
librium. Recall that the FMAV is stabilized in hovering mode. Therefore, the flapping
angles converge to the value that generates an aerodynamic lift balancing its weight. The
rotation angles converge to zero so that no translational movement is generated.

The robustness of the control law is tested with respect to external disturbances. These
disturbances simulate wind or rain drops affecting the FMAV and creating a body torque
of (1.2 10−5, 2 10−5, 1.2 10−5)N · m, applied at t = 1.5 s during 10 wingbeat periods.
Noting that a rain drop weighs about 5 · 10−6N and the FMAV body’s inertia is of
10−8Kg ·m2, the disturbance applied has a great effect on the body’s movement. It will
destabilize the FMAV all over the disturbance taking it far away from the equilibrium.
The control law acts later on to bring the FMAV back to stability. The evolution of the
roll, pitch and yaw angles, angular velocities and control torques is plotted in Figure 9
zoomed to the disturbance zone in Figure 10. Note that the bound of the yaw torque
depends on the value of the roll torque as explained previously. The reference sensor
measurements are given in Figure 11 and the wing angle amplitudes in Figure 12.
Notice that the flapping angle of the left wing is bounded during the disturbance at
φmax = 60◦ avoiding the saturation of the actuator and emphasizing the development
of a bounded control law. One should also note that an insect subject to such a high
disturbance will lose all control of its position and orientation and regain it only when
the disturbance is over.
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Figure 6. The attitude (left), angular velocity (middle) of the FMAV going from initial roll,
pitch and yaw angles (−40 ◦,−25 ◦, 50 ◦) and null angular velocity and the control torques (right)
applied to the FMAV.
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5. Conclusions and future works

Even if the gap between the flapping-wing animal flight and its technological repro-
duction is still very large, the robotic and control communities are exerting big effort to
develop flapping micro aerial vehicles that mimic the nature’s flight the most accurately
possible.
The main contribution of this work is the development of a control law stabilizing the
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Figure 8. The envelops of the left and right wing angles.

FMAV’s attitude. It is based directly on the measurements of some embedded sensors
without the need of computing the orientation. This strategy reproduces the insects’ one
to stabilize their orientation based on their halteres, legs sensilla and magnetic sense. The
control torque is bounded, allowing to take into account the amplitude bounds of the
flapping wings in order to avoid the saturation of the actuators and ensure the stability
of the body. Note that it allows different saturation bounds along the three axes. It is
also not restricted to symmetric bodies and independent of the inertia matrix. Moreover,
it is simple to compute and is adaptable for real time implementation. As shown in simu-
lations, the control law is robust with respect to external disturbances. The boundedness
of the control torque helps preserving the piezoelectric actuators not saturated and guar-
antee then their linear behavior even in hard conditions.
Future works will consider the development of bounded control force aiming to control
the FMAV’s trajectory based on sensor’s measurements. In fact, insects can determine
the sun direction using their ocelli. Moreover, the light polarization direction can be de-
termined using the compound eyes. Based on polarized light compasses, for example, one
can determine the direction of flight and couple it with the attitude control in order to
ensure a movement in the three-dimensional space.
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