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We describe the spectral theory of the adjacency operator of a graph which is isomorphic to a regular tree at infinity. Using some combinatorics, we reduce the problem to a scattering problem for a finite rank perturbation of the adjacency operator on a regular tree. We develop this scattering theory using the classical recipes for Schrödinger operators in Euclidian spaces.

Introduction

The aim of this paper is to describe in an explicit way the spectral theory of the adjacency operator on an infinite graph Γ which, outside of a finite sub-graph Γ 0 , looks like a regular tree T q of degree q + 1. We mainly adapt the case of the Schrödinger operators as presented in [START_REF] Reed | Methods of Modern mathematical Physics III-Scattering theory[END_REF][START_REF] Ikebe | Eigenfunction expansion associated with the Schrödinger operators an their applications to scattering theory[END_REF]. The proofs are often simpler here and the main results are similar. This paper can be read as an introduction to the scattering theory for differential operators on smooth manifolds. Even if we do not find our results in the literature, there is probably nothing really new for experts in the scattering theory of Schrödinger operators, except the combinatorial part in Section 5.

The main result is an explicit spectral decomposition: the Hilbert space l2 (Γ) splits into a sum of two invariant subspaces l 2 (Γ) = H ac ⊕ H pp . The first one 1 is an absolutely continuous part isomorphic to a closed sub-space of that of the regular tree of degree q + 1, while the second one is finite dimensional and we have an upper bound on its dimension. The absolutely continuous part of the spectral decomposition is given in terms of explicit generalized eigenfunctions whose behavior at infinity is described in terms of a scattering matrix.

We first introduce the setup, then we recall the spectral decomposition of the adjacency operator A 0 of a regular tree T q by using the Fourier-Helgason transform. In Section 3, we consider a Schrödinger operator A = A 0 + W on T q , where W is a compactly supported non local potential. We build the generalized eigenfunctions for A, define a deformed Fourier-Helgason transform and get a spectral decomposition of A (Theorem 4.3). In section 4, we derive a similar spectral decomposition of the adjacency operator of any graph Γ asymptotic to a regular tree T q by proving the following combinatorial result (Theorem 4.2): any such graph Γ is isomorphic to a connected component of a graph Γ which is obtained from T q by a finite number of modifications. This implies that the adjacency operator of Γ is a finite rank perturbation of the adjacency operator of T q . In section 5, we investigate some consequences of the scattering theory developed in section 3: we write the point-to-point correlations of scattered waves in terms of the Green's function, we define the transmission coefficients, connect them to the scattering matrix, and get an explicit expression of them in terms of a Dirichlet-to-Neumann operator. For the sake of clarity, this part has been postponed, since it is not necessary to prove Theorem 4.2. In particular, for l = 1, • • • , L, |x l | Γ 0 = 1.
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The space of complex-valued functions on V Γ is denoted

C(Γ) = {f : V Γ -→ C}
and C 0 (Γ) ⊂ C(Γ) is the subspace of functions with finite support. We define also l 2 (Γ) = {f ∈ C(Γ);

x∈V Γ |f | 2 (x) < ∞}.
It is a Hilbert space when equipped with the inner product:

f, g = x∈V Γ f (x).g (x) .
Let us emphasize that we take the physicist's notation, as in [START_REF] Reed | Methods of Modern mathematical Physics III-Scattering theory[END_REF] for example: our inner product is conjugate-linear in the first vector and linear in the second. On C 0 (Γ), we define the adjacency operator A Γ by the formula:

(A Γ f ) (x) = y∼x f (y) (1) 
The operator A Γ is bounded on l 2 (Γ) if and only if the degree of the vertices of Γ is bounded, which is the case here. In that case, the operator A Γ is self-adjoint; otherwise, the operator A Γ defined on C 0 (Γ) could have several selfadjoint extensions.

For any λ outside the spectrum of A Γ , we denote by R Γ (λ) : l 2 (Γ) → l 2 (Γ) the resolvent (λ -A Γ ) -1 and by G Γ (λ, x, y) with x, y ∈ V Γ the matrix of R Γ (λ), also called the Green's function. [START_REF] De Verdière | Spectre de graphes. Cours spécialisés[END_REF] The spectral decomposition of the adjacency matrix of the tree T q and the Fourier-Helgason transform

Points at infinity

Let T q = (V q , E q ) be the regular tree of degree q + 1 and let us choose an origin, also called a root, O. We denote by |x| the combinatorial distance of the vertex x to the root. The set of points at infinity denoted Ω O is the set of infinite simple paths starting from O. We will say that a sequence y n ∈ V q tends to ω ∈ Ω O if, for n large enough, y n belongs to the path ω and is going to infinity along that path. If x is another vertex of V q , the sets Ω O and Ω x are canonically identified by considering paths which coïncide far from O and x. There is a canonical probability measure dσ O on Ω O : dσ O is the unique probability measure on Ω O which is invariant by the automorphisms of T q leaving O fixed. Later on we will always denote by Ω the set of points at infinity, because the root is fixed. For the tree T q , the Busemann function 

The spectral Riemann surface

Let us define the Riemann surface S = R/τ Z × iR with τ = 2π/ log q. We denote by S 0 = R/τ Z the circle ℑs = 0, and we set

I q := [-2 √ q, +2 √ q].
Definition 3.1 For any s ∈ S, we set : 

λ s = q 1 2 +is + q 1 2 -is .

