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Fluid-Particle simulations with FreeFem++

Aline Lefebvre ∗

2006

Abstract

We present here a method to simulate the motion of rigid particles
in a Newtonian fluid. The rigid motion is enforced by penalizing the
strain tensor on the rigid domain and the time discretization is performed
using the method of characteristics. This leads to a generalized Stokes
variational formulation on the whole domain which can easily be imple-
mented from any Finite Element Stokes/Navier-Stokes solver. In order to
ensure robustness, we describe a strategy to take collisions into account.
To validate the method, simulations implemented with FreeFem++ are
presented.

Introduction

In this article, we consider rigid particles embedded in a Newtonian fluid.
Our goal is to describe a method for their direct numerical simulation that
can be straightforwardly implemented on a general Finite Element solver like
FreeFem++ (see [1]) which we use to make numerical experiments. Numerical
simulation of particulate flows raises two main issues. The first one is to impose
the rigid motion of the particles and to deal with the fact that the domain filled
with the fluid varies in time. The second one relates to the collisions between
particles.

The methods to handle the rigid motion of the particles can be devided in two
classes. The first one relies on a moving mesh following the fluid domain (see [7,
8, 10, 11]). The second approach is the fictitious domain methods also called
domain embedding methods: the idea is to extend a problem defined on a time-
dependent, complex domain (the fluid domain) to a larger one (fixed) called the
fictitious domain. Most of these methods involve a cartesian mesh covering the
whole domain (fluid and particles) on which local meshes are moving (following
the particles) and the rigid motion is enforced using a Lagrange multiplier.
For more details, see [5] where the velocity is constrained to be a rigid motion
and [14] where the strain tensor is constrained to be zero. Penalty methods are
another class of fictitious domain strategies: in [2] the authors take obstacles
into account and, in [16], particulate flows are simulated using an augmented
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Lagrangian approach. We propose here to enforce the rigid motion penalizing
the strain tensor. This method, associated to the method of characteristics
for the time discretization leads to a generalized Stokes variational formulation
on the whole domain. Therefore, it can be easily implemented from any finite
element Stokes/Navier-Stokes solver. See [9] for an exemple of a rigid body
attached at one of his points.

Collisions also present severe difficulties in direct numerical simulations and
an efficient strategy has to be implemented to deal with this problem. Note that,
“collision” is a somewhat unsuited term since, in the case of spherical particles
in a Newtonian fluid, lubrication forces do not allow particles to get into contact
in finite time (see [6]). However, these particles can approach arbitrarily close
and, because of the discretization, numerical collisions may occur. The first
idea is to find a strategy that makes it possible to approximate with accuracy
the lubrication forces: in [8], a method based on local mesh refinements is
implemented and gives good results. However, the number of refinements and
the smallness of the time steps that are necessary to avoid collisions are not
known a priori and the method can therefore present a heavy computational
cost. Therefore, less time consuming strategies have been developed to avoid
collisions. Some of them consist in adding a short range repulsive force (see [5,
14]). In [11] a minimization algorithm is used to impose a minimal distance
between the particles. In [17], particles are allowed to slightly overlap each other
and an elastic repulsive force is applied when such overlapping occurs. Those
methods ensure numerical stability but do not respect the physics. Another
approach is to implement a collision strategy based on inelastic collisions. This
idea has been used in [10] to impose a minimal distance between particles but the
method considers separately each couple of neighbouring particles and therefore
can not be used for a large number of particles. We propose here to implement
the scheme described in [12] for inelastic collisions. It allows us to impose a
minimal distance between particles and, since it globally handles all the possible
contacts, we can consider mixtures with many particles.

1 Continuous Problem

1.1 Modelling particulate flows

We consider (see Fig. 1) Ω ⊂ R
2 a connected, bounded, regular domain. We

denote by (Bi)i=1...N N rigid inclusions (particles) in Ω (subsets of Ω, disjoint
and strongly contained in Ω) and by B the whole rigid domain: B = ∪N

i=1Bi.
We suppose that Ω \ B̄ is filled with a Newtonian fluid governed by the Navier-
Stokes equations. For the sake of simplicity, we will consider spherical particles
with homogeneous Dirichlet boundary conditions on ∂Ω.

