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Abstract

This paper establishes isomorphisms for the Laplace operator in weighted Sobolev spaces
(WSS). These spaces are similar to standard Sobolev spaces Hm(Rn), but they are endowed
with weights prescribing the functions’ growth or decay at infinity. Although well established
in Rn [1], these weighted results do not apply in the specific hypothesis of periodicity. This
kind of problem appears when studying singularly perturbed domains (roughness, sieves,
porous media, etc). When zooming on a single perturbation pattern, one often ends with a
periodic problem set on an infinite strip. Our results set a unified framework that enable a
systematic treatment of such problems. We provide existence and uniqueness of solution in
our WSS. This gives a refined description of solutions behavior at infinity which is a matter
of importance in the mutli-scale context. These isomorphism results hold for any weight
exponent and any regularity index. We then identify these solutions with the convolution of
a Green function (specific to periodical infinite strips) and the given data. This identification
is valid again for any weight and any regularity index modulo some harmonic polynomials.

Keywords:

weighted Sobolev spaces, Hardy inequality, isomorphisms of the Laplace operator, periodic
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1. Introduction

In this article, we solve the Laplace equation in a 1-periodic infinite strip in two space
dimensions:

∆u = f, in Z :=]0, 1[×R. (1)

As the domain is infinite in the vertical direction, one introduces weighted Sobolev spaces
describing the behavior at infinity of the solution. This behavior is related to weighted Sobolev
properties of f .

The usual weights, when adapted to our problem, are polynomial functions at infinity and
regular bounded functions in the neighborhood of the origin: they are powers of ρ(y2) :=
(1 + y22)

1/2 and, in some critical cases, higher order derivatives are completed by logarithmic
functions (ρ(y2)

α logβ(1 + ρ(y2)
2)).

The literature on the weighted Sobolev spaces is wide [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
and deals with various types of domains. To our knowledge, this type of weights has not
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been applied to problem (1). The choice of the physical domain comes from periodic singular
problems : in [2, 14, 3], a zoom around a domain’s periodic ǫ-perturbation leads to set an
obstacle of size 1 in Z and to consider a microscopic problem defined on a boundary layer.
The behavior at infinity of this microscopic solution is of importance: it provides an averaged
feed-back on the macroscopic scale (see [15] and references therein). This paper is a first step
towards a systematic analysis of such microscopic problems. We intend to give a standard
framework to skip tedious and particular proofs related to the unboundedness of Z.

We provide isomorphisms of the Laplace operator between our weighted Sobolev spaces.
It is the first step among results in the spirit of [5, 1, 16]. Since error estimates for boundary
layer problems [2, 3, 14] are mostly performed in the Hs framework we focus here on weighted
Sobolev spaces Wm,p

α,β (Z) with p = 2. There are three types of tools used here: arguments
specifically related to weighted Sobolev spaces [1, 17], variational techniques from the homog-
enization literature [3, 18, 19] and some potential theory methods [20]. A general scheme
might illustrate how these ideas relate one to each other :

- a Green function G specific to the periodic infinite strip is exhibited for the Laplace
operator. The convolution of f with G provides an explicit solution to (1). A particular
attention is provided to give the weakest possible meaning to the latter convolution
under minimal requirements on f .

- variational inf-sup techniques provide a priori estimates, in an initial range of weights,
for interior and exterior problems with Dirichlet boundary conditions. Then a lift is
built in order to cancel the lineic Dirac mass that’s introduced by artificial interfaces.
This leads to first isomorphism results.

- these arguments are then applied to weighted derivatives and give natural regularity
shift results in Hm

α,#(Z) for m ≥ 2 (see below).

- by duality and appropriate use of generalized Poincaré estimates (leading to interactions
- orthogonality or quotient spaces - with various polynomial families), one ends with
generic isomorphism result that reads

Theorem 1.1. For any α ∈ R and any m ∈ Z, the mapping

∆ : Xm+2
α,# (Z)/P

′∆
q(m+2,α) 7→ Xm

α,#(Z)⊥P
′∆
q(−m,−α)

is an isomorphism.

The spaces Xm
α,#(Z) are generalized WSS whose precise definition is given in section 6.

They are introduced in order to deal with critical values of (m,α). The spaces P
′∆
q(m,α)

of harmonic polynomials included in Xm
α,#(Z) are defined in section 2.

- for all values of α ∈ R andm ∈ Z, we identify explicit solutions obtained via convolution
with solutions given in Theorem 1.1. This gives our main result:

Theorem 1.2. Let m ∈ Z, α ∈ R and f ∈ Xm
α,#(Z)⊥P

′∆
q(−m,−α). Then G∗f ∈ Xm+2

α,# (Z)

is the unique solution of the Laplace equation (21) up to a polynomial of P
′∆
q(m+2,α).

Moreover, we have the estimate

‖G ∗ f‖Xm+2
α,# (Z)/P

′∆
q(m+2,α)

≤ ‖f‖Xm
α,#(Z).
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The paper is organized as follows. In section 2, we define the basic functional framework
and some preliminary results used in this article. In section 3, we adapt weighted Poincaré
estimates to our setting. Then (section 4), we introduce a mixed Fourier transform: it
is a discrete Fourier transform in the horizontal direction and a continuous transform in
the vertical direction. This operator allows the explicit computation of the Green function,
and we derive weighted and standard estimates of the convolution with this fundamental
solution. At this stage, we prove a series of isomorphisms in the non-critical case (section 5)
by variational techniques. In the last section, we extend these to the critical cases. In a last
step we identify any of the solutions above with the convolution between G and the data f ,
this proves Theorem 1.2.

2. Notation, preliminary results and functional framework

2.1. Notation and preliminaries

We denote by Z the two-dimensional infinite strip defined by

Z :=]0, 1[×R.

We use bold characters for vector or matrix fields. A point in R2 is denoted by y = (y1, y2)
and its distance to the origin by

r := |y | =
(

y21 + y22
)1/2

.

Let N denote the set of non-negative integers, Z the set of all integers and Z∗ = Z \ {0}.
We denote by [k] the integer part of k. For any j ∈ Z, P′

j stands for the polynomial space
of degree less than or equal to j that only depends on y2. If j is a negative integer, we set
by convention P′

j = {0}. We define P
′∆
j the subspace of harmonic polynomials of P′

j. The

support of a function ϕ is denoted by supp(ϕ). We recall that D(R) and D(R2) are spaces
of C∞ functions with compact support in R and R2 respectively, D′(R) and D′(R2) their
dual spaces, namely the spaces of distributions. We denote by S(R) the Schwartz space of
functions in C∞(R) with rapid decrease at infinity, and by S ′(R) its dual, i.e. the space of
tempered distributions. We recall that, for m ∈ N, Hm is the classical Sobolev space and we
denote by Hm

# (Z) the space of functions that belong to Hm(Z) and that are 1-periodic in
the y1 direction. Given a Banach space B with its dual B′ and a closed subspace X of B, we
denote by B′⊥X the subspace of B′ orthogonal to X, i.e.:

B′⊥X = {f ∈ B′, ∀v ∈ X, 〈f, v〉 = 0} = (B/X)′.

We introduce τλ the operator of translation of λ ∈ Z in the y1 direction. If Φ : R2 7→ R is a
function, then we have

(τλΦ)(y ) := Φ(y1 − λ, y2).

For any Φ ∈ D(R2), we set ωΦ :=
∑

λ∈Z τλΦ, which is the y1-periodical transform of Φ.
The mapping y1 7→ ωΦ(y ) belongs to C∞(R) and is 1-periodic. Observe that there exists a
function θ satisfying

θ ∈ D(R) and ωθ = 1.

More precisely, consider a function ψ ∈ D(R) such that ψ > 0 on the interior of its support.
Then we simply set θ = ψ

ωψ . The function θ is called a periodical D(R)-partition of unity.
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If T ∈ D′(R2), then for all ϕ ∈ D(R2), we set

〈τλT, ϕ〉 := 〈T, τ−λϕ〉, λ ∈ Z.

Similarly, if T ∈ D′(R2) has a compact support in the y1 direction, then the y1-periodical
transform of T , denoted by ωT , is defined by

〈ωT,ϕ〉 := 〈T, ωϕ〉, ∀ϕ ∈ D(R2).

These definitions are well-known, we refer for instance to [21] and [22].

Remark 2.1. Let Φ be in D(R2). Then we have

τλ∂iΦ = ∂i(τλΦ), ∀λ ∈ Z, (2)

ω(∂iΦ) = ∂i(ωΦ) (3)

and
‖τλΦ‖L2(Z) ≤ ‖Φ‖L2(R2). (4)

As a consequence of equality (3), if u ∈ D′(R2), we also have

ω(∂iu) = ∂i(ωu). (5)

The next lemma is used to prove the density result of Proposition 2.2.

Lemma 2.1. Let K be a compact of R2. Let u be in Hm(R2) and have a compact support

included in K. Then we have

‖ω u‖Hm(Z) ≤ N(K)‖u‖Hm(R2),

where N(K) is an integer only depending on K.

Proof. Let us first notice that, since K is compact, there is a finite number of λ ∈ Z such
that supp(τλu) ∩ [0, 1] × R is not an empty set. This number is bounded by a finite integer
N(K) that only depends on K. It follows that ω u is a finite sum and

‖ω u‖L2(Z) ≤ N(K)‖u‖L2(R2).

The end of the proof then follows from (5).

We now define the following spaces

C∞
# (Z) := { ϕ : Z 7→ R, y1 7→ ϕ(y ) ∈ C∞([0, 1]) 1-periodic, y2 7→ ϕ(y ) ∈ C∞(R)},

D#(Z) := { ϕ : Z 7→ R, y1 7→ ϕ(y ) ∈ C∞([0, 1]) 1-periodic, y2 7→ ϕ(y ) ∈ D(R)},
S#(Z) := { ϕ : Z 7→ R, y1 7→ ϕ(y ) ∈ C∞([0, 1]) 1-periodic, y2 7→ ϕ(y ) ∈ S(R)}.

The dual spaces of D#(Z) and S#(Z) are denoted by D′
#(Z) and S ′

#(Z) respectively.
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2.2. Weighted Sobolev spaces in an infinite strip

We introduce the weight

ρ ≡ ρ(y2) :=
(

1 + y22
)1/2

.

Observe that, for λ ∈ N and for γ ∈ R, as |y2| tends to infinity, we have

∣

∣

∣

∣

∂λργ

∂yλ2

∣

∣

∣

∣

≤ Cργ−λ. (6)

For α ∈ R, we define the weighted space

L2
α(Z) ≡ H0

α,#(Z) = {u ∈ D′(Z), ραu ∈ L2(Z)},

which is a Banach space equipped with the norm

‖u‖L2
α(Z)

= ‖ραu‖L2(Z).

Proposition 2.1. The space D(Z) is dense in L2
α(Z).

Proof. Let u be in L2
α(Z). Then, by definition of the space L2

α(Z), it follows that ρ
αu ∈ L2(Z).

Therefore there exists a sequence (un)n∈N ⊂ D(Z) such that un converges to ραu in L2(Z) as
n→ ∞. Thus, setting vn = ρ−αun, we see that vn converges to u in L2

α(Z) as n→ ∞.

Remark 2.2. Observe that we have the algebraic inclusion D(Z) ⊂ D#(Z). It follows that
the space D#(Z) is dense in L2

α(Z).