Calculation of the Green's function

The results of this section are classical, see for example the paper by P. Cartier [START_REF] Cartier | Géométrie et analyse sur les arbres[END_REF]. We denote by A 0 (resp. G 0 ) the adjacency operator (resp. the Green's function) on T q . We will compute explicitly G 0 (λ, x, y). Let us recall that the regular tree is 2-point regular: for any x, y, x ′ , y ′ ∈ V (T q ) so that d(x, y) = d(x ′ , y ′ ), there exists an automorphism J of T q so that J(x) = x ′ and J(y) = y ′ . The Green's function G(λ, x, y) satisfies G(λ, Jx, Jy) = G(λ, x, y) for any automorphism J of

T q . Hence, G(λ, x, y) is a function of the distance d(x, y). It is therefore enough to compute G 0 (λ, O, x) for an x ∈ V q , that is the value f (x) of the l 2 solution of (λ -A 0 )f = δ O , (2) 
where f (x) depends only on the distance |x| to the origin O. So we set f (x) = u k if |x| = k, k ∈ N, and rewrite equation (2) as follows: iii) ∞ n=0 (q + 1)q n-1 u 2 n < +∞ The last condition stands for f to be in l 2 (T q ).

i) λu k -qu k+1 -u k-1 = 0 for k ≥ 1 ii) λu 0 -(q + 1)u 1 = 1 S 0 I q Λ -τ /2 τ /2 S + -2 √ q 2 √ q I q S 0
• If λ / ∈ I q , the equation qα 2λα + 1 = 0 admits an unique solution α such that |α| < 1/ √ q. From i) and iii), we get that u k = Cα k and the constant C is determined by ii) :

C = C λ = 1 λ -(q + 1)α .
Therefore we have

G 0 (λ, O, x) = 2qα |x| λ(q -1) + (q + 1)F (λ)
where F (λ) denotes the determination of λ 2 -4q in C \ I q equivalent to λ as λ tends to infinity. Thus using the invariance of the Green's function by the group of automorphisms of the tree, we see that the Green's function G 0 (λ, x, y) is a function of the distance d(x, y) and we have, for any x, y ∈

V (T q ), G 0 (λ, x, y) = C λ α d(x,y) . (3) 
The operator of matrix G 0 (λ, ., .) is clearly bounded in l 2 (T q ) and λ is not in the spectrum of A 0 .

• If λ ∈ I q , there is no l 2 solution of Equation ( 2). Therefore we cannot solve (λ -A 0 )f = δ O in l 2 , the resolvent does not exist and λ is in the spectrum of A 0 .

Using the parameter s ∈ S + , we have

α = q -1 2 +is , C λs := C(s) = 1 q 1 2 -is -q -1 2 +is
and

F (λ s ) = q 1 2 -is -q 1 2 +is .
Theorem 3.1 The spectrum of A 0 is the interval

I q = [-2 √ q, +2 √ q].
The Green's function of the tree T q is given, for s ∈ S + by

G 0 (λ s , x, y) = C(s)q (-1 2 +is)d(x,y) = q (-1 2 +is)d(x,y) q 1 2 -is -q -1 2 +is . (4) 
As a function of s, the Green's function extends meromorphically to S with two poles -i/2 and -i/2 + τ /2. Moreover we have, for any x ∈ V q and any y belonging to the ray from

x ω to ω, G 0 (λ s , x, y) = G rad (λ s , y)q ( 1 2 -is)bω(x) (5) 
with

G rad (λ s , y) = C(s)q (-1 2 +is)|y| (6) 
Proof.

-

The last result comes from the definition b ω (x) = |x ω |d(x, x ω ).

The density of states

Let us recall how to introduce a notion of spectral measure (also called density of states) on the graph Γ. For a given continuous function φ : R → R, we associate by the functional calculus an operator φ(A Γ ) on l 2 (Γ), which has a matrix [φ(A Γ )](x, x ′ ). We consider then, for any x ∈ V Γ , the linear form on

C(R, R) L x (φ) = [φ(A Γ )](x, x) .
L x is positive and satisfies L x (1) = 1, so we have L x (φ) = R φde x where de x is a probability measure on R, supported by the spectrum of A Γ which is called the spectral measure of Γ at the vertex x.

The density of states of T q is given by the Theorem 3.2 (See for example [START_REF] De Verdière | Distribution de points sur une sphère[END_REF]) The spectral measure de x of T q is independent of the vertex x and is given by

de x (λ) := de(λ) = (q + 1) 4q -λ 2 2π ((q + 1) 2 -λ 2 ) dλ (7) 
Proof.-

For the sake of clarity, we recall the main ingredients: 1) an explicit computation of the diagonal entries of the Green's function G 0 (λ, x, x) = 2q λ(q -1) -(q + 1)F (λ) where F (λ) denotes as previously the determination of λ 2 -4q in C/I q (with I q = [-2 √ q, 2 √ q]) equivalent to λ for great values of λ.