We respectively denote by ff and fi the external forces exerted on the fluid
and the i-th particle and by ρf and ρi their respective densities. µ is the viscosity
of the fluid. The mass of the i-th particle is denoted by mi. The position of its
center of mass and its angular orientation are respectively denoted by xi and
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Bi

Figure 1: Notations

θi. Finally, Vi = ẋi and ωi = θ̇i are its translational and angular velocities and
Ji is the kinematic momentum about its center of mass: Ji =

∫

Bi

ρi|x − xi|
2.

We will also use the following classical notations:

σ = 2µD(u)− pId, D(u) =
∇u+ (∇u)T

2
and

Du

Dt
=

∂u

∂t
+ (u · ∇)u.

where σ is the Cauchy stress tensor and Du/Dt is the total derivative of u.
Finally, x⊥ denotes (−x2, x1) and n is the external normal to Ω \ B̄.

We have to find the velocity u = (u1, u2) and the pressure field p defined in
Ω \ B̄ as well as the velocities of the particles V ∈ R

2N and ω ∈ R
N . At each

instant of time t, the fluid obeys the Navier-Stokes equations in Ω\B̄ = Ω\B̄(t)
with homogeneous Dirichlet boundary conditions:



















ρf
Du

Dt
− µ△u+∇p = ff in Ω \ B̄

∇ · u = 0 in Ω \ B̄

u = 0 on ∂Ω.

(1)

The viscosity imposes a no-slip boundary condition on ∂B:

u = Vi + ωi(x− xi)
⊥ on ∂Bi ∀i. (2)

Finally, since the fluid exerts hydrodynamic forces on the particles, Newton’s
second law couples these equations:















mi
dVi

dt
=

∫

Bi

fi −
∫

∂Bi

σn ds ∀i

Ji
dωi

dt
=

∫

Bi

(x− xi)
⊥ · fi −

∫

∂Bi

(x− xi)
⊥ · σn ds ∀i.

(3)

1.2 The corresponding variational formulation over a con-

strained domain

In order to avoid remeshing, we look for a weak formulation involving functions
defined on the whole domain Ω. As it is shown in [9], this can be done by
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introducing, at each time step, rigid constraints into the functionnal spaces
considered:

K∇ =
{

u ∈ H1
0 (Ω),∇ · u = 0

}

,

KB = {u ∈ H1
0 (Ω), ∀i ∃(Vi, ωi) ∈ R

2 × R;

u = Vi + ωi(x− xi)
⊥ a.e. in Bi}

= {u ∈ H1
0 (Ω),D(u) = 0 a.e. in B}.

K∇ is the space of divergence free functions on Ω and KB is the space of
functions on Ω that do not deform B. Note that, since KB depends on B, it
may vary on time. At each instant of time t > 0, the solution to (1),(2),(3) is
extended on the whole domain Ω by a function in KB:

u(t,x) = Vi(t) + ω(t)(x − xi(t))
⊥ in Bi(t) ∀i

and we still denote by u this extension. Let (u, p) be an extended solution of
the problem for a certain time t > 0 and choose ũ ∈ KB. By multiplying the
Navier-Stokes equation by ũ, and integrate it by parts over Ω \ B̄, we obtain:
∫

Ω\B̄

ρf
Du

Dt
·ũ+2µ

∫

Ω\B̄

D(u) : D(ũ)−

∫

Ω\B̄

p∇·ũ−

∫

∂(Ω\B̄)

σn·ũ =

∫

Ω\B̄

ff ·ũ.

The intergrals over Ω \ B̄ can be extended over Ω using the fact that D(ũ) = 0
and ∇ · ũ = 0 in B. Moreover, since ũ is in KB, we have:

∀i, ∃Ṽi, ω̃i such that ũ(x) = Ṽi + ω̃i(x− xi)
⊥ in Bi.