For a non-negative integer m and a real number α, we set

k = k(m,α) :=

{

−1 if α /∈ {1/2, ...,m − 1/2}
m− 1/2− α if α ∈ {1/2, ...,m − 1/2}

and we introduce the weighted Sobolev space

Hm
α,#(Z) := {u ∈ D′

#(Z);∀λ ∈ N
2,0 ≤ |λ| ≤ k, ρ−m+|λ|(ln(1 + ρ2))−1∂λu ∈ L2

α(Z),

k + 1 ≤ |λ| ≤ m, ρ−m+|λ|∂λu ∈ L2
α(Z)},

which is a Banach space when endowed with the norm

‖u‖Hm
α,#(Z) :=





∑

0≤|λ|≤k

‖ρ−m+|λ|(ln(1 + ρ2))−1∂λu‖2L2
α(Z)

+
∑

k+1≤|λ|≤m

‖ρ−m+|λ|∂λu‖2L2
α(Z)





1/2

.

We define the semi-norm

|u|Hm
α,#(Z) :=





∑

|λ|=m

‖∂λu‖2L2
α(Z)





1/2

.

Observe that the logarithmic weight function only appears for the so-called critical cases
α ∈ {1/2, ...,m − 1/2}. Local properties of the spaces Hm

α,#(Z) coincide with those of the
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classical Sobolev space Hm
# (Z). When α /∈ {1/2, ...,m− 1/2} we have the following algebraic

and topological inclusions :

Hm
α,#(Z) ⊂ Hm−1

α−1,#(Z) ⊂ ... ⊂ L2
α−m(Z). (7)

When α ∈ {1/2, ...,m − 1/2}, the logarithmic weight function appears, so that we only have
the inclusions

Hm
α,#(Z) ⊂ ... ⊂ H

m−α+1/2
1/2,# (Z). (8)

Observe that the mapping

u ∈ Hm
α,#(Z) 7→ ∂λu ∈ H

m−|λ|
α,# (Z) (9)

is continuous for λ ∈ N2. Using (6), for α, γ ∈ R such that α /∈ {1/2, ...,m − 1/2} and
α− γ /∈ {1/2, ...,m − 1/2}, the mapping

u ∈ Hm
α,#(Z) 7→ ργu ∈ Hm

α−γ,#(Z) (10)

is an isomorphism.
Let q be the greatest non-negative integer such that yq2 ∈ Hm

α,#(Z). An easy computation
shows that q reads :

q ≡ q(m,α) :=

{

m− 3/2− α, if α+ 1/2 ∈ {i ∈ Z; i ≤ 0},
[m− 1/2− α], otherwise.

(11)

For example (see also tab. 1), if m = 0 one has :

q = q(0, α) :=

{

−3/2 − α, if α = ±(12 + i), i ∈ Z∗,
[−1/2 − α], otherwise.

(12)

m \ α
[

−5
2 ;−3

2

[ [

−3
2 ;−1

2

[ [

−1
2 ;

1
2

[ [

1
2 ;

3
2

[

P′
q(0,α) P′

1 P′
0 0 0

P′
q(1,α) P′

2 P′
1 P′

0 0

P′
q(2,α) P′

3 P′
2 P′

1 P′
0

Table 1: Polynomial spaces included in H
m
α,#(Z) for various values of α and m

Proposition 2.2. The space D#(Z) is dense in Hm
α,#(Z).

Proof. The idea of the proof comes from [1] and [23]. Let u be in Hm
α,#(Z).

(i) We first approximate u by functions with compact support in the y2 direction. Let
Φ ∈ C∞([0,∞[) such that Φ(t) = 0 for 0 ≤ t ≤ 1, 0 ≤ Φ(t) ≤ 1, for 1 ≤ t ≤ 2 and
Φ(t) = 1, for t ≥ 2. For ℓ ∈ N, we introduce the function Φℓ, defined by

Φℓ(t) =











Φ

(

ℓ

ln t

)

if t > 1,

1 otherwise.

(13)
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Note that we have Φℓ(t) = 1 if 0 ≤ t ≤ eℓ/2, 0 ≤ Φℓ(t) ≤ 1 if eℓ/2 ≤ t ≤ eℓ and Φℓ(t) = 0
if t ≥ eℓ. Moreover, for all ℓ ≥ 2, t ∈ [eℓ/2, eℓ], λ ∈ N, owing that t ≤

√
1 + t2 ≤

√
2 t

and ln t ≤ ln(2 + t2) ≤ 3 ln t, we prove that (see [1], Lemma 7.1):
∣

∣

∣

∣

dλ

dtλ
Φ

(

ℓ

ln t

)∣

∣

∣

∣

≤ C

(1 + t2)λ/2 ln(2 + t2)
,

where C is a constant independent of ℓ. We set uℓ(y ) = u(y )Φℓ(y2). Then, proceeding
as in [1] (Theorem 7.2), one checks easily that uℓ belongs to Hm

α,#(Z), has a compact
support in the y2 direction, and that uℓ converges to u in Hm

α,#(Z) as ℓ tends to ∞.
Thus, the functions of Hm

α,#(Z) with compact support in the y2 direction are dense in
Hm
α,#(Z) and, we may assume that u has a compact support in the y2 direction.

(ii) Let θ be a periodical D(R)-partition of unity and let (αj)j∈N be a sequence such that
αj ∈ D(R2), αj ≥ 0,

∫

R2 αj(x )dx = 1 and the support of αj is included in the closed
ball of radius rj > 0 and centered at (0, 0) where rj → 0 as j → ∞. It is well known that
as j → ∞, αj converges in the distributional sense to the Dirac distribution. We set
w(y ) = θ(y1)u(y ). Then w belongs to Hm(R2) and has a compact support. Moreover,
since ωθ = 1, we have ωw = ω(θu) = (ωθ)u = u. We define ϕj = w ∗ αj . Then ϕj
belongs to D(R2) and converges to w in Hm(R2) as j tends to ∞. Let ψj = ωϕj , then
ψj belongs to D#(Z) and thanks to Lemma 2.1, ψj converges to ω w = u in Hm

α,#(Z) as
j tends to ∞.

The above proposition implies that the dual space of Hm
α,#(Z) denoted by H−m

−α,#(Z) is a
subspace of D′

#(Z).

3. Weighted Poincaré estimates

Let R be a positive real number. For β 6= −1, one uses the standard Hardy estimates:
∫ ∞

R
|f(r)|2rβdr ≤

(

2

β + 1

)2 ∫ ∞

R
|f ′(r)|2rβ+2dr, (14)

while for the specific case when β = −1, one switches to
∫ ∞

R

|f(r)|2
(ln r)2 r

dr ≤
(

4

3

)2 ∫ ∞

R
|f ′(r)|2 rdr.

We now introduce the truncated domain

ZR :=]0, 1[×(] −∞,−R[∪]R,+∞[).

Using the above Hardy inequalities in the y2 direction, we can easily prove the following
lemma.

Lemma 3.1. Let α, R > 1 be real numbers and let m ≥ 1 be an integer. Then there exists a

constant Cmα such that

∀ϕ ∈ D#(ZR), ‖ϕ‖Hm
α,#(ZR) ≤ Cmα ‖∂2ϕ‖Hm−1

α,# (ZR). (15)

As a consequence, we also have

∀ϕ ∈ D#(ZR), ‖ϕ‖Hm
α,#(ZR) ≤ Cmα |ϕ|Hm

α,#(ZR). (16)

7



For the particular case when α ∈ {1/2, ...,m − 1/2}, (16) cannot hold without introducing
logarithmic weights in the definition of the space Hm

α,#(Z).
Proceeding as in [1] (Theorem 8.3), we have the Poincaré-type inequalities :

Theorem 3.1. Let α be a real number and m ≥ 1 an integer. Let j := min(q(m,α),m − 1)
where q(m,α) is defined by (11). Then there exists a constant C > 0, such that for any

u ∈ Hm
α,#(Z), we have

inf
λ∈P′

j

‖u+ λ‖Hm
α,#(Z) ≤ C|u|Hm

α,#(Z). (17)

In other words, the semi-norm |.|Hm
α,#(Z) defines on Hm

α,#(Z)/P
′
j a norm which is equivalent

to the quotient norm.

4. The mixed Fourier transform (MFT) and the Green function

The purpose of this section is twofold:

(i) we look for the fundamental solution for the Laplace equation in Z,

(ii) we estimate the convolution with this solution in weighted Sobolev spaces.

To achieve this goal, we define the MFT and an adequate functional setting.

4.1. Rapidly decreasing functions

Let set Γ := Z× R and let us write the locally convex linear topological spaces :

S̃(Γ) :=
{

ϕ̃ : Z× R → R s.t. ∀k ∈ Z ϕ̃(k, ·) ∈ S(R)

and sup
k∈Z,l∈R

∣

∣

∣
kαlβ∂γlγ ϕ̃(k, l)

∣

∣

∣
<∞, ∀(α, β, γ) ∈ N

3

}

.

The space S̃(Γ) is endowed with the semi-norms

|ϕ̃|α,β,γ := sup
k∈Z,l∈R

∣

∣

∣
kα

′
lβ

′
∂γ

′

lγ′
ϕ̃
∣

∣

∣
, ∀α′ ≤ α, β′ ≤ β, γ′ ≤ γ.

We define also

l2(Z;L2(R)) :=

{

u ∈ S̃ ′(Γ) s.t.
∑

k∈Z

|u(k, ·)|2L2(R) <∞
}

.

Proposition 4.1. S̃(Γ) is dense in l2(Z;L2(R)).

Proof. As u ∈ l2(Z;L2(R))

∀ǫ > 0 ∃k0 > 0 s.t.
∑

|k|>k0

‖u(k, ·)‖2L2(R) <
ǫ

2
.

We set

uδ :=

{

uδ(k, ·) if |k| < k0,

0 otherwise ,

8



where uδ(k, ·) is a standard smooth approximation of u(k, ·) in D(R). Then, we choose δ(k0)
s.t.

∀k s.t. |k| ≤ k0

∥

∥

∥u(k, ·)− uδ(k, ·)
∥

∥

∥

2

L2(R)
<

ǫ

2k0
,

which finally gives
∥

∥

∥
u− uδ

∥

∥

∥

2

l2(Z;L2(R))
≤
∑

|k|≤k0

∥

∥

∥
u(k, ·)− uδ(k, ·)

∥

∥

∥

2

L2(R)
+
∑

|k|>k0

‖u(k, ·)‖2L2(R) < ǫ

which proves the claim, since uδ trivially belongs to S̃(Γ).

Definition 4.1. We define the MFT operator F : S#(Z) → S̃(Γ) as

F(ϕ)(k, l) :=

∫

Z
ϕ(y)e−i(k̃y1+l̃y2)dy , ∀(k, l) ∈ Γ,

where k̃ := 2πk, and the same holds for l̃.

We list below some basic tools concerning the MFT needed in the remaining of the paper.
They can be proved following classical arguments ([24], [25], [26]).

Proposition 4.2. (i) The operator F : S#(Z) → S̃(Γ) is an isomorphism and the inverse

operator is explicit:

F−1(ϕ̃)(y) =
∑

k∈Z

∫

R

ϕ̃(k, l)ei(k̃y1+l̃y2)dl, ∀ϕ̃ ∈ S̃(Γ), ∀y ∈ Z.

(ii) One has in a classical way, for any (f, g) ∈ S#(Z)× S#(Z), that
∫

Z
f · g dy =

∑

k

∫

R

F(f)(k, l) · F(g)(k, l)dl, and F(f ∗ g) = F(f)F(g), ∀(k, l) ∈ Γ.