2) The expression of the spectral measure via Stone formula

de(λ) = -1 2iπ (G(λ + i0, x, x) -G(λ -i0, x, x)) dt . (8) 
The previous density of states is the weak limit for the densities of a graph asymptotic to a regular tree. More precisely we have Theorem 3.3 Let Γ be as in definition 2.1. Consider the adjacency operator A Γ defined by (1), denote A := A Γ for simplicity. When x tends to infinity, the densities of states dµ A x (λ) of Γ converge weakly to the density of states de(λ) of T q defined by [START_REF] De Verdière | A Semi-classical calculus of correlations. Thematic issue "Imaging and Monitoring with Seismic Noise" of the series[END_REF].

Proof.-It is enough to compute the limits of λ n dµ A

x for n fixed and x → ∞. By definition, we have t n dµ A x = [A n ](x, x), and

[A n ](x, x) = a x,x 1 a x 1 ,x 2 • • • a x n-1 ,x
where the sum is on loops γ = (x, x 1 , x 2 , • • • , x n-1 , x) of length n based at x. If we assume that |x| Γ 0 > n/2, the loops do not meet Γ 0 and therefore [A n ](x, x) = [A n 0 ](x, x).

The Fourier-Helgason transform

Let us recall the definition of the Fourier-Helgason transform on the tree T q with the root O.

Definition 3.3 For any f ∈ C 0 (T q ), the Fourier-Helgason transform F H(f ) is the function defined by the finite sum

F H(f )(ω, s) := f (ω, s) = x∈Vq f (x)q (1/2+is)bω (x) . ( 9 
)
for any ω ∈ Ω O and any s ∈ S.

Definition 3.4 For any ω ∈ Ω O and any s ∈ S we define the "incoming plane wave" e 0 (ω, s) as the function x → e 0 (x; ω, s), where ∀x ∈ V q , e 0 (x, ω, s) = q (1/2-is)bω (x) .

For s ∈ S 0 , such a plane wave is a generalized eigenfunction for the adjacency operator A 0 on T q in the sense that it satisfies (λ s -A 0 )e 0 (x, ω, s) = 0 (λ s = 2 √ q cos(s log q)) , [START_REF] Figà-Talamanca | Harmonic Analysis and representation theory for groups acting on regular trees[END_REF] but is not in l 2 .

If we restrict ourselves to s ∈ S 0 , definition 3.3 writes

f (ω, s) = e 0 (ω, s), f = x∈V Γ f (x) e 0 (x, ω, s) , (11) 
and the completeness of the set {e 0 (ω, s), s ∈ S 0 , ω ∈ Ω} is expressed by the following inversion formula (see [CMS]):

Theorem 3.4 For any f ∈ C 0 (T q ), the following inverse transform holds

f (x) = S 0 Ω e 0 (x, ω, s) f(ω, s)dσ O (ω)dµ(s) (12) 
where dµ(s) = (q + 1) log q π sin 2 (s log q) q + q -1 -2 cos(2s log q)

|ds| .

Moreover the Fourier-Helgason transform extends to a unitary map from l 2 (T q ) into L 2 (Ω × S 0 , dσ O ⊗ dµ).

The Fourier-Helgason transform is not surjective: its range is the subspace

L 2 even (Ω × S 0 , dσ O ⊗ dµ) of the functions F of L 2 (Ω × S 0 , dσ O ⊗ dµ)
which satisfy the symmetry condition (see, for example, [START_REF] Cowling | The range of the Helgason-Fourier transformation on regular trees[END_REF] or [START_REF] Figà-Talamanca | Harmonic Analysis and representation theory for groups acting on regular trees[END_REF])

Ω e 0 (x, ω, s)F (ω, s)dσ O (ω) = Ω e 0 (x, ω, -s)F (ω, -s)dσ O (ω) .

The Fourier-Helgason transform provides a spectral resolution of A

0 : if φ : R → R is continuous, φ(A 0 ) = (F H) -1 φ(λ s )F H ,
where φ(λ s ) denotes the operator of multiplication by that function on L 2 even (Ω × S 0 , dσ 0 ⊗ dµ).

Corollary 3.1 From the inverse Fourier-Helgason transform formula [START_REF] Reed | Methods of Modern mathematical Physics III-Scattering theory[END_REF] we find back the expression of the spectral measure of T q (see Theorem 3.2).