The relation above and the boundary condition on ∂B allow us to cancel the
hydrodynamic forces:

∫

Ω\B̄

ρf
Du

Dt
·ũ+

N
∑

i=1

mi
dVi

dt
Ṽi+

N
∑

i=1

Ji
dωi

dt
ω̃i+2µ

∫

Ω

D(u) : D(ũ)−

∫

Ω

p∇·ũ =

∫

Ω

f ·ũ

where f = ff1Ω\B̄ +
N
∑

i=1

fi1Bi
. Finally, (Vi, ωi) can be considered as auxiliary

variables since using

∀i, mi
dVi

dt
Ṽi + Ji

dωi

dt
ω̃i =

∫

Bi

ρi
Du

Dt
· ũ,

we obtain the variational formulation:














∫

Ω

ρ
Du

Dt
· ũ+ 2µ

∫

Ω

D(u) : D(ũ)−

∫

Ω

p∇ · ũ =

∫

Ω

f · ũ, ∀ũ ∈ KB,

∫

Ω

q∇ · u = 0, ∀q ∈ L2(Ω),

(4)

where ρ = ρf1Ω\B̄ +
N
∑

i=1

ρi1Bi
.
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2 Numerical Strategy: Towards a Classical Weak

Formulation

2.1 Time discretization

We denote by ∆t > 0 the time step and for any function f we define fn(x) =
f(x, tn) where tn = n∆t. The time discretization is performed using the method
of characteristics in order to obtain a generalized Stokes variational formulation.
If we define the characteristic trajectory that is passing through x at time t as







∂X

∂τ
(x, t, τ) = u(X(x, t, τ), τ),

X(x, t, t) = x,

it is clear that, for any function Φ(t,x) we have

DΦ

Dt
(x, t) =

(

∂Φ

∂t
+ u · ∇Φ

)

(x, t) =
∂

∂t
(Φ(X(x, t, τ), τ)) |τ=t.

Therefore, using the fact that X(x, tn+1, tn+1) = x, we can discretize the total
derivative of Φ writing:

(

DΦ

Dt

)n+1

(x) ≈
Φn+1(x) − Φn(Xn(x))

∆t

where Xn(x) is an approximation of X(x, tn+1, tn). For further details about
this dicretization see [15].

To apply this method to our problem, we note that since ρ is constant

along the characteristics, we have ρ
Du

Dt
=

D(ρu)

Dt
, and we obtain the following

discretized scheme: for each n > 0,

(i) compute ρn+1 from un and (Bn
i )i:

∀i, Vn
i =

1

πr2i

∫

Bn

i

un, xn+1
i = xn

i +∆tVn
i and ρn+1 = ρf1Ω\B̄n+1+

N
∑

i=1

ρi1Bn+1

i

(5)

(ii) solve the following discretized weak formulation for (4):














































Find un+1 ∈ KBn+1 and pn+1 ∈ L2(Ω) such that:

1

∆t

∫

Ω

ρn+1un+1 · ũ+ 2µ

∫

Ω

D(un+1) : D(ũ)−

∫

Ω

pn+1∇ · ũ

=
1

∆t

∫

Ω

(ρnun) ◦Xn · ũ+

∫

Ω

fn+1 · ũ, ∀ũ ∈ KBn+1 ,

∫

Ω

q∇ · un+1 = 0, ∀q ∈ L2(Ω),

(6)
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where Xn in step (ii) is computed using the characteristics associated to un.
Note that, in order not to deform the rigid domain, we use the real degrees of
freedom of the particules to convect ρ in step (i).

2.2 A penalty method to enforce the rigid motion

Our aim is to obtain a variational formulation adapted to a finite element dis-
cretization in space. In order to do so, we use a penalty method to take the
constraint into account. This method is presented in [9] and consists in con-
sidering the minimization problem over a constrained domain associated to (6)
and relaxing the constraint by introducing a penalty term in the minimized
functional. The added term is the following:

1

ε

∫

Bn+1

D(un+1) : D(un+1),

so that D(un+1)|Bn+1 goes to zero when ε goes to zero and un+1 tends to be a
rigid motion in Bn+1.