4.2. Tempered distributions and MFT

In a quite natural manner we extend the concepts introduced above to tempered distri-
butions.

Definition 4.2. (i) A linear form T̃ acting on S̃(Γ) is s.t. ∃(α, β, γ) ∈ N3

∣

∣

∣
T̃ (ϕ̃)

∣

∣

∣
≤ C|ϕ̃|α,β,γ , ∀ϕ̃ ∈ S̃(Γ).

(ii) The MFT applied to a tempered distribution T ∈ S ′
#(Z) is defined as

< F(T ), ϕ̃ >S̃′,S̃= F(T )(ϕ̃) := T (FT (ϕ̃)) =< T,FT (ϕ̃) >S′
#×S#

, ∀ϕ̃ ∈ S̃(Γ),

where

FT (ϕ̃) :=
∑

k∈Z

∫

R

ϕ̃(k, l)e−i(k̃y1+l̃y2)dl, ∀ϕ̃ ∈ S̃(Γ), ∀y ∈ Z.

In the same way, we define the reciprocal operator denoted F−1 which associates to each

distribution T̃ ∈ S̃ ′(Γ) a distribution F−1(T̃ ) s.t.

< F−1(T̃ ), ϕ >S′×S :=< T̃ , F̆(ϕ) >S̃′×S̃

where ˘̃ϕ(k, l) = ϕ̃(−k,−l).
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We sum up properties extending classical results of Fourier analysis to our MFT.

Proposition 4.3. (i) If T ∈ S ′
#(Z) then F(T ) ∈ S̃ ′(Γ). Similarly, if T̃ ∈ S̃ ′(Γ) then

F−1(T̃ ) ∈ S ′
#(Z).

(ii) The Dirac measure belongs to S ′
#(Z) and :

F(δ0) = 1, ∀k ∈ Z, a.e. ℓ ∈ R.

(iii) the MFT acts on the derivatives in a polynomial fashion:

∀T ∈ S ′
#(Z), F(∂αT ) = i|α|(k̃α + l̃α)F(T ),

for any multi-index α ∈ N2.

(iv) Plancherel’s Theorem : if f ∈ L2(Z) then the Fourier transform F(Tf ) is defined by a

function F(f) ∈ l2(Z, L2(R)) i.e.

F(Tf ) = TF(f) ∀f ∈ L2(Z) and ‖F(f)‖l2(Z;L2(R)) = ‖f‖L2(Z).

4.3. The Green function for periodic strips

We aim at solving the fundamental equation:

−∆G = δ0 in Z, (18)

stated here in the sense of tempered distributions. Then G should satisfy, in S̃(Γ)′:

(k̃2 + l̃2)F(G) = 1.

Proposition 4.4. The Green function G solving (18) is a tempered distribution and it reads

G(y) =
1

2

{

∑

k∈Z∗

e−|k̃||y2|+ik̃y1

|k̃|
− |y2|

}

= G1(y) +G2(y), ∀y ∈ Z,

where

G1(y) :=
1

2

∑

k∈Z∗

e−|k̃||y2|+ik̃y1

|k̃|
and G2(y) := −1

2
|y2|.

Moreover, one has G1 ∈ L1(Z) ∩ L2(Z) and thus G ∈ L2
loc(Z). The Green function can be

written in a more compact expression :

G(y) = − 1

4π
ln(2 (cosh(2πy2)− cos(2πy1))).

Notice that the Green function is odd with respect to y.

Proof. We define:

G = lim
N→∞

GN := lim
N→∞

∑

|k|<N

Jke
ik̃y1 , with Jk :=

∫

R

eil̃y2

k̃2 + l̃2
dl = lim

R→∞

∫ R

−R

eil̃|y2|

k̃2 + l̃2
dl.

The absolute value in the last right hand side is added as follows:

∫

R

eil̃y2

k̃2 + l̃2
dl =

∫ ∞

0

eil̃y2 + e−il̃y2

k̃2 + l̃2
dl = 2

∫ ∞

0

cos(l̃y2)

k̃2 + l̃2
dl = 2

∫ ∞

0

cos(l̃|y2|)
k̃2 + l̃2

dl.
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Proceeding as in example 1 p. 58 [26], one has, extending the integral to the complex plane,
that

Jk ≡ lim
R→∞

∮

CR

eiz̃|y2|

k̃2 + z̃2
dz = lim

R→∞

∮

CR

eiz̃|y2|

(z̃ + i ˜|k|)(z̃ − i ˜|k|)
dz

= lim
R→∞

1

2π

∮

CR

f(z)

z − i|k|dz = if(i|k|) = e−|k̃||y2|

2|k̃|
,

where CR := {z ∈ C; |z| = R and Im(z) > 0} ∪ ([−R;R] × { 0}) as depicted in fig. 1 and
f(z) := eiz̃|y2|/(z̃ + i ˜|k|), being a holomorphic function inside CR. The 1D-Fourier transform

(R, 0) Re(z)

Im(z)

CR

(−R, 0)

Figure 1: Path of integration in the complex plane

of the tempered distribution |y| is −2/l̃2, thus one concludes formally that

J0 =

∫

R

eil̃y2

l̃2
dl = −1

2
|y2|.

The L2 bound is achieved thanks to the Parseval formula

‖G1‖2L2(Z) = ‖F(G1)‖2ℓ2(Z;L2(R)) =
∑

k∈Z∗

∫

R

1

(k̃2 + ℓ̃2)2
dℓ ≤ C

∑

k∈Z∗

1

|k̃|3
≤ C ′.

One recalls the expansion in series of the logarithm :

ln(1− z) = −
∞
∑

k=1

zk

k
, ∀z ∈ C : |z| < 1.

Thus for y 6= 0

G1(y ) = − 1

2π
Re ln

{

1− e2π(−|y2|+iy1)
}

= − 1

2π
ln
∣

∣

∣
1− e2π(−|y2|+iy1)

∣

∣

∣

= − 1

2π
ln
{

e−π|y2|
√
2 (cosh(2π|y2|)− cos(2πy1))

1
2

}

=
|y2|
2

− 1

4π
ln(2 (cosh(2πy2)− cos(2πy1))),

which gives the desired result for G.

One can easily obtain the asymptotic behavior of the Green function. As |y2| tends to infinity,
we have

|G(y )| ≤ C|y2|, |∇G(y )| ≤ C and |∂2y 2G(y )| ≤ Ce−2π|y2| ≤ Cρ(y2)
−σ, ∀σ ∈ R. (19)
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Moreover, as |y2| tends to infinity, we also have

|G1(y )| ≤ Cρ(y2)
−σ, ∀σ > 0, ∀y1 ∈ (0, 1). (20)

4.4. Convolution with the fundamental solution in weighted spaces

Before proving weighted estimates on the Green function, we shall define the convolution if
f ∈ D#(Z), i.e.

G ∗ f =

∫

Z
G(x − y ) f(y ) dy =

∫

Z
G(y ) f(x − y ) dy .

Thus the convolution G∗f belongs to C∞
# (Z). Moreover, thanks to (18), we have ∆(G∗f) = f

in Z.

4.5. Homogeneous estimates

Definition 4.3. For any function f in L2(Z) the horizontal average f reads :

f(y2) :=

∫ 1

0
f(y1, y2)dy1.

Lemma 4.1. For any h ∈ S#(Z) such that h ≡ 0 one has :

∂αG2 ∗ h = 0, a.e. in Z, α ∈ {0, 1, 2}.

Proof. G2 is a tempered distribution, the convolution with h ∈ S#(Z) makes sense :

< G2 ∗ h, ϕ >S′
#(Z)×S#(Z) =

1

2

∫

R

|x2|
∫

Z
h(x2 + y2)dz ϕ(y)dydx2 = 0.

The same proof holds for derivatives as well. As this is true for every ϕ ∈ S#(Z), the result
is proved.

Proposition 4.5. Let f ∈ L2(Z). Then there exists a constant independent on f s.t.

∥

∥G ∗ (f − f)
∥

∥

H2
#(Z)

≤ C‖f‖Hm−2
# (Z),

where C is a constant independent on f .

Proof. First we show the lemma for f ∈ S#(Z), then by density the result is extended to
L2(Z) functions. We set h := f − f . Thanks to lemma above ∂αG ∗ h = ∂αG1 ∗ h. As G1

belongs to L2(Z), one is allowed to apply the MFT in the strong sense. It provides :

‖∂αG ∗ h‖2L2 = ‖∂αG1 ∗ h‖2L2 =
∥

∥

∥(ik̃)α1(iℓ)α2Ĝ1ĥ
∥

∥

∥

2

l2L2
=
∑

k∈Z∗

∫

R

|k̃|2α1 |ℓ̃|2α2

(k̃2 + ℓ̃2)2

∣

∣

∣ĥ(k, ℓ)
∣

∣

∣

2
dℓ

≤ C
∑

k∈Z∗

∫

R

∣

∣

∣
ĥ(k, ℓ)

∣

∣

∣

2
dℓ ≡ C

∥

∥

∥
ĥ
∥

∥

∥

2

l2(Z;L2(R))
= C‖h‖2L2(Z)

where α is a multi index s.t. |α| ∈ {0, 1, 2}. The summation in k is performed in Z∗, this is
crucial when estimating |k̃|2α1 |ℓ̃|2α2/(k̃2 + ℓ̃2)2 by a constant.
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4.6. Non-homogeneous estimates

We extend here the above results to the weighted context. We start by stating three
lemmas.

Lemma 4.2. We define the horizontal Fourier transform, given f ∈ L2(Z)

Fk(f)(k, y2) :=
∫ 1

0
f(y1, y2)e

−ik̃y1dy1, ∀k ∈ Z, a.e y2 ∈ R.

If we define the convolution operators : for g ∈ L1(Z) ∩ L2(Z) and f ∈ L2(Z)

g ∗y f :=

∫

Z
g(x− y)f(y)dy, (g ∗y2 f)(x1, x2, z1) :=

∫

R

g(x1, x2 − y2)f(z1, y2)dy2,

then one has

Fk(g ∗y f)(k, x2) = (Fkg ∗y2 Fkf)(k, x2), ∀k ∈ Z, a.e. x2 ∈ R.

Proof. If f ∈ L2(Z) and g ∈ (L1∩L2)(Z) then the convolution with respect to both variables
is well defined. Setting

(f ∗y1 g)(x1, x2, z2) :=
∫

R

f(x1 − y1, x2)g(y1, z2)dy1,

almost everywhere in y2 and for every k ∈ Z one has

Fk (f ∗y1 g(x1, x2 − y2, y2)) = (Fkf)(k, x2 − y2)(Fkg)(k, y2).

Integrals in the vertical direction commute with the horizontal Fourier transform due to
Fubini’s theorem. So one shall write :
∫

R

Fk (f ∗y1 g) (k, x2 − y2, y2)dy2 = Fk
(∫

R

(f ∗y1 g)(k, x2 − y2, y2)dy2

)

= Fk(f ∗y g)(k, x2),

which ends the proof.

Lemma 4.3. For f ∈ L2
β(Z), one has

‖f‖2L2
β
(Z) =

∑

k∈Z

‖Fk(f)‖2L2
β
(R), ∀β ∈ R.