Proof.-By homogeneity of the tree T q , for any continuous function φ :

R → R, [φ(A 0 )](x, x) is independent of x. Using (12), we get [φ(A 0 )](O, O) = Ω S 0 φ(λ s )e 0 (O, ω, s)e 0 (O, ω, s) dσ O (ω)dµ(s) = S 0 φ(λ s ) dµ(s).
Let us perform the change of variables

s = f q (λ) := 1 log q arccos λ 2 √ q . ( 14 
)
Using ( 13) and the fact that, by the map s → λ s , the circle S 0 is a double covering of I q , we write

[φ(A 0 )](x, x) = 2 (q + 1) log q π Iq φ(λ) 1 -λ 2 /4q q + q -1 + 2 -λ 2 /q f ′ q (λ)dλ = 2 (q + 1) 4π Iq 4q -λ 2 (q + 1) 2 -λ 2 φ(λ)dλ ,
which actually implies formula [START_REF] De Verdière | A Semi-classical calculus of correlations. Thematic issue "Imaging and Monitoring with Seismic Noise" of the series[END_REF].

A scattering problem for a Schrödinger operator with a compactly supported non local potential

We are concerned here with the scattering on T q between the adjacency operator A 0 and the Schrödinger operator A = A 0 + W , where W is a compactly supported non local potential. More precisely the Hermitian matrix (also denoted W ) associated to this potential is supported by K × K where K is a finite part of V q . We assume in what follows that K is chosen minimal, so that:

K = {x ∈ V q | ∃y ∈ V q with W x,y = 0} .
Let us first describe the spectral theory of A: it follows from [START_REF] Reed | Methods of Modern mathematical Physics III-Scattering theory[END_REF], Sec. XI 3, and from the fact that A is a finite rank perturbation of A 0 (see also Section 4.3) that the Hilbert space l 2 (T q ) admits an orthogonal decomposition into two subspaces invariant by A: l 2 (T q ) = H ac ⊕ H pp where

• H ac is the isometric image of l 2 (T q ) by the wave operator

Ω + = s -lim -∞
e itA e -itA 0 .

We have A |Hac = Ω + A 0 (Ω + ) ⋆ , so that the corresponding part of the spectral decomposition is isomorphic to that of A 0 which is an absolutely continuous spectrum on the interval I q .

• The space H pp is finite dimensional, admits an orthonormal basis of l 2 eigenfunctions associated to a finite set of eigenvalues, some of them may be embedded in the continuous spectrum I q .

We will denote by P ac and P pp the orthogonal projections on both subspaces.

In order to make the spectral decomposition more explicit, we will introduce suitable generalized eigenfunctions of A. These generalized eigenfunctions are particular solutions of (λ s -A)e(., ω, s) = 0 ,

meaning not l 2 solutions, but only point-wise solutions. For the adjacency operator A 0 , we have seen that these generalized eigenfunctions, called the " plane waves" are given by the e 0 (ω, s)'s with s ∈ S 0 and ω ∈ Ω O (see definition 3.4) and give the Fourier-Helgason transform which is the spectral decomposition of A 0 (Theorem 3.4). We are going to prove a similar eigenfunction expansion theorem for A, using generalized eigenfunctions of A. We will mainly adapt the presentation of [START_REF] Reed | Methods of Modern mathematical Physics III-Scattering theory[END_REF], Sec. XI.6, for Schrödinger operators in R 3 (see also [START_REF] Ikebe | Eigenfunction expansion associated with the Schrödinger operators an their applications to scattering theory[END_REF]). Our first goal is to build the generalized eigenfunctions x → e(x, ω, s) also denoted e(ω, s). We will derive and solve the so-called Lippmann-Schwinger equation. This is an integral equation that e(ω, s) will satisfy.

Formal derivation of the Lippmann-Schwinger equation

Let us proceed first in a formal way by transferring the functions e 0 (ω, s) by the wave operator: if e(ω, s) is the image of e 0 (ω, s) by the wave operator Ω + in some sense (they are not in l 2 !), then we should have e 0 (ω, s) = lim t→-∞ e itA 0 e -itA e(ω, s)

= lim t→-∞ [e(ω, s) -i t 0 e iuA 0 W e -iuA e(ω, s)du] = e(ω, s) -ilim ε→0 -∞ 0 e iuA 0 W e -iuλs e εu e(ω, s)du = e(ω, s) + lim ε→0 [(A 0 -(λ s + iε)) -1 W e(ω, s)] .
So e(ω, s) should obey the following "Lippmann-Schwinger-type" equation e(ω, s) = e 0 (ω, s) + G 0 (λ s )W e(ω, s) .

(16)

4.2 Existence and uniqueness of the solution for the modified "Lippmann-Schwinger-type" equation

Let χ ∈ C 0 (T q ) be a compactly supported real-valued function so that W χ = χW = W . For example χ can be the characteristic function of K. We first introduce a modified "Lippmann-Schwinger-type" equation. If e(ω, s) obeys ( 16) and a(ω, s) = χe(ω, s), then a obeys

a(ω, s) = χe 0 (ω, s) + χG 0 (λ s )W a(ω, s) . ( 17 
)
We have the following result :

Proposition 4.1 Let χ ∈ C 0 (T q ) be a compactly supported real-valued function so that W χ = χW = W . Set Ê =: {s ∈ S 0 ; ker(Id -χG 0 (λ s )W ) = 0} (18) 
1. The set Ê is finite and independent of the choice of χ.