The variational formulation obtained is:














































Find un+1 ∈ H1
0 (Ω) and pn+1 ∈ L2(Ω) such that:

1

∆t

∫

Ω

ρn+1un+1 · ũ+ 2µ

∫

Ω

D(un+1) : D(ũ) +
2

ε

∫

Bn+1

D(un+1) : D(ũ)−

∫

Ω

pn+1∇ · ũ

=
1

∆t

∫

Ω

(ρnun) ◦Xn · ũ+

∫

Ω

fn+1 · ũ, ∀ũ ∈ H1
0 (Ω),

∫

Ω

q∇ · un+1 = 0, ∀q ∈ L2(Ω).

(7)
We replace in the previous algorithm (6) by (7) which can be solved using any
Stokes finite element solver. Note that, similarly to what is done in [16], the
variational formulation (7) shows that the physics behind this method is to
consider the rigid domain as a fluid with infinite viscosity.

3 Taking the Collisions into Account

In [12], B. Maury proposed a numerical scheme to compute inelastic collisions
between rigid particles. It consists in imposing a new constraint to the solution:
the velocities of the particles are required to be in a set of admissible velocities.

We denote by Dij(x
n) = |xn

i − xn
j | − ri − rj the signed distance between

particles i and j and by Gij(x
n) ∈ R

2N the gradient of this distance:

Gij(x
n) = (. . . , 0, −enij , 0, . . . , 0, enij , 0, . . . , 0)

i j
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where enij =
xn
j − xn

i

|xn
j − xn

i |
. At each time step, V ∈ R

2N is an admissible vector if

the particles with velocity V do not overlap at the next time step:

E(xn) =
{

V ∈ R
2N , Dij(x

n +∆tV) ≥ 0 ∀i < j
}

.

We linearize the constraint and define the set of admissible velocities as the
following closed and convex set:

K(xn) =
{

V ∈ R
2N , Dij(x

n) + ∆tGij(x
n) ·V ≥ 0 ∀i < j

}

.

Note that, since the distance between two circular particles is convex with re-
spect to x, we have K(xn) ⊂ E(xn).

For each n > 0, Bn+1 is therefore computed at step (i) of the algorithm and
step (ii) is now a variational problem similar to (7) where we take into account
the new constraint:

Vn+1 ∈ K(xn+1) with ∀i, Vn+1
i =

1

πr2i

∫

Bn+1

i

un+1.

We write this problem as a saddle-point problem and we denote by λn+1
ij ≥ 0

the Lagrange multiplier associated to the constraint Dij(x
n+1)+∆tGij(x

n+1) ·

V ≥ 0. We have to find un+1 ∈ H1
0 (Ω), p

n+1 ∈ L2(Ω) and λ
n+1 ∈ R

N(N−1)/2
+

such that:

1

∆t

∫

Ω

ρn+1un+1 · ũ+ 2µ

∫

Ω

D(un+1) : D(ũ) +
2

ε

∫

Bn+1

D(un+1) : D(ũ)−

∫

Ω

pn+1∇ · ũ

=
1

∆t

∫

Ω

(ρnun) ◦Xn · ũ+

∫

Ω

fn+1 · ũ+
∑

i<j

λn+1
ij ∆tGij(x

n+1) · Ṽ, ∀ũ ∈ H1
0 (Ω),

(8)
∫

Ω

q∇ · un+1 = 0 ∀q ∈ L2(Ω), (9)

Dij(x
n+1) + ∆tGij(x

n+1) ·Vn+1 ≥ 0, ∀i < j, (10)

λn+1
ij

(

Dij(x
n+1) + ∆tGij(x

n+1) ·Vn+1
)

= 0, ∀i < j (11)

where Vn+1
i =

1

πr2i

∫

Bn+1

i

un+1 and Ṽi =
1

πr2i

∫

Bn+1

i

ũ. Equation (11) is a

compatibility equation imposing that a Lagrange multiplier is active (non zero)
only if their is a contact between the associated particles. Equation (8) shows
that λn+1

ij is proportional to a force that must be exerted on particles i and j
in order to avoid their contact.