Lemma 4.4. Let a ∈ R s.t. |a| ≥ 1 then for any real b, one has

I(x) :=

∫

R

e−|a||x−y|ρ(y)−bdy ≤ Cρ(x)−b

|a| , x ∈ R.

Proof. We set |x| = R and let R0 be a real such that R0 > 1. We define three regions of the
real line :

D1 := B(0, R/2), D2 := B(0, 2R) \B(0, R/2), D3 := R \B(0, 2R)

Decomposing the convolution integral in these three parts, one gets :

I(x) =
3
∑

i=1

Ii(x), where Ii(x) =

∫

Di

e−|a||x−y|ρ(y)−b dy.

We have two cases to investigate : R > R0 and R ≤ R0.
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(a) If R > R0

(i) On |y| ≤ R/2, |x− y| ∼ R so that

I1(x) ∼ e−|a|R

∫

|y|≤R
2

(1 + |y|)−bdy.

According to the value of b, one has

I1(x) ≤ Ce−|a|R











1 if b > 1,

R if 0 ≤ b ≤ 1,

R1−b if b < 0.

As R > 1, there holds

e−|a|R ≤ ([σ] + 1)!

(|a|R)σ .

Setting
σ(b) := b1]1,+∞[(b) + (1 + b)1[0,1](b) + 1]−∞,0[(b),

one recovers the claim in that case.
(ii) On R/2 ≤ |y| ≤ 2R, |y| ∼ R

I2(x) ∼ R−b

∫

R
2
≤|y|≤2R

e−|a||x−y| dy,

because |x− y| ≤ 3R, one has I2(x) ∼ R−b/|a|.
(iii) On the rest of the line |y| > 2R, |x− y| ∼ |y|, so that

I3(x) ∼
∫

|y|>2R
e−|a||y||y|−bdy.

Two situations occur :

• either b ≤ 0 then we set b̃ := [−b] + 1 and one has

∫

|y|>2R
e−|a||y||y|−bdy ≤ C

e−|a|R

|a|







Rb̃
b̃
∑

p=0

b̃!

(b̃− p)!
(|a|R)−p







≤ C
e−|a|R

|a| Rb̃ b̃! b̃ ≤ C(b)R−b

|a| .

In the latter inequality we used decreasing properties of the exponential function
in order to fix the correct behavior for large R.

• either b > 0 and one has directly that
∫

|y|>2R
e−|a||y||y|−bdy ≤ R−b

∫

|y|>R
e−|a||y|dy.

(b) Otherwise, if R < R0 then ρ(x− y) ∼ ρ(y), and thus

I(x) ∼
∫

R

e−|a||y|ρ(y)−bdy <
C

|a| .
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Proposition 4.6. Let us set β a positive real number. Then for every f ∈ L2
loc(Z) s.t.

f − f ∈ L2
β(Z)

∥

∥∂αG ∗ (f − f)
∥

∥

L2
β′(Z)

≤ C
∥

∥f − f
∥

∥

L2
β
(Z)
, ∀β′ < β − 1

2
, |α| ∈ {0, 1},

where the constant C is independent of the data.

Proof. Set again h = f − f and suppose that h ∈ S#(Z). By Lemma 4.3 :

‖∂αG ∗ h‖2L2
β′(Z)

= ‖∂αG1 ∗ h‖2L2
β′(Z)

=
∑

k∈Z∗

∥

∥Fk(∂αyG1 ∗y h)
∥

∥

2

L2
β′(R)

=
∑

k∈Z∗

∥

∥

∥
(ik̃)α1Fk(∂α2

y2 G1) ∗y2 Fk(h)
∥

∥

∥

2

L2
β′(R)

.

For all k ∈ Z∗, thanks to Lemma 4.4, a.e. x in Z,

∣

∣

∣
(ik̃)α1Fk(∂α2

y2 G1) ∗y2 Fk(h)
∣

∣

∣
≤
∫

R

e−|k̃||y2−x2|

|k̃|1−|α|
Fk(h)(k, y2)dy2

≤ C‖Fk(h)(k, ·)‖L2
β
(R)

ρ(x2)
−β

|k̃| 32−|α|
≤ C‖Fk(h)(k, ·)‖L2

β
(R)ρ(x2)

−β,

for α multi-index s.t. |α| ∈ {0, 1}. Then

‖∂αG ∗ h‖2L2
β′(Z)

≤
∑

k∈Z∗

‖Fk(h)(k, ·)‖2L2
β
(R)

∫

R

ρ(x2)
2β′−2βdx2 ≤ C‖f‖L2

β
(Z),

if β′ < β − 1/2. As in Proposition 4.5, the result above shall be extended to L2(Z) functions
by density arguments.

Theorem 4.1. Let f ∈ L2
α(Z)⊥P′

1, for any α > 3
2 , one has

‖G2 ∗ f‖L2
α−2−ǫ(Z)

≤ C‖f‖L2
α(Z)

.

Proof. Since the proof is essentially 1D, we consider functions defined in R. The extension to
Z is straightforward. We proceed by duality, namely we expect that

sup
ϕ∈L2

2−α+ǫ(Z)

(G ∗ f, ϕ)
‖ϕ‖L2

2−α+ǫ(Z)

<∞.

We choose f ∈ L2
α(R)⊥P′

1 and (ϕδ)δ ∈ S#(R) s.t. ϕδ → ϕ in L2
2−α+ǫ(R), then |x| ∗ ϕδ is

infinitely differentiable and one can apply the Taylor expansion with an integral remainder :
∫

R

(|x| ∗ ϕδ)(x)f(x)dx

=

∫

R

{

(|x| ∗ ϕδ)(0) + (|x| ∗ ϕδ)′(0).x+

∫ x

0
(|x| ∗ ϕδ)′′(s)(x− s)ds

}

f(x)dx

=

∫

R

f(x)

∫ x

0
(|x| ∗ ϕδ)′′(s)(x− s)dsdx = 2

∫

R

f(x)

∫ x

0
ϕδ(s)(x− s)dsdx

≤ C‖ϕδ‖L2
2−α+ǫ(R)

∫

R

ρα−
1
2
−ǫ(x)|f(x)|dx ≤ C‖ϕδ‖L2

2−α+ǫ(R)
‖f‖L2

α(R)
.
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In the second line we used the orthogonality condition on f in order to cancel the first two
terms in the Taylor expansion. An easy computation shows that if ϕδ → ϕ

ℓ := lim
δ→0

∫

R

(|x| ∗ ϕδ)(x)f(x)dx = 2

∫

R

f(x)

∫ x

0
ϕ(s)(x− s)dsdx, ∀f ∈ L2

α(R)⊥P
′
1.

By Fubini theorem, one is then allowed to write :

2

∫

R

f(x)

∫ x

0
ϕ(s)(x− s)dsdx

= 2

{∫

R
+
s

ϕ(s)

∫ ∞

s
f(x)(x− s)dxds −

∫

R
−
s

ϕ(s)

∫ s

−∞
f(x)(x− s)dxds

}

= −2

∫

Rs

ϕ(s)

∫ s

−∞
f(x)(x− s)dxds

=

∫

Rs

ϕ(s)

{∫ ∞

s
f(x)(x− s)dx−

∫ s

−∞
f(x)(x− s)dx

}

ds

=

∫

R

ϕ(s)

∫

Rx

f(x)|x− s|dx ds ≡
∫

R

(|x| ∗ f)(s)ϕ(s)ds,

which ends the proof.

Lemma 4.5. If α > 1
2 , and if f ∈ L2

α(Z)⊥R, then

∥

∥sgn ∗ f
∥

∥

L2
α−1−ǫ(Z)

≤ C‖f‖L2
α(Z)

.

Proof. In a first step f does not satisfy the polar condition. Under sufficient integrability
conditions, one writes :

(sgn(x2) ∗ f)(x ) = −
∫

y2<x2

fdy2 +

∫

y2>x2

fdy2.

For x2 tending to infinity, f ∗ sgn(x2) behaves as sgn(x2)
∫

R
f . Indeed

∣

∣

∣

∣

(sgn(x2) ∗ f)(x )− sgn(x2)

∫

f

∣

∣

∣

∣

= 2

∣

∣

∣

∣

(∫ x2

−∞
f(s)ds

)1R−(x2)−
(∫ ∞

x2

f(s)ds

)1R+(x2)

∣

∣

∣

∣

≤ 2‖f‖L2
α(Z)

(

{∫ x2

−∞
ρ−2α(y2)dy2

}
1
2 1R−(x2) +

{∫ ∞

x2

ρ−2α(y2)dy2

}
1
2 1R+(x2)

)

≤ C‖f‖L2
α(Z)

ρ
1
2
−α(x2).

Then taking the square, multiplying by ρ2β and integrating wrt x

∥

∥

∥

∥

sgn(x2) ∗ f − sgn(x)

∫

f

∥

∥

∥

∥

2

L2
β
(Z)

≤ C‖f‖2L2
α(Z)

∫

R

ρ1−2α+2β(x2)dx2,

which is bounded, provided that β < α − 1. Taking into account the polar condition f⊥R

gives then the claim.

Similarly to Theorem 4.1, thanks to the previous lemma, one gets that
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Theorem 4.2. Let f ∈ L2
α(Z)⊥R then for any α ∈]12 , 32 ] one has

‖G2 ∗ f‖L2
α−2−ǫ(Z)/R

≤ C‖f‖L2
α(Z)

.

Proof. As previously, the proof is essentially 1D. Let us choose f ∈ L2
α(R)⊥R and (ϕδ)δ ∈

S#(R)⊥R s.t. ϕδ → ϕ in L2
2−α+ǫ(R)⊥R then |x| ∗ ϕδ is infinitely differentiable and one can

apply the Taylor expansion with the integral rest :
∫

R

(|x| ∗ ϕδ)(x)f(x)dx

=

∫

R

{

(|x| ∗ ϕδ)(0) +
∫ x

0
(ϕδ ∗ sgn)(s)ds

}

f(x)dx ≡
∫

R

f(x)

∫ x

0
(ϕδ ∗ sgn)(s)dsdx.

Proceeding as in the proof of Lemma 4.5, one has
∣

∣

∣

∣

∫ x

0
ϕδ ∗ sgn(s) ds

∣

∣

∣

∣

≤ ‖ϕδ‖L2
2−α+ǫ(Z)

ρα−
1
2
−ǫ(x),

leading to
∥

∥

∥

∥

∫ x

0
(ϕδ ∗ sgn)(s)ds

∥

∥

∥

∥

L2
−α(R)

≤ C‖ϕδ‖L2
2−α+ǫ(R)

,

with α < 3
2 + ǫ. Thus one has

∣

∣

∣

∣

∫

R

(|x| ∗ ϕδ)(x)f(x)dxdy
∣

∣

∣

∣

≤ C‖f‖L2
α(R)

‖ϕδ‖L2
2−α+ǫ(R)

.

Moreover, one needs that R ∈ L2
−α(R), which is true if α > 1

2 . It is not difficult to prove by
similar arguments that

lim
δ→0

∫ x

0
(ϕδ ∗ sgn)(s)ds =

∫ x

0
(ϕ ∗ sgn)(s)ds

strongly in the L2
−α(R) topology. As in the proof of Lemma 4.5, by Fubini,

∫ x

0
(sgn ∗ ϕ)(s)ds = 2

∫ x

0

{∫ s

−∞
ϕ(t)dt1s<0(s)−

∫ ∞

s
ϕ(t)dt1s>0(s)

}

ds =: 2

∫ x

0
g(s)ds.