If s /

∈ Ê, then (17) has a unique solution a(ω, s) ∈ C 0 (T q ) and the function e(ω, s) = e 0 (ω, s) + G 0 (λ s )W a(ω, s) is the unique solution of the Lippmann-Schwinger equation (16).

3. The set Ê is invariant by s → -s and consequently it is the pre-image by Λ : s → λ s of a subset of I q which we denote by E.

Proof.-

We first prove 2). Let L s,χ be the finite rank operator on l 2 (T q ) defined by L s,χ = χG 0 (λ s )W . The map s → L s,χ extends holomorphically to ℑs > - 1 2 . Equation ( 17) takes the form

a(., ω, s) = η(., ω, s) + L s,χ a(., ω, s), (19) 
where η(., ω, s) ∈ C 0 (T q ). By the analytic Fredholm theorem ( [START_REF] Reed | Methods of Modern mathematical Physics III-Scattering theory[END_REF], p. 101), there exists a finite subset Ê of S 0 , defined by Ê =: {s ∈ S 0 ; ker(Id -L s,χ ) = 0}, so that equation (17) has a unique solution a(ω, s) ∈ C 0 (T q ) whenever s / ∈ Ê . The second assertion of 2) comes from the fact that W a(ω, s) = W χe(ω, s) = W e(ω, s).

Let us now prove 1): the "minimal"

χ is χ W = 1 K . If a is a non trivial solution of a -χ W G 0 (λ s )W a = 0, and χχ W = χ W , a is also solution of a -χG 0 (λ s )W a = 0.
Conversely, if a-χG 0 (λ s )W a = 0, we have χ W a-χ W G 0 (λ s )W χ W a = 0. We have to prove that χ W a = 0. If χ W a = 0, we would have W a = 0 and a = 0.

To prove 3) it is enough to notice that for any s / ∈ Ê, we have L s = L -s .

4.3

The set E and the pure point spectrum Proposition 4.2 If (A-λ)f = 0 with λ ∈ I q and f ∈ l 2 (T q ), then Supp(f ) ⊂ K

where K is the smallest subset of V q so that Supp(W ) ⊂ K × K and all connected components of T q \ K are infinite.

Proof.-

We will proceed by contradiction. Let x ∈ V q \ K be so that f (x) = 0. Let us define an infinite sub-tree T x of T q as follows: let y α , α = 1, • • • , a be the vertices of T q which satisfy y α ∼ x and y α is closer to K than x. Then T x is the connected component of x in the graph obtained from T q by removing the edges {x,

y α } for α = 1, • • • , a. Let us consider the "averaged" function n ∈ N → fx (n) := 1 q n z∈Tx, d(x,z)=n f (z) .
Then fx satisfies the ordinary difference equation λg(n)qg(n + 1)g(n -1) = 0. We thus get a contradiction, since this equation has no non-zero l 2 solution when λ is in I q and hence f (x) = fx (0) = 0.

Corollary 4.1 #{σ pp (A) ∩ I q } ≤ # K.
This holds because any eigenfunction associated to an eigenvalue in {σ pp (A) ∩ I q } is supported in K and the dimension of the vector space of functions supported in K is # K.

Theorem 4.1 If s ∈ S 0 , (A -λ s )f = 0 and f ∈ l 2 (T q ) \ 0, then s ∈ Ê. Conversely, if s ∈ Ê ⊂ S 0 , there exists f = 0 so that (A -λ s )f = 0 and f (x) = O q -|x|/2 . Proof.- K K Figure 4:
A simple example with K strictly larger than K Due to Proposition 4.2, the support of such an f is included in K and (λ s -A 0 )f = W f . We can apply G 0 (λ s ) to both sides of the equation, (although λ s is in the spectrum of A 0 ) because the functions on both sides are finitely supported. On the lefthandside we have G 0 (λ s )(λ s -A 0 )f = f : this is true for λ s / ∈ I q because I q is the spectrum of A 0 and hence by continuity (G 0 (λ s ) extends holomorphically near S 0 ) for every λ s since f is compactly supported. Hence applying G 0 (λ s ) to both sides yields f = G 0 (λ s )W f . Due to proposition 4.1, we can choose for χ the characteristic function of K, so we get f -χG 0 (λ s )W f = 0. We have a non trivial solution of a -L s a = 0, namely a = f . Conversely, let us start from a, a non trivial solution of a-L s a = 0 and define

f = G 0 (λ s )W a. Then (λ s -A)f = (λ s -A 0 )G 0 (λ s )W a -W G 0 (λ s )W a and (λ s -A 0 )G 0 (λ s )W a = W a by analytic extension from s ∈ S + . Hence, using W χ = W , (λ s -A)f = W a -W χG 0 (λ s )W a = W a -W a = 0 .
From the definition of f , we get that f is a finite linear combination of the functions G 0 (λ s , ., y), y ∈ Supp(W ) and we can use Equation [START_REF] De Verdière | Semiclassical analysis and passive imaging[END_REF] to get the bound in x. 