In [12], the saddle-point problem is numerically solved by a Uzawa algorithm
on λ

n+1. In our case, since the particles are embedded in a fluid, each iteration of
this algorithm needs to solve a Stokes-like problem which is very time consuming.
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In order to avoid this problem, we propose a splitting strategy: for each time
step we first compute ρn+1 with (5), we solve the penalized problem (7), then

compute the velocities of the particles V̂n+1 associated to un+1 and finally
project it onto the set of admissible velocities. This last step consists in finding
Vn+1 solution to:

∣

∣

∣
Vn+1 − V̂n+1

∣

∣

∣

2

= min
V∈K(xn+1)

∣

∣

∣
V − V̂n+1

∣

∣

∣

2

and is performed using a Uzawa algorithm. The obstacle/particle collisions are
treated in a similar way.

4 Numerical Tests

4.1 Actual implementation with FreeFem++

We chose to implement this algorithm with the finite element solver FreeFem++

(see [1]). The space discretization is carried out using the so-called mini-element
(see [3]).

To compute (ρnun) ◦Xn, we use the function convect of FreeFem++. If X
is the characteristic trajectory associated to the finite element velocity field α,
Xn(x) is given by FreeFem as x−∆tαn(x). The convect function is defined by
convect(αn,−∆t,vn) = vn ◦Xn(x) where v is a vector-valued finite element
function. Consequently, in our case, we can compute

(ρnun) ◦Xn = convect(un,−∆t, ρnun).

In order to make the system inversible, in the variational formulation we add the
term ε0p with ε0 << 1 and we use the Crout solver to solve the system. Finally,
the variational formulation implemented in FreeFem++ is the following:

problem NStokes([u1,u2,p],[v1,v2,q],solver=Crout)=

//Navier-Stokes formulation

int2d(Th)(rho*u1*v1-convect([uold1,uold2],-dt,rhoold*uold1)*v1

+rho*u2*v2-convect([uold1,uold2],-dt,rhoold*uold2)*v2)

+int2d(Th)(mu*dt*(2*dx(u1)*dx(v1)+dy(u1)*dy(v1)+dx(u2)*dx(v2)

+2*dy(u2)*dy(v2)+dy(u1)*dx(v2)+dx(u2)*dy(v1)))

+int2d(Th)(eps0*p*q - dt*p*dx(v1) - dt*p*dy(v2) +

q*dx(u1) + q*dy(u2))

-int2d(Th)(dt*f1*v1 + dt*f2*v2)

//Penalty term

+int2d(Th)(mu*(2*dx(u1)*dx(v1)+dy(u1)*dy(v1)+dx(u2)*dx(v2)
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+2*dy(u2)*dy(v2)+dy(u1)*dx(v2)+dx(u2)*dy(v1))*chi/eps)

//Boundary conditions

+on(1,2,3,4,u1=g1,u2=g2);

where Th is the mesh of Ω, (u1,u2,p) are the unknowns, (v1,v2,q) are their
respective test functions, (uold1,uold2) is the velocity field computed at the
previous time step, rho and rhoold are respectively the densities at the current
and previous time steps , chi is the characteristic function of B, (f1,f2) is the
source term and (g1,g2) is the boundary condition.

Finally, in order to have at least one mesh element between two neighbouring
particles (which is necessary to compute acuratly the fluid remaining between
these particles) we reduce the set of admissible velocities: if h is the mesh size,
we choose

K(xn) =
{

V ∈ R
2N , Dij(x

n) + ∆tGij(x
n) ·V ≥ η

}

with η ≈ h.

4.2 Sheared particle

To validate the penalty method, we consider the instantaneous problem of a
particle embedded in a Stokes fluid. The computational domain is a square 1cm
wide and a particle of radius 0.1cm is situated at its center. The right and left
walls of the domain impose a shearing motion to the system (see Fig. 2), the
viscosity of the fluid is equal to 1 and there is no external force.

x

y

L = 1

Ur = 0.5
Ul = −0.5

r = 0.1

0.5

0.5−0.5

−0.5

Figure 2: Sheared particle problem.