As g is a C1 function on any compact set in R, one can integrate by parts on (0, x) :

∫ x

0
g(s)ds = [g(s)s]x0 −

∫ x

0
g′(s) s ds.

Using this in the right hand side of the previous limit, one writes

J :=

∫

R

f(x)

∫ x

0
(ϕ ∗ sgn)(s)dsdx = 2

∫

R

f(x)

{

g(x)x−
∫ x

0
g′(s) s ds

}

dx

= 2

{∫

R−

f(x)x

∫ x

−∞
ϕ(t)dtdx −

∫

R+

f(x)x

∫ ∞

x
ϕ(t)dtdx −

∫

R

f(x)

∫ x

0
ϕ(s) s ds

}

= 2

∫

R

f(x)x

∫ x

−∞
ϕ(t)dtdx − 2

∫

R

f(x)

∫ x

0
ϕ(s) s ds dx =: A−B.
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By Hölder estimates the integrals above are well defined. Fubini’s theorem allows then to
switch integration order. Using the orthogonality condition on ϕ and on f , one may easily
show that











































































A = 2

∫

Rx

f(x)x

(
∫ x

−∞
ϕ(t)dt

)

dx =

∫

R

f(x)x

{
∫ x

−∞
ϕ(s)ds −

∫ ∞

x
ϕ(s)ds

}

dx

=

∫

Rs

ϕ(s)

{
∫ ∞

s
xf(x)dx−

∫ s

−∞
xf(x)dx

}

ds,

B = 2

{
∫

R+

f(x)

∫ x

0
s ϕ(s) ds dx−

∫

R−

f(x)

∫ 0

x
s ϕ(s) ds dx

}

= 2

{∫

R+

s ϕ(s)

∫ ∞

s
f(x)dxds−

∫

R−

s ϕ(s)

∫ s

−∞
f(x)dxds

}

= −2

∫

R

s ϕ(s)

∫ s

−∞
f(x)dxds =

∫

R

s ϕ(s)

{
∫ ∞

s
f(x)dxds −

∫ s

−∞
f(x)dx

}

ds.

These computations give :

A−B =

∫

Rs

ϕ(s)

{
∫ ∞

s
(x− s)f(x)dx−

∫ s

−∞
(x− s)f(x)dx

}

ds

=

∫

R

ϕ(s)

∫

R

|x− s|f(x)dxds =
∫

R

ϕ(s)(|x| ∗ f)(s)ds.

And because

inf
λ∈R

‖|x| ∗ f + λ‖L2
α−(2+ǫ)

(R) = sup
ϕ∈L2

(2+ǫ)−α
(R)⊥R

(|x| ∗ f, ϕ)
‖ϕ‖L2

(2+ǫ)−α
(R)

,

the final claim follows.

Theorem 4.3. Assume α > 1/2 and recall that q(0,−α) is defined by (12). Then the operator

defined by the convolution with the fundamental solution G is a mapping from L2
α(Z)⊥P

′∆
q(0,−α)

on H1
α−1−ǫ,#(Z) ∩H2

α−2−ǫ,#(Z)/P
′∆
[3/2−α] for any ǫ > 0.

Proof. One follows the same lines as in the proof of Theorem 1 p. 786 in [20]. More precisely,
by Theorems 4.1 and 4.2, Prop. 4.6 and Lemma 4.5, the convolution with G maps also
L2
α(Z)⊥P

′∆
q(0,−α) on H1

α−1−ǫ,#(Z)/P
′∆
[3/2−α]. Thus for f ∈ L2

α(Z)⊥P
′∆
q(0,−α), let u = G ∗ f ∈

L2
α−2−ǫ,#(Z)/P

′∆
[3/2−α]. Then for any φ ∈ D#(Z), 〈∆(G ∗ f), φ〉 = 〈f,G ∗∆φ〉 = 〈f, φ〉 which

implies that ∆u = f in the sense of distribution. But since u ∈ L2
α−2−ǫ,#(Z)/P

′∆
[3/2−α] and

∆u ∈ L2
α(Z)⊥P

′∆
q(0,−α), using a dyadic partition of unity [27] and standard inner regularity

results (see for instance a similar proof in Theorem 3.1 in [28] or chap I in [29]), one has that:

∑

|γ|=2

∥

∥ρ−γDγu
∥

∥

2

L2
α−ǫ(Z)

≤ C
(

‖∆u‖2L2
α−ǫ(Z)

+ ‖u‖2H1
α−1−ǫ,#(Z)

)

,

where the constant does not depend on u. These estimates are not isotropic with respect
to the weight. Taking the lowest weight in front of the second order derivative ends the
proof.
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4.7. Convolution and duality

We generalize the latter convolutions to weak data, namely, when f ∈ H−1
α,#(Z).

Proposition 4.7. For β < 1
2 and f ∈ H−1

β,#(Z)⊥P
′∆
[ 1
2
+β]

one has :

‖G ∗ f‖L2
β−1−ǫ

(Z)/P
′∆

[ 12−β]

≤ C‖f‖H−1
β,#(Z),

where C is independent on f .

Proof. Using Theorem 4.3 with α = (1 + ǫ)− β, which is possible since β < 1/2, one has

〈f,G ∗ ϕ〉H−1
β,#(Z)⊥P

′∆

[ 12+β]
×H1

−β,#(Z)/P
′∆

[12+β]

≤ ‖f‖H−1
β,#(Z)‖G ∗ ϕ‖H1

−β,#(Z)/P
′∆

[ 12+β]

≤ C‖f‖H−1
β,#(Z)‖ϕ‖L2

(1+ǫ)−β
(Z)⊥P

′∆
q(0,β−(1+ǫ))

.

as ǫ is positive and arbitrarily small q(0, β− (1+ ǫ)) = [1/2−β]. Hence taking the supremum
over all ϕ ∈ L2

α(Z)⊥P
′∆
[1/2−β], ends the proof.

5. The Laplace equation in a periodic infinite strip

In this section we study the problem
{

−∆u = f in Z,

u is 1-periodic in the y1 direction
(21)

in the variational context. Firstly, we characterize of the kernel of the Laplace operator.

Proposition 5.1. Let m ≥ 1 be an integer, α be a real number and j = min{q(m,α), 1}
where q(m,α) is defined by (11). A function u ∈ Hm

α,#(Z) satisfies ∆u = 0 if and only if

u ∈ P
′∆
j .

Proof. Since j ≤ 1, it is clear that if u ∈ P
′∆
j , then ∆u = 0. Conversely, let u ∈ S ′

#(Z)
satisfies ∆u = 0. We apply the MFT : in the sense defined in Definition 4.2, one has

(k̃2 + l̃2)F(u) = 0, ∀k ∈ Z, a.e. l ∈ R,

which implies that

F(u) =

{

∑p
j=0 δ

j
y2=0(l) if k ≡ 0

0 otherwise

where p is a non negative integer. A simple computation shows that F−1(F(u)) =
∑p

j=0(iy2)
j ,

indeed

〈

F−1 (F(u)) , ϕ
〉

S′
#,S#

=
〈

F(u), F̆ (ϕ)
〉

S̃′(Γ),S̃(Γ)
=

〈

p
∑

j=0

δj0, F̆(ϕ)(0, ·)
〉

S′(R)×S(R)

=

p
∑

j=0

(−1)j 〈δ0, ∂jϕ̂〉S′(R)×S(R) =

p
∑

j=0

(−1)j
〈

δ0, ̂((iy2)jϕ)
〉

S′(R)×S(R)

=

p
∑

j=0

(−1)j
∫

R

(iy2)
jϕ(y )dy =

〈

p
∑

j=0

(−iy2)j, ϕ
〉

S′
#×S#

,

where ϕ̂ denotes the usual 1-dimensional Fourier transform on R.
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We establish a Poincaré-Wirtinger’s type inequality.

Lemma 5.1. For every u ∈ H1
α,#(Z) with α ∈ R, one has

‖u− u‖L2
α(Z)

≤ |u|H1
α,#(Z),

Proof. If u ∈ H1
α,#(Z) then ∂λu ∈ L2

loc(Z) for all 0 ≤ | λ| ≤ 1. In particular, almost

everywhere in y2 one has ∂λu(·, y2) in L2(0, 1). Applying Parseval in the y1 direction one
gets :

‖u− u‖2L2(0,1) =
∑

k∈Z∗

|û(k)|2 and ‖∂1u‖2L2(0,1) =
∑

k∈Z∗

|k|2|û(k)|2

for almost every y2 ∈ R. This obviously gives

‖u− u‖2L2(0,1) ≤ ‖∂1u‖2L2(0,1) a.e. y2 ∈ R.

Integrating then with respect to the vertical weight, one gets the desired estimates.

In order to state existence and uniqueness results for solutions of (21), we first deal with the
Laplace operator in the truncated domain ZR :=]0, 1[×(] −∞,−R[∪]R,+∞[) :

{

−∆u = f in ZR,

u = 0 on y2 = ±R.
(22)

Lemma 5.2. Let α be any real number. If f ∈ H−1
α,#(Z) there exists R(α) large enough such

that problem (22) has a unique solution u ∈ H1
α,#(ZR(α)).

Proof. First we notice that H−1
α,#(Z) ⊂ H−1

α,#(ZR). Then the proof relies on an inf-sup argu-
ment similar to the one used in [18] (the main difference being the nature of weights : in [18]
the author derives similar estimates for exponential weights on a half strip). Indeed, we set

v := ω2(u− u) + ψ(u), ω := ρα, and ψ(u) :=



























∫ y2

R
ω2∂y2u(s) ds if y2 > R

0 if |y2| ≤ R

−
∫ −R

y2

ω2∂y2u(s) ds otherwise.

First of all, we check that v ∈ H1
−α,#(ZR).

∇v = ∇(ω2)(u− u) + ω2∇u.

An application of Lemma 5.1 proves that

‖∇v‖L2
−α(ZR) ≤ C|u|H1

α,#(ZR).

which guarantees, through Hardy estimates, that indeed v belongs to H1
−α,#(ZR). Secondly,

we write

a(u, v) =

∫

ZR

∇u · ∇v dy =

∫

ZR

|∇u|2ω2 dy +

∫

ZR

∇u · ∇(ω2) (u− u) dy .
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Using Cauchy-Schwarz, we estimate the formula above as :

∫

ZR

∇u · ∇(ω2) (u− u) dy ≤ 2

(
∫

ZR

|∇u|2ω2 dy

) 1
2
(
∫

ZR

|u− u|2|∇ω|2 dy
) 1

2

.

Since |∇ρ| < 1, one also has that

|∇ω|2
ω2

≤ α2

ρ2(R)
, ∀y ∈ ZR,

which gives then

∫

ZR

∇u · ∇(ω2) (u− u) dy ≤ |α|
ρ(R)

∫

ZR

|∇u|2ω2 dy .

This in turn implies that

a(u, v) ≥
(

1− 2
|α|
ρ(R)

)

|u|2H1
α,#(ZR) ≥ C(R,α)|u|H1

α,#(ZR)|v|H1
−α,#(ZR).

For every fixed α there exists R large enough s.t. C(R,α) > 0. This proves that the operator
a(·, v) is onto from H1

α,#(Z) to H
−1
α,#(Z). In the same way, the adjoint operator is injective.