σ pp (A) = σ - pp (A) ∪ σ + pp (A) ∪ σ 0 pp (A) where σ - pp (A) = σ pp (A)∩]-∞, -2 √ q[, σ + pp (A) = σ pp (A)∩]2 √ q, +∞[, and σ 0 pp (A) = σ pp (A) ∩ I q . We have #σ ± pp (A) ≤ #Supp(W ) and #σ 0 pp (A) ≤ # K.
The first estimate comes from the mini-max principle and the fact that W is a rank N perturbation of A 0 with N = #Supp(W ). The second one is already proved.

The reader could ask if there can really be some compactly supported eigenfunctions. They can exist as shown by the following 2 examples. (20)

We want to prove the following Theorem 4.3 For any f ∈ C 0 (T q ) and any closed interval J ⊂ I q \ E, if we denote by Ĵ the inverse image of J by s → λ s , the following inverse transform holds

P J f (x) = Ĵ Ω e(x, ω, s) fsc (ω, s)dσ O (ω)dµ(s) . (21) 
Moreover, f → fsc extends to an isometry from H ac onto L 2 even (Ω×S 0 , dσ O ⊗dµ).

The relation of the deformed Fourier-Helgason transform with the resolvent

Denoting, with a slight abuse of notation, for s ∈ S + , by G(s) the operator (λ s -A) -1 and similarly by G 0 (s) the operator (λ s -A 0 ) -1 , we have the resolvent equation

G(s) = G 0 (s) + G 0 (s)W G(s) (22) 
For σ ∈ S 0 and s in S + , we set

h(s; ω, σ) = (λ s -λ σ )G(s)e 0 (ω, σ) ,
where the right hand side is a convergent series which identifies to (λ s -λ σ )-times the inverse Fourier-Helgason transform of y → G(s; x, y).

Using the definition of G 0 and (10) we have We thus have related fsc to the resolvent.

(λ s -λ σ )G 0 (s)e 0 (ω, σ) = e 0 (ω, σ)+A 0 G 0 (s)e 0 (ω, σ)-G 0 (s)[λ σ e 0 (ω

End of the proof of Theorem 4.3

Let λ s = Λ+iε with Λ ∈ I q \E and ε > 0, and s ∈ S + (this implies 0 < ℜs < τ /2).

Up to a factor of (Λ+iε-λ σ ), (ω, σ) → h(x; s; ω, σ) is the inverse Fourier-Helgason transform of y → G(λ s , x, y); so the Plancherel theorem implies (after multiplying by f (x)f (y)) that

(λ s -λ s ) z∈Vq G(λ s , x, z)G(λ s , z, y)f (x)f (y) = ... ....2iε S 0 Ω h(x; s; ω, σ)h(y; s; ω, σ)f (x)f (y) |λ σ -Λ| 2 + ε 2 dσ O (ω)dµ(σ)
If we sum over all x's and y's, we obtain for the left-hand side

(λ s -λ s ) G(λ s )f, G(λ s )f = (λ s -λ s ) f |G(λ s )G(λ s )f = f |[G(λ s ) -G(λ s )]f
whereas the right-hand side becomes

S 0 Ω 2iε |λ σ -Λ| 2 + ε 2 | |Φ(s; ω, σ)| 2 dσ O (ω)dµ(σ) .
We thus conclude that, for any closed sub-interval J of I q disjoint from E,

1 2πi J f |[G(Λ+iε)-G(Λ-iε)]f dΛ = 1 π J dΛ S 0 Ω ε |λ σ -Λ| 2 + ε 2 |Φ(s, ω, σ)| 2 dσ O (ω)dµ(σ)
As ε → 0, Stone's formula implies that the left-hand side approaches P J f 2 . Moreover the measures

dl ε = εdΛ π[|λ σ -Λ| 2 + ε 2 ]
converge weakly to δ(Λ -λ σ ) as ε → 0 + . So one has to put Λ = λ σ , which implies σ = ±s.

Thus one gets that the right-hand side tends to Ĵ Ω | fsc (ω, σ)| 2 |dσ O (ω)dµ(σ), where Ĵ is the inverse image of J by s → λ s .

The spectral theory for a graph asymptotic to a regular tree

We are concerned here with the spectral theory of the adjacency matrix of a graph Γ asymptotic to a regular tree of degree q + 1, in the sense of Definition 2.1, which we recall here: Definition 5.1 Let q ≥ 2 be a fixed integer. We say that the infinite graph Γ is asymptotic to a regular tree of degree q + 1 if Γ is connected and there exists a finite connected sub-graph Γ 0 of Γ such that Γ ′ := Γ \ Γ 0 is a disjoint union of a finite number of trees T l , l = 1, • • • , L, rooted at a vertex x l linked to Γ 0 and so that all vertices of T l different from x l are of degree q + 1. The trees T l , l = 1, • • • , L, are called the ends of Γ.

We want to reduce the spectral theory of A Γ to the situation studied in Section 4. For that, we need a preliminary combinatorial study which could be of independent interest.