The simulations are run for two kinds of meshes: meshes that fit the particle
and cartesian meshes (see Fig. 3). We denote by n the number of elements on
each side of the square. Note that, to simulate the motion of particles, we shall
use non fitted meshes in order to avoid remeshing at each time step.

Since we want to see if the rigid constraint is well taken into account, we
plot in Fig. 4 the L2(B) norm of D(u) against ε for different meshes. We can
observe that this norm is of order 10−5 when ε is of order 10−2, which may allow
us to choose ε not too small. We can also note that the rigid constraint is well

9



Figure 3: Sheared particle: Fitted (left) and cartesian (right) meshes for n = 30

taken into account even for relatively small values of n and that the cartesian
mesh gives good results even if the fitted one is slightly better.

−6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1
−30

−25

−20

−15

−10

−5

Fitted mesh

n = 80

n = 20

n = 150

log(ε)

lo
g
(
∫

B
|D

(u
)|
2
)

−6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1
−30

−25

−20

−15

−10

−5

Cartesian mesh

n = 80

n = 20

n = 150

log(ε)

lo
g
(
∫

B
|D

(u
)|
2
)

Figure 4: Sheared particle: Rigid movement in B, influence of n and ε.

It is known that the angular velocity of the particule converges to
γ̇

2
=

Ur − Ul

2L
= 0.5 as its radius goes to zero. This value is recovered in our tests

and, in Fig. 5 we can observe the streamlines of this rotational motion for
n = 150 and ε = 10−8.
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Figure 5: Sheared particle: Streamlines for a cartesian mesh with n = 150 and
ε = 10−8.

4.3 Sedimentation of a particle : convergence of the penalty

method

In order to better understand the convergence of the penalty method when h =
1/n and ε go to zero, we consider the instantaneous problem of the sedimentation
of a single particle in a box, for which we are able to numerically compute an
accurate reference solution. The particle is embedded in a Stokes fluid. As
before (see Fig. 6), the computational domain is a square 1cm wide, the particle
of radius 0.1cm is situated at its center and the viscosity is equal to 1. We
impose homogeneous boundary conditions on the walls. The force acting on the
particle is fB = (0,−500).

x

y

r = 0.1

0.5

0.5

−0.5

−0.5

fB

Figure 6: Sedimentation of a particule: description of the problem (left) and
streamlines for a cartesian mesh with n = 150 and ε = 10−8 (right).

To study the convergence of the method, we have to compute the solution
to this problem (denoted by u). To do so, we first define (u1, p1) solution to
the following problem:
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−△u1 +∇p1 = 0 in Ω \ B̄

∇ · u1 = 0 in Ω \ B̄

u1 = 0 on ∂Ω
u1 = −1 on ∂B

(12)

Symmetry considerations give that u = αu1 and p = αp1 where α is such
that the balance of forces is zero:

∫

∂B

σ(u) · n =

∫

B

fB

therefore, α is given by

α =

∫

B fB
∫

∂B

σ(u1) · n

and finally, an integration by part gives:

α =

∫

B fB
∫

Ω\B̄

p1∇ · u1 − 2µ

∫

Ω\B̄

D(u1) : D(u1)

.

u can be extended over Ω by u = −α in B. We denote by uref the solution
obtained by implementing this method in FreeFem++ over a boundary fitted
fine mesh of Ω \ B̄ (h = 1/150). We are now interested in the evolution of the
following three quantities when ε and h go to zero:

eK = ‖D(uε
h)‖L2(B)

eL2 = ‖uε
h − uref‖L2(Ω)

eH1 = ‖uε
h − uref‖H1(Ω)

where uε
h denotes the solution to the sedimentation problem given by the

FreeFem++ implementation described in section 4.1 for a penalty parameter
equal to ε and a mesh size equal to h.