Indeed (taking ω = ρ−α above), for all u ∈ H1
−α,#(ZR) there exists a v ∈ H1

α,#(ZR) s.t.

a(u, v) ≥
(

1− 2
|α|
ρ(R)

)

|u|2H1
−α,#(ZR) ≥ k|u|H1

−α,#(ZR)|v|H1
α,#(ZR).

and one concludes using the classical Banach-Babuška-Nečas result (see Theorem 2.6 p. 85
in [30]).

We next solve the Laplace equation in the domain ZR ∪ ZR.

Lemma 5.3. Provided that f ∈ H−1
α,#(Z), there exists a unique solution u0 ∈ H1

α,#(Z) solving:

{

−∆u0 = f in ZR ∪ ZR,
u0 = 0 on {y2 = ±R}.

(23)

Moreover, if f⊥R, and setting

h± := 〈[∂y2u0] , 1〉
H

− 1
2

# ({y2=±R}),H
1
2
# ({y2=±R})

,

where the brackets [·] denote the jump across interfaces {y2 = ±R}, i.e.

[∂y2u0] = lim
y2→R+

∂y2u0(y1, y2)− lim
y2→R−

∂y2u0(y1, y2),

then h satisfies :

h+ + h− ≡ 0. (24)
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Proof. By Lemma 5.2 there exists a unique u0 in H1
α,#(Z) for every α ∈ R. By truncation

and approximation (following the same steps as in Lemma 6.2 and Proposition 6.1), we set

fδ = (fΦδ) ∗ αδ, f̃δ := fδ − f δ,

where Φδ and αδ are chosen as in Proposition 2.2. An easy check shows that

f̃δ ∈ D#(Z), f̃δ⊥R = 0.

We then compute u0,δ solving (23) with the data f̃δ. One has

‖u0,δ‖H1
α,#(Z) = ‖u0,δ‖H1

α,#(ZR∪ZR) ≤ C
∥

∥

∥
f̃δ

∥

∥

∥

H−1
α,#(ZR∪ZR)

≤ C
∥

∥

∥f̃δ

∥

∥

∥

H−1
α,#(Z)

≤ C‖f‖H−1
α,#(Z),

‖u0,δ − u0‖H1
α,#(Z) ≤ C

∥

∥

∥
f̃δ − f

∥

∥

∥

H−1
α,#(Z)

‖[∂y2u0,δ]− [∂y2u0]‖H− 1
2 ({y2=±R})

≤ C‖u0,δ − u0‖H1
α,#(Z) ≤ C

∥

∥

∥
f̃δ − f

∥

∥

∥

H−1
α,#(Z)

.

(25)

Moreover, for every ϕ ∈ D#(Z), one might write

〈−∆u0,δ, ϕ〉 = −〈u0,δ,∆ϕ〉 = −
∫

ZR∪ZR

u0,δ∆ϕdy

= −
∫

(0,1)
[∂y2u0,δ]{y2=±R} ϕ(y1,±R) dy1 + 〈f̃δ, ϕ〉,

the latter equality being true because u0,δ is in the domain of the operator : the Green formula
holds. By density, one extends the above equality to test functions in H1

−α,#(Z), giving :

−〈u0,δ,∆ϕ〉 = −〈[∂y2u0,δ], ϕ〉{y2=±R} + 〈f̃δ, ϕ〉, ∀ϕ ∈ H1
−α,#(Z).

As α is chosen s.t. R ⊂ H1
−α,#(Z), one takes ϕ ≡ 1 in the above formula. This leads to :

h+,δ + h−,δ := 〈[∂y2u0,δ], 1〉{y2=R} + 〈[∂y2u0,δ], 1〉{y2=−R} ≡ 0,

where the brackets denote the H
− 1

2
# ,H

1
2
# duality product. Thanks to (25) and by continuity,

the result holds when passing to the limit with respect to δ.

When extending u0 on Z, it solves

−∆u0 = f + δ{y2=±R}h±, in Z. (26)

In the next paragraph, we compute a lift that cancels the lineic Dirac mass in the right hand
side of (26).

Lemma 5.4. Let u0 be the unique solution of problem (23). For α ≤ 0 there exists a solution

w in H1
α,#(Z) of

{

−∆w = 0 in ZR ∪ ZR,
[∂y2w] = − [∂y2u0] =: −h± on {y2 = ±R}.

(27)

Moreover, we have

‖w‖H1
α,#(Z) ≤ C

∑

±

(

‖h±‖2
H

− 1
2

# ({y2=±R})

)1/2

.
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Proof. Setting

w := G ∗ (h±δ{y2=±R}) = G ∗ ((h± − h±)δ{y2=±R}) +G ∗ (h±δ{y2=±R})

= G1 ∗ (h±δ{y2=±R}) +G2 ∗ (h±δ{y2=±R}),

which is a tempered distribution (G ∈ S ′
#(Z) and h±δ{y2=±R} ∈ E ′

#(Z)), w is explicit after
some computations and reads:

w =
∑

±,k∈Z∗

Fk(h±)eiky1−|k||y2±R|

|k| −
{

h+
2
|y2 −R|+ h−

2
|y2 +R|

}

= I1 + I2,

where

I1 :=
∑

±,k∈Z∗

Fk(h±)eiky1−|k||y2±R|

|k| and I2 := −h+
2
|y2 −R| − h−

2
|y2 +R|.

One computes the L2
α−1(Z) norm of I1:

∫

Z
I21ρ(y2)

2α−2dy ≤
∫

Z
I21dy ≤ C

∑

±,k∈Z∗

|Fk(h±)|2

(1 + |k|2) 1
2

∑

k∈Z∗

∫

R

e−2|k||y2±R|

|k| dy ,

≤ C ′
∑

±

‖h±‖2
H

− 1
2

# ({y2=±R})

∑

k∈Z∗

1

|k|2 ≤ C ′′
∑

±

‖h±‖2
H

− 1
2

# ({y2=±R})
.

In the above relations, the first inequality holds since α ≤ 0. Then using the Fourier transform
one writes :

F
(

∇G1 ∗ (h±δ{y2=±R})
)

=







i
(k, l)∗

(k2 + l2)
Fk (h±) , if k ∈ Z

∗, a.e. l ∈ R,

0 for k = 0.

Next, taking the l2(Z;L2(Z)) norm of the above expression, using again the fact that α ≤ 0
and by Parseval, one gets:

∫

Z
ρ(y2)

2α|∂y1I1|2dy ≤
∥

∥∂y1G1 ∗
(

h±δ{y2=±R}

)∥

∥

2

L2(Z)
=
∑

k∈Z∗

∫

R

k2

(k2 + l2)2
dl|Fk(h±)|2,

=
∑

k∈Z∗

C

|k| |Fk(h±)|
2 = ‖h±‖2

H
− 1

2
# ({y2=±R})

.

A similar computation gives the derivative with respect to y2. It follows that

‖I1‖H1
α,#(Z) ≤ C

∑

±

(

‖h±‖2
H

− 1
2

# ({y2=±R})

)1/2

.

Thanks to Lemma 5.3, one can reduce I2 to

I2 = ∓h±R when |y2| > R.

Thus the claims follows since I1 and I2 both belong to H1
α,#(Z).
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We are now ready to state the first isomorphism result of the Laplace operator in Z.

Theorem 5.1. Let α be a real number such that −1/2 ≤ α ≤ 1/2. Then the Laplace operator

defined by

∆ : H1
α,#(Z)/R 7→ H−1

α,#(Z)⊥R, (28)

is an isomorphism.

Proof. Let f ∈ H−1
α,#(Z). Observe that if u ∈ H1

α,#(Z) satisfies ∆u = f , then due to the

density of D#(Z) in H
1
−α,#(Z), for any ϕ ∈ H1

−α,#(Z), we have

〈u,∆ϕ〉 = 〈f, ϕ〉.

Thus, we easily see that, under the assumptions on α, for any p ∈ R ⊂ H1
−α,#(Z), the datum

f satisfies the necessarily compatibility condition

〈f, p〉 = 0.

Now it is also clear that the Laplace operator defined by (28) is linear and continuous. It is
also injective since ∆u = 0 and u ∈ H1

α,#(Z) imply that u is a constant (see Proposition

5.1). It remains to prove that the operator is onto. Let f be in H−1
α,#(Z)⊥R and R > 0 be a

real number. Thanks to Lemmas 5.3 and 5.4, one sets

u := u0 + w,

where u0 solves (23) and w lifts the jumps of ∂y2u0 on {y2 = ±R} and thus solves (27).
Results on u0 and w end the proof. At this stage, the claim is proved for α ≤ 0. By duality
the results is true also for α > 0 which ends the proof.

It remains to extend the isomorphism result (28) to any α ∈ R and to any m ∈ Z. For this
sake, we state some regularity results for the Laplace operator in Z.

Theorem 5.2. Let α be a real number such that −1/2 < α < 1/2 and let ℓ be an integer.

Then the Laplace operator defined by

∆ : H1+ℓ
α+ℓ,#(Z)/R 7→ H−1+ℓ

α+ℓ,#(Z)⊥R (29)

is onto.

Proof. Owing to Theorem 5.1, the statement of the theorem is true for ℓ = 0. Assume that
it is true for ℓ = k and let us prove that it is still true for ℓ = k + 1. The Laplace operator
defined by (29) is clearly linear and continuous. It is also injective : if u ∈ Hk+2

α+k+1,#(Z)

and ∆u = 0 then u is constant. To prove that it is onto, let f be given in Hk
α+k+1,#(Z)⊥R.

According to (7), f belongs to H−1+k
α+k,#(Z)⊥R. Then the induction assumption implies that

there exists u ∈ H1+k
α+k,#(Z) such that ∆u = f . Next, we have

∆(ρ∂iu) = ρ∂if + ∂iu∆ρ+ 2∇ρ∇(∂iu). (30)

Using (6), (7), (9) and (10), all the terms of the right-hand side belong to H−1+k
α+k,#(Z). This

implies that ∆(ρ∂iu) belongs toH
−1+k
α+k,#(Z). Therefore, ∆(ρ∂iu) also belongs toH

−2+k
α+k−1,#(Z).
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Moreover, u belonging to H1+k
α+k,#(Z) implies that ρ∂iu belongs Hk

α+k−1,#(Z) and for any

ϕ ∈ H2−k
−α−k+1,#(Z), we have

〈∆(ρ∂iu), ϕ〉H−2+k
α+k−1,#(Z)×H2−k

−α−k+1,#(Z) = 〈ρ∂iu,∆ϕ〉Hk
α+k−1,#(Z)×H−k

−α−k+1,#(Z).

Since R ⊂ H2−k
−α−k+1,#(Z), we can take ϕ ∈ R which implies that ∆ϕ = 0. It follows that

∆(ρ∂iu) belongs to H−1+k
α+k,#(Z)⊥R. Thanks to the induction assumption, there exists v in

H1+k
α+k,#(Z) such that

∆v = ∆(ρ∂iu).

Hence, the difference v−ρ∂iu is a constant. Since the constants are in H1+k
α+k,#(Z), we deduce

that ρ∂iu belongs to H1+k
α+k,#(Z) which implies that u belongs to H2+k

α+k+1,#(Z).

Remark 5.1. Let us point out that the above theorem excludes the values α ∈ {−1
2 ,

1
2} : due

to logarithmic weights, the space H1
1/2,#(Z) is not included in L2

−1/2(Z). By duality, this also

implies that the space L2
1/2(Z) is not included in H−1

−1/2,#(Z). Therefore, in (30) for α = 1/2,

the term ∂iu∆ρ does not belong to H−1
1/2,#(Z). Thus, in this section, the extension of (28) to

any α ∈ R will exclude some critical values of α. We deal with these critical values in Section
6.