Some combinatorics

We need the following combinatorial result: Theorem 5.1 If Γ is asymptotic to a regular tree of degree q + 1, then Γ is isomorphic to a connected component of a graph Γ which can be obtained from T q by adding and removing a finite number of edges.

Remark 5.1 By removing a finite number of edges, one could assume that Γ is a tree. Then the result is quite elementary if the degree of all vertices of Γ is ≤ q + 1: it is then enough to add infinite regular trees to the vertices of degrees < q + 1 in order to get the final result. This argument, suggested by the referee, is not enough to give a complete proof.

In order to prove Theorem 5.1, we first introduce an integer ν(Γ) associated to the graph Γ; the integer ν is a combinatorial analogue of the regularized total curvature of a Riemannian surface S which is of constant curvature ≡ K 0 near infinity, namely S (K -K 0 )|dσ|. Definition 5.2 If Γ is asymptotic to a regular tree of degree q + 1, we define ν(Γ) by

ν(Γ) = x∈V Γ (q + 1 -d(x)) + 2b 1 ,
where d(x) is the degree of the vertex x and b 1 is the first Betti number of Γ or equivalently the number of edges to be removed from Γ in order to get a tree.

Note that, if T is a maximal sub-tree of Γ, ν(T ) = ν(Γ).

We will need the

Lemma 5.1 If, for r ≥ 2, B r = {x ∈ V Γ | |x| Γ 0 ≤ r}, then we have ν(Γ) = (q -1)m -M + 2 ,
where m is the number of inner vertices of B r and M the number of boundary vertices (i.e. connected to a vertex of Γ \ B r ) of B r .

Proof.-Each of the M boundary vertices has q neighbors in Γ \ B r and one in B r . From Euler formula applied to the sub-graph Γ ∩ B r which is connected by the assumption on Γ 0 , we get

1 -b 1 = (m + M) - 1 2   |x| Γ 0 ≤r-1 d(x) + M   . Thus ν(Γ) = |x| Γ 0 ≤r-1 (q + 1 -d(x)) + 2b 1 is equal to ν(Γ) = (q + 1)m -(2m + M -2 + 2b 1 ) + 2b 1 .
We will also need the: Lemma 5.2 Let F be a finite tree whose all vertices are of degree q + 1 except the ends which are of degree 1. Let M be the number of ends and m the number of inner vertices of F . We have the relation

M = 2 + (q -1)m . (24) 
Conversely, for each choice of (m, M) satisfying Equation ( 24), there exists such a tree F . Conversely, the statement is true for m = 1, M = q + 1 and we proceed by induction on m by adding q edges to a boundary vertex and the corresponding q boundary vertices, we have m → m + 1, M → M + (q -1).

Lemma 5.3 If Γ is asymptotic to a regular tree of degree q +1, Γ can be obtained from a tree T q by removing and adding a finite number of edges if and only if ν(Γ) = 0.

Proof.-All the changes will take place inside the sub-graph B r . If we denote by M the number of boundary vertices and m the number of inner vertices of B r , we have, using ν(Γ) = 0 and Lemma 5.1, M = 2 + (q -1)m. We replace the graph B r by a tree F whose existence is stated in Lemma 5.2. The vertices of both graphs are the same and all vertices of the new graph have degree q + 1. Hence the new graph is a regular tree T q .

We will now make some modifications of Γ in order to get a new graph Γ with ν( Γ) = 0. Figure 5: Changing the graph with ν = 0 into T q : the dashed edges are the new edges, the continuous one the old edges. The picture is done in the same situation as in Figure 6. Lemma 5.4 If Γ ′ = M 1 (Γ) is defined by adding to Γ a vertex and an edge connecting that vertex to a vertex of Γ 0 , then ν(Γ ′ ) = ν(Γ) + q -1.

If Γ ′′ = M 2 (Γ) is defined by adding to Γ a tree whose root x is of degree q and all other vertices of degree q + 1 and connecting x by an edge to a vertex of Γ 0 , Γ ′′ is asymptotic to a regular tree of degree q + 1 and ν(Γ ′ ) = ν(Γ) -1.

This Lemma is quite easy to check. Proof of Theorem 5.1.-Let us now write ν(Γ) = N ′′ -(q -1)N ′ with N ′ ≥ 0 and N ′′ ≥ 0. By performing N ′ times the move M 1 and N ′′ times the move M 2 , we arrive to a graph Γ with ν( Γ) = 0. Let Γ be the graph obtained by removing from Γ the (N ′ + N ′′ ) edges not in E Γ , one of whose vertices is in Γ 0 . The graph Γ is clearly asymptotic to a regular tree of degree (q + 1) and Γ is a connected component of Γ.

It remains to prove that, by removing and adding a finite number of edges to Γ, we get a tree T q : this is the content of Lemma 5.3.

The spectral theory of Γ

From Theorem 5.1, we can identify the set of vertices of Γ to a subset of the set of vertices of Γ which is the same as the set of vertices of T q . We deduce the Γ Figure 6: The construction in the proof of Theorem 5.1; the graph Γ has q = 3, ν = -1,

N ′ = N ′′ = 1, m = 2, M = 6.
existence of a Hilbert space H so that l 2 (T q ) = l 2 (Γ) ⊕ H and this decomposition is invariant by A Γ. Moreover A Γ is a finite rank perturbation of A 0 = A Tq . This will allow us to describe the spectral theory of A Γ by using the results of Section 4.