On the left side of Fig. 7, ε is fixed to 10−8. We plot log(eL2) and log(eH1)
versus log(h). The following convergence rates are observed:

Fitted mesh Cartesian mesh
eL2 2.1577 0.8798
eH1 1.0658 0.5007

Table 1: Convergence rates when h goes to zero

On its right side, uε
h is computed over a fitted mesh and h is fixed to 1/150.

We plot log(eK), log(eL2) and log(eH1) versus log(ε). As expected, a saturation
due to the space discretization error is observed for eL2 and eH1 . We observe
the following convergence rates:
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Figure 7: Sedimentation of a particle: convergence of the penalty method.

Fitted mesh
eK 0.9806
eL2 0.8909
eH1 0.7177

Table 2: Convergence rates when ε goes to zero

To conclude, we can say that the convergence rate in space for a fitted mesh
is the one given by the Finite Element theory. Even though it is divided by 2 for
cartesian meshes we must recall that these meshes are of great interest for non-
stationnary problems. This study also confirms that the convergence versus ε is
fast enough to allow us to use not too small ε: for ε lower than 10−2, the space
discretization error becomes the leader term of the error in H1(Ω). However,
the convergence rate of eH1 to zero before this saturation effect is somewhat
surprising: for very fine meshes, one would have expected the global error to
behave like the error for the continuous penalized problem which is of order ε
(see [9]). A more precise investigation should be undergone to understand that
phenomenon.

4.4 Sedimentation of two particles

To show that our scheme reproduces the behaviour of physical non-stationary
systems, we now present the sedimentation of two neighbouring particles in a
closed channel. We consider a channel 2cm wide and 5cm tall: Ω = [0, 2]× [0, 5].
This channel is filled with a Navier-Stokes fluid and the simulation is started
by dropping two particles of diameter d = 0.25cm from points (1, 4.5) and
(1 + 0.2r, 4) where r is the radius of the particles. The viscosity of the fluid is
µ = 0.01, the densities of the fluid and of the particles are ρf = 1 and ρB = 2.
Fig. 8 shows the configurations obtained at different time steps and reproduces
the well-known phenomenon of drafting, kissing and tumbling (see [4]).
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t =0 t =1.25 t =1.575 t =2.05 t =2.25 t =2.5

Figure 8: Sedimentation of two particles: configurations at different time steps
for n = 50 and dt = 0.005.

4.5 Sedimentation of 228 particles

In Fig. 9, we plot the results of the sedimentation of 228 particles in a closed
box filled with a Navier-Stokes fluid. The box is a square 2cm wide, the radius
of the particles is r = 0.04, the viscosity of the fluid is µ = 0.01 and the densities
of the fluid and of the particles are ρf = 1 and ρB = 1.5. The simulation is run
for n = 50 and dt = 0.01.

t =0 t =100 t =250 t =500

t =700 t =1000 t =2000 t =8300

Figure 9: Sedimentation of 228 particles: configurations at different time steps.

Conclusion

We have presented in this paper a method to simulate the motion of rigid par-
ticles in Newtonian fluids: the rigid motion is imposed by penalizing the strain
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tensor, the time discretization is performed using the method of characteristics
and the collisions are taken into account thanks to a projection method.

This algorithm allows us to use fixed cartesian meshes even for non-stationnary
problems and is easy to implement from any Stokes/Navier-Stokes solver. More-
over, it is straightforward to extend it to the three-dimensional case provided
we have a 3D-Stokes/Navier-Stokes solver.

Whereas the systems usually obtained by using penalty methods are ill con-
ditioned, a numerical investigation of the convergence of our scheme showed
that we can choose ε not too small in order to deal with reasonably conditioned
systems. However, the interactions between parameters h and ε seem to be
important and shall be better understood. In order to do so, we would like to
extend to the fluid case the numerical analysis presented in [13] of the penalty
method in the finite element context for the Poisson’s problem.

Acknowledgement: The author would like to thank Pr. Bertrand Maury
for helpful suggestions and numerous discussions about this subject.
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