Remark 5.2. As an application of the above theorem for the particular case when ℓ = 1, we
derive a weighted version of Calderón-Zygmund inequalities [31]. More precisely, let α be a
real number such that 1/2 < α < 3/2, then there exists a constant C > 0, such that for any
u ∈ D#(Z) :

‖∂i∂ju‖L2
α(Z)

≤ C‖∆u‖L2
α(Z)

. (31)

Using (31) and thanks to the Closed Range Theorem of Banach, we prove that :

Theorem 5.3. Let α be a real number satisfying 1/2 < α < 3/2. For m ∈ N, m ≥ 3, the
following operator

∆ : Hm
α,#(Z)/P

′
m−2 7→ Hm−2

α,# (Z)/P′
m−4 (32)

is an isomorphim.

The next result is then a straightforward consequence of the latter result.

Theorem 5.4. Let α be a real number satisfying 1/2 < α < 3/2. For m ∈ N, m ≥ 3, the
following operator

∆ : Hm
α,#(Z)/P

′∆
m−2 7→ Hm−2

α,# (Z) (33)

is an isomorphim.

The next theorem extends Theorem 5.1.

Theorem 5.5. Let α be a real number satisfying 1/2 < α < 3/2 and let ℓ ≥ 1 be a given

integer. Then the Laplace operators defined by

∆ : H1
−α+ℓ,#(Z)/P

′∆
1−ℓ 7→ H−1

−α+ℓ,#(Z)⊥P
′∆
−1+ℓ (34)

and

∆ : H1
α−ℓ,#(Z)/P

′∆
−1+ℓ 7→ H−1

α−ℓ,#(Z)⊥P
′∆
1−ℓ (35)

are isomorphism.
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Proof. Observe first that when ℓ = 1, the result is proved in Theorem 5.1. Observe next that
if m ≥ 2 is an integer, the mapping

∆ : Hm
α,#(Z)/P

′∆
m−2 7→ Hm−2

α,# (Z)⊥P
′∆
−m+2

is onto. Indeed, if m = 2, this isomorphism is exactly defined by (29) with ℓ = 1. If m ≥ 3,
it is defined by (33). Now through duality and transposition, the mapping

∆ : H−m+2
−α,# (Z)/P

′∆
−m+2 7→ H−m

−α,#(Z)⊥P
′∆
m−2

is onto. Next, using the same arguments as in the proof of Theorem 5.2, we are able to show
that for any integer ℓ ≥ 1, the operator

∆ : H−m+2+ℓ
−α+ℓ,# (Z)/P

′∆
−m+2 7→ H−m+ℓ

−α+ℓ,#(Z)⊥P
′∆
m−2

is an isomorphism. Choosing m = ℓ+ 1, the operator defined by (34) is an isomorphism. By
duality and transposition, the mapping defined by (35) is onto as well.

Remark 5.3. Summarizing theorems 5.1 and 5.5, we deduce that, for any α ∈ R such that
α 6= ±(12 + k), k ∈ N∗, the mapping

∆ : H1
α,#(Z)/P

′∆
[1/2−α] 7→ H−1

α,#(Z)⊥P
′∆
[1/2+α] (36)

is an isomorphism . As a consequence, for any m ∈ Z, for any α ∈ R such that α 6= ±(12 + k),
k ∈ N∗, the mapping

∆ : Hm+2
α,# (Z)/P

′∆
[m+3/2−α] 7→ Hm

α,#(Z)⊥P
′∆
[−m−1/2+α] (37)

is an isomorphism.

6. Isomorphism results for the critical cases

Note that the isomorphism result (37) is not valid for α = ±(12 + k), k ∈ N∗. In order to
extend it to these cases, we redefine the weighted spaces. Therefore, proceeding as in [17], for
m ∈ Z, p ∈ N, and α ∈ {−1

2 ,
1
2}, we introduce the space

Xm+p
α+p,#(Z) := {u ∈ Hm

α,#(Z), ∀λ ∈ N, 1 ≤ λ ≤ p,

yλ2u ∈ Hm+λ
α,# (Z), u ∈ Hm+p

loc,#(Z)},

where Hm+p
loc,#(Z) stands for the space of functions that belong to Hm+p

# (Z) with compact

support in the y2 direction. The space Xm+p
α+p,#(Z) is a Banach space when endowed with the

norm

‖u‖Xm+p
α+p,#(Z) =





∑

0≤λ≤p

‖yλ2u‖pHm+λ
α,# (Z)

+ ‖u‖p
Hm+p

# (Z1)





1/p

,

where Z1 :=]0, 1[×] − 1, 1[.
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Remark 6.1. We restricted the definition of the space Xm+p
α+p,#(Z) to α ∈ {−1

2 ,
1
2}, but this

definition holds for all α in R. For α ∈ R \ 1
2Z, since no logarithmic weights appear in the

definition of Hm+p
α+p,#(Z), the spaces Xm+p

α+p,#(Z) and Hm+p
α+p,#(Z) coincide algebraically and

topologically [17].

The next proposition is dedicated to density of D#(Z) in Xm+p
α+p,#(Z). In order to prove it,

we establish two lemmas giving additional properties on the space Hm
α,#(Z). The first lemma

characterizes the dual space H−m
−α,#(Z).

Lemma 6.1. Let α ∈ R and f ∈ H−m
−α,#(Z). Then for any v ∈ Hm

α,#(Z), we have

〈f, v〉H−m
−α,#(Z)×Hm

α,#(Z) =
∑

0≤|µ|≤m

∫

Z
gµ ∂

µv dy ,

where gm ∈ L2
−α(Z) and for any 0 ≤ |µ| < m,

• gµ ∈ L2
−α+m−|µ|(Z) if α /∈ {1

2 , ...,m− 1
2},

• (ln(1 + ρ2))1/2gµ ∈ L2
−α+m−|µ|(Z) if α ∈ {1

2 , ...,m − 1
2}.

Proof. We shall only prove the statement for α /∈ {1
2 , ...,m − 1

2}. The proof corresponding
to critical values of α is similar. We set E =

∏

0≤|µ|≤m

L2
−α+m−|µ|(Z) such that for any ψ =

(ψµ)0≤|µ|≤m ∈ E,

‖ψ‖E =
∑

0≤|µ|≤m

‖ψµ‖L2
−α+m−|µ|

(Z).

The operator T defined by T : v ∈ Hm
α,#(Z) 7→ (∂µv)0≤|µ|≤m ∈ E is isometric. We now

set G := T (Hm
α,#(Z)) and S := T−1 : G 7→ Hm

α,#(Z). The mapping L : h ∈ G 7→
〈f, Sh〉H−m

−α,#(Z)×Hm
α,#(Z) is linear and continuous. Therefore thanks to the Hahn-Banach

theorem, there exists L̃, a linear and continuous extension of L on E such that ‖L̃‖E′ =
‖f‖H−m

−α,#(Z). Thanks to the Riesz representation theorem, there exists gµ ∈ L2
−α+m−|µ|(Z)

for any 0 ≤ |µ| ≤ m, such that

∀v ∈ Hm
α,#(Z), 〈L̃, v〉 =

∑

0≤|µ|≤m

∫

Z
gµ ∂

µv dy .

The second lemma concerns the density of functions with compact support.

Lemma 6.2. Let m ∈ Z, λ ∈ N, α ∈ R, Φℓ be defined by (13) and u ∈ Hm+λ
α,# (Z). We set

uℓ(y) = Φℓ(y2)u(y) a.e. y ∈ Z. Then we have

lim
ℓ→∞

‖u− uℓ‖Hm+λ
α,# (Z) = 0. (38)
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Proof. It is clear that for the case m + λ ≥ 0, (38) is satisfied. We shall now focus on the
case m+ λ < 0. We have

‖u− uℓ‖Hm+λ
α,# (Z) = sup

v∈H−m−λ
−α,# (Z)

v 6=0

|〈u− uℓ, v〉|
‖v‖ ,

where 〈·, ·〉 is the duality pairing between Hm+λ
α,# (Z) and H−m−λ

−α,# (Z). Besides, thanks to

Lemma 6.1 there exist gµ such that g−m−λ ∈ L2
α(Z) and for any 0 ≤ |µ| < −m− λ,

• gµ ∈ L2
α−m−λ−|µ|(Z) if −α /∈ {1/2, ...,−m − λ− 1/2}

• (ln(1 + ρ2))1/2gµ ∈ L2
α−m−λ−|µ|(Z) if −α ∈ {1/2, ...,−m − λ− 1/2}

satisfying for any v ∈ H−m−λ
−α,# (Z),

〈u, v〉 =
∑

0≤|µ|≤−m−λ

∫

Z
gµ ∂

µv dy .

Therefore, we can write

〈u− uℓ, v〉 =
∑

0≤|µ|≤−m−λ

∫

Z
gµ(∂

µv − ∂µ(Φℓ v))dy .

It follows that

|〈u− uℓ, v〉| ≤
∑

0≤|µ|≤−m−λ

∫

Z
|gµ(1− Φℓ)∂

µv|dy +C
∑

0≤|µ|≤−m−λ

∑

0<|k|≤|µ|

∫

Z
gµ∂

kΦℓ ∂
µ−kvdy .

We deduce that

|〈u− uℓ, v〉| ≤





∑

0≤|µ|≤−m−λ

‖gµ(1− Φℓ)‖L2
α−m−λ−|µ|

(Z)

+C
∑

0≤|µ|≤−m−λ

∑

0<|k|≤|µ|

‖gµ ∂kΦℓ‖L2
α−m−λ−|µ|

(Z)



 ‖v‖H−m−λ
−α,# (Z).

The first two terms in the right hand side tend to zero as ℓ tends to infinity. This proves (38)
for m+ λ < 0.

We proceed with three results showing some properties of the spaces Xm,p
α,#(Z).

Proposition 6.1. Let m ∈ Z, p ∈ N and α ∈ {−1
2 ,

1
2}, then the space D#(Z) is dense in

Xm+p
α+p,#(Z).

Proof. Let u be in Xm+p
α+p,#(Z). Then according to Lemma 6.2, u can be approximated by

uℓ ∈ Xm+p
α+p,#(Z) with compact support in the y2 direction. Therefore uℓ belongs to H

m+p
α,# (Z),

and thanks to Proposition 2.2, uℓ can be approximated by ψℓ ∈ D#(Z). This ends the
proof.
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For m ∈ Z, p ∈ N and α ∈ {−1
2 ,

1
2}, we also define the space Xm−p

−α−p,#(Z) that is the dual

space of X−m+p
α+p,#(Z). It is therefore a subspace of D′

#(Z).

Proposition 6.2. Let m, p ∈ Z and α ∈ {−1
2 ,

1
2}. Xm+p+1

α+p+1,#(Z) is densely embedded in

Xm+p
α+p,#(Z).

Proof. If p ∈ N, due to the definition of the space Xm+p+1
α+p+1,#(Z), the imbedding is straight-

forward. Moreover the density of D#(Z) in Xm+p
α+p,#(Z) implies the density of Xm+p+1

α+p+1,#(Z)

in Xm+p
α+p,#(Z). Hence, if p ≤ 0, the dense imbedding holds :

X−m−p
−α−p,#(Z) ⊂ X−m−p−1

−α−p−1,#(Z).

By duality, the desired result follows.

Proposition 6.3. Let m, p ∈ Z and α ∈ {−1
2 ,

1
2}. If u belongs to Xm+p

α+p,#(Z), then ∂ju

belongs to Xm−1+p
α+p,# (Z), for any j = 1, 2.

Proof. (i) Assume that p ≥ 0. If u ∈ Xm+p
α+p,#(Z), then u ∈ Hm

α,#(Z) and ∂ju ∈ Hm−1
α,# (Z).

Besides, for any λ ∈ N, such that 1 ≤ λ ≤ p, we have yλ2 (∂ju) = ∂j(y
λ
2u) − ∂j(y

λ
2 )u. Since

yλ2u ∈ Hm+λ
α,# (Z), it follows that ∂j(y

λ
2u) ∈ Hm−1+λ

α,# (Z). Thus it is clear that yλ2 (∂1u) belongs

to Hm−1+λ
α,# (Z). Furthermore, we have ∂2(y

λ
2 )u = λyλ−1

2 u and since 0 ≤ λ − 1 ≤ p − 1,

yλ−1
2 u belongs to Hm+λ−1

α,# (Z). We deduce that for any λ ∈ N, such that 1 ≤ λ ≤ p, yλ2 (∂ju)

belongs Hm−1+λ
α,# (Z). Finally it is straightforward that if u is in Hm+p

# (Z1), then ∂ju is in

Hm+p−1
# (Z1).

(ii) Let now p < 0. If u ∈ Xm+p
α+p,#(Z), then for any ϕ ∈ D#(Z), we can write

〈∂ju, ϕ〉D′
#(Z)×D#(Z) = −〈u, ∂jϕ〉D′

#(Z)×D#(Z).

Thanks to (i), for any ϕ ∈ X−m+1−p
−α−p,# (Z), ∂jϕ belongs toX−m−p

−α−p,#(Z) which ends the proof.

Proposition 6.4. Let m, p ∈ Z and α ∈ {−1
2 ,

1
2}. If u belongs to Xm+p

α+p,#(Z), then y2u

belongs to Xm+p
α+p−1,#(Z) ≡ Xm+1+p−1

α+p−1,# (Z).

Proof. (i) Assume that p ≥ 1. If u belongs to Xm+p
α+p,#(Z), then u belongs to Hm

α,#(Z) and

y2u belongs to Hm+1
α,# (Z). Next, for any λ ∈ N, such that 1 ≤ λ ≤ p− 1, we have yλ2 (y2u) =

yλ+1
2 u ∈ Hm+λ+1

α,# (Z). Finally if u belongs to Hm+p
# (Z1), then y2u also belongs to Hm+p

# (Z1).

We thus deduce that y2u ∈ Xm+p
α+p−1,#(Z).

(ii) Assume now p ≤ 0. For any ϕ ∈ D#(Z), we can write

〈y2u, ϕ〉D′
#(Z)×D#(Z) = 〈u, y2ϕ〉D′

#(Z)×D#(Z).

Thanks to (i), for any ϕ ∈ X−m−p
−α−p+1,#(Z) ≡ X−m−1−p+1

−α−p+1,# (Z), y2ϕ belongs to X−m−p
−α−p,#(Z)

which ends the proof.

The above properties allow to extend Theorem 5.2.
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Theorem 6.1. Let α ∈ {−1
2 ,

1
2} and ℓ ∈ N. Then the operator defined by

∆ : X1+ℓ
α+ℓ,#(Z)/R 7→ X−1+ℓ

α+ℓ,#(Z)⊥R (39)

is an isomorphism.

Proof. Observe first that since X1
α,#(Z) = H1

α,#(Z) and X
−1
α,#(Z) = H−1

α,#(Z), the case ℓ = 0
is proved in Theorem 5.1. Now we proceed by induction, as in the proof of Theorem 5.2.
Assume that the statement is true for ℓ = k and let us prove that it is then true for ℓ = k+1.
The Laplace operator defined by (39) is clearly linear and continuous. It is also injective : if u
belongs to X2+k

α+k+1,#(Z) ⊂ H1
α,#(Z) and is harmonic then it is a constant. Let us prove that

it is onto. Let f ∈ Xk
α+k+1,#(Z)⊥R. Then f ∈ X−1+k

α+k,#(Z)⊥R and the induction assumption

implies that there exists u ∈ X1+k
α+k,#(Z) such that ∆u = f . We now consider the equality

∆(y2∂iu) = y2∂if + 2∂2∂iu. (40)

Using Proposition 6.3 and Proposition 6.4, we deduce that ∆(y2∂iu) belongs to X
−1+k
α+k,#(Z) ⊂

X−2+k
α+k−1,#(Z). Moreover, thanks to Propositions 6.3 and 6.4, if u ∈ X1+k

α+k,#(Z) then y2∂iu ∈
Xk
α+k−1,#(Z) and for any ϕ ∈ X2−k

−α−k+1,#(Z), we have

〈∆(y2∂iu), ϕ〉X−2+k
α+k−1,#(Z)×X2−k

−α−k+1,#(Z) = 〈y2∂iu,∆ϕ〉Xk
α+k−1,#(Z)×X−k

−α−k+1,#(Z).

Since R ⊂ X2−k
−α−k+1,#(Z), we shall take ϕ ∈ R. This shows that ∆(y2∂iu) ∈ X−1+k

α+k,#(Z)⊥R.

Thanks to the induction assumption, there exists v ∈ X1+k
α+k,#(Z) satisfying ∆v = ∆(y2∂iu).

Hence v− y2∂iu ∈ R and since R ⊂ X1+k
α+k,#(Z), it follows that y2∂iu ∈ X1+k

α+k,#(Z). Therefore

summarizing, we obtained that u ∈ H1
α,#(Z), for any 1 ≤ λ ≤ k+1 y2u ∈ H1+λ

α,# (Z). It remains

to prove that u ∈ Hk+2
loc,#(Z). Let χ ∈ D(R) and consider the function y 7→ χ(y2)u(y ) for

almost every y ∈ Z. Then ∆(χu) = χf + 2∇χ∇u + u∆χ belongs to Hk
loc,#(Z). It follows

from standard inner elliptic regularity results that χu belongs to H2+k
loc,#(Z) which in turn

yields u ∈ H2+k
loc,#(Z).

Remark 6.2. The above theorem extends the Calderón-Zygmund inequality (31) to α ∈
{1
2 ,

3
2}.

Proceeding as in the non-critical cases, we can extend Theorems 5.3, 5.4 and 5.5. More
precisely, we have :

Theorem 6.2. Let α be a real number satisfying 1/2 ≤ α ≤ 3/2. For m ∈ N, m ≥ 3, the
mapping

∆ : Hm
α,#(Z)/P

′
m−2 7→ Hm−2

α,# (Z)/P′
m−4 (41)

is an isomorphism.

Theorem 6.3. Let α be a real number satisfying 1/2 ≤ α ≤ 3/2. For m ∈ N, m ≥ 3, the
mapping

∆ : Hm
α,#(Z)/P

′∆
m−2 7→ Hm−2

α,# (Z) (42)

is an isomorphism.
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Theorem 6.4. Let α ∈ {1
2 ,

3
2} and let ℓ ≥ 1 be an integer. Then the Laplace operators defined

by

∆ : X1
−α+ℓ,#(Z)/P

′∆
1−ℓ 7→ X−1

−α+ℓ,#(Z)⊥P
′∆
−1+ℓ (43)

and

∆ : X1
α−ℓ,#(Z)/P

′∆
−1+ℓ 7→ X−1

α−ℓ,#(Z)⊥P
′∆
1−ℓ (44)

are isomorphisms.

Remark 6.3. At this step we are able to state Thereom 1.1 that we recall here. Let m ∈ Z

and α ∈ R, then the Laplace operator defined by

∆ : Xm+2
α,# (Z)/P

′∆
q(m+2,α) 7→ Xm

α,#(Z)⊥P
′∆
q(−m,−α) (45)

is an isomorphism.

In order to prove our main result stated in Theorem 1.2, let us first note that we might
compare the spaces Xm+p

α+p,#(Z) and H
m+p
α+p,#(Z) for α ∈ {−1

2 ,
1
2}.

Proposition 6.5. Let m, p be two integers and let α ∈ {−1
2 ,

1
2}. Then

Xm+p
α+p,#(Z) ⊂ Hm+p

α+p,#(Z). (46)

If, moreover α = 1
2 , then

Xm+p
1
2
+p,#

(Z) = Hm+p
1
2
+p,#

(Z). (47)

The proof is based on a partition of unity in the y2 direction and direct computations. Note
that (47) is not valid for α = −1

2 and p ≥ 1 since the space Hm+p
−1/2+p,#(Z) is not included in

Hm
−1/2,#(Z) (see (8)).

Sketch of the proof of Theorem 1.2. We shall decompose it into three successive steps:

1. If α > −1/2 and f ∈ L2
α+1(Z)⊥P

′∆
[1/2+α], then G ∗ f ∈ X2

α+1,#(Z) is a solution of the

Laplace equation (21) unique up to a polynomial of P
′∆
q(2,α+1). Moreover, we have the

estimate
‖G ∗ f‖

X2
α+1,#(Z)/P

′∆
q(2,α+1)

≤ C‖f‖L2
α+1(Z)

.

This result is a straightforward consequence of the isomorphism result (45) for m = 0,
Theorem 4.3 and Proposition 5.1.

2. If α ∈ R and f ∈ H−1
α,#(Z)⊥P

′∆
q(1,−α), then G ∗ f ∈ H1

α,#(Z) is a solution of the Laplace

equation (21) unique up to a polynomial of P
′∆
q(1,α). Moreover, we have the estimate

‖G ∗ f‖H1
α,#(Z) ≤ C‖f‖H−1

α,#(Z).

This second claim is obtained using the first step and duality arguments. Then the
isomorphism result (45) form = −1 and Proposition 5.1 allows to identify the variational
solution with the solution by convolution.
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3. In the third step we first assume m ≥ 0, α ∈ R and let f ∈ Xm
α,#(Z)⊥P

′∆
q(−m,−α). Then

it is clear that f ∈ H−1
α−m−1,#(Z)⊥P

′∆
q(1,−α+m+1). Note that by definition P

′∆
q(−m,−α)

and P
′∆
q(1,−α+m+1) coincide. On the one hand, from the second step G ∗ f belongs to

H1
α−m−1,#(Z)/P

′∆
q(1,α−m−1). On the other hand, from (45), there exists a unique u in

Xm+2
α,# (Z)/P

′∆
q(m+2,α), a subset of H1

α−m−1,#(Z)/P
′∆
q(m+2,α). Then using Proposition 5.1

we have u−G ∗ f ∈ P
′∆
q(m+2,α).

Finally using again a duality argument we prove the statement for m ≤ 0 and α ∈ R.

7. Conclusion

This paper is a first attempt towards a systematic analysis of boundary layer problems in
periodic strips. This framework provides generic spaces avoiding tedious a priori definitions
of solutions’ behavior at infinity, among other advantages.

Nevertheless, in the homogenization theory, solutions of boundary layer problems often
converge exponentially to some polynomial at infinity (when y2 → ∞) [18]. In a forecoming
work, our goal is to provide an adequate framework of these results in the weighted context,
and to consider exterior periodic domains [5].
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[2] W. Jäger, A. Mikelić, On the roughness-induced effective boundary condition for an
incompressible viscous flow, J. Diff. Equa. 170 (2001) 96–122.
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