In order to get the spectral decomposition of A Γ in terms of the spectral decomposition of A Γ given in Section 4.4, we will need the Lemma 5.5 Let A Γ = A Tq + W with Support(W ) ⊂ K × K and K finite. Let Γ be an unbounded connected component of Γ and ω a point at infinity of Γ. Then, for any s / ∈ Ê, we have support(e(., s, ω)) ⊂ V Γ .

Conversely, if ω ′ is a point at infinity of Γ which is not a point at infinity of Γ then support(e(., s, ω ′ )) ∩ V Γ = ∅ .

Proof.-We will apply the general Theorem 4.3 in our combinatorial context. Let us prove the first assertion, the proof of the second is similar. It is enough to prove it for s ∈ S + close to S 0 and hence λ s not in the spectrum of A 0 , because s → e(x, s, ω) is meromorphic on S. We have then (Equation ( 16))

e(s, ω) = e 0 (s, ω) + G 0 (λ s )W e(s, ω) .

From the explicit expression of e 0 (see Definition 3.4), we get that the first term belongs to l 2 ( Γ \ Γ), and so does the second one, as the image of a compactly supported function by the resolvent for λ s / ∈ I q = spectrum(A 0 ) (recall that the resolvent is continuous in l 2 ).

This proves that the restriction of e(., s, ω) to V Γ \ V Γ is an l 2 eigenfunction, with eigenvalue λ s , of A Γ. Since A Γ has no eigenvalue λ s for s ∈ S + close to S 0 , it follows that e(x, s, ω) vanishes for s ∈ S + close to S 0 and x / ∈ V Γ . Theorem 5.1 allows to consider the set Ω of points at infinity of Γ as a subset of the set Ω of the points at infinity of Γ. The space l 2 ( Γ) splits as a direct sum l 2 (Γ) ⊕ l 2 ( Γ \ Γ) which is preserved by the adjacency matrix. Lemma 5.5 shows that the support of the generalized eigenfunctions e(., s, ω) for ω ∈ Ω is included in V Γ . Using this, we can state the spectral decomposition of A Γ as an immediate corollary of Theorem 4.3.

Theorem 5.2 The Hilbert space l 2 (Γ) splits into a finite dimensional part H pp and an absolutely continuous part H ac . This decomposition is preserved by A Γ . If f ∈ C 0 (Γ) and, for ω ∈ Ω, f (s, ω) = e(., s, ω), f , then the map f → f extends to an isometry from H ac onto L 2 even (S 0 ×Ω, dσ 0 ⊗dµ) which intertwines the action of A γ with the multiplication by λ s .

6 Other features of the scattering theory in the setting of section 3

We are again concerned here with the scattering theory on T q between the adjacency operator A 0 and the Schrödinger operator A = A 0 + W , where W is a compactly supported non local potential. Let us recall that

K = {x ∈ V q | ∃y ∈ V q with W x,y = 0} .

Correlation of scattered plane waves

In the paper [START_REF] De Verdière | Mathematical models for passive imaging I: general background[END_REF], the first author computed the point-point correlations of the plane waves for a scattering problem in R d in terms of the Green's function: for a fixed spectral parameter, plane waves are viewed as random waves parametrised by the direction of their incoming part. The motivation comes from passive imaging in seismology, a method developped by Michel Campillo's seismology group in Grenoble, as described for example in the papers [START_REF] De Verdière | Semiclassical analysis and passive imaging[END_REF][START_REF] De Verdière | A Semi-classical calculus of correlations. Thematic issue "Imaging and Monitoring with Seismic Noise" of the series[END_REF]. Following a similar method, we will compute the correlation of plane waves for our graphs viewed as random waves parametrised by points at infinity. From Theorem 4.3 we get, for any φ ∈ C 0 (T q ) such that supp φ ∈ I q \ E, the following formula for the kernel of φ(A):

[φ(A)] x,y = Ω S 0 \ Ê Φ(λ s )e ( x,
ω, s)e ( y, ω, s) dσ O (ω)dµ(s) Taking φ = 1 I , the characteristic function of some interval I = [a, λ] ⊂ I q \ E, we get:

[Π] I (x, y) = 2 Ω fq(a) fq(λ)
e(x, ω, s)e(y, ω, s) dσ O (ω)dµ(s) where we set f q (t) = 1 log q Arccos t 2 √ q as in ( 14), and where we use the fact that, by the map s → λ s , the circle S 0 is a double covering of I q . In particular f q (λ s ) = s.

In the sequel we note f q (λ) = s(λ) for simplicity.

If we consider the plane wave e(x, ω, s(λ)) for λ ∈ I q \ E, as a random wave, we can define the point-to-point correlation C sc λ (x, y) of such a random wave in the usual way: Definition 6.1 For any λ ∈ I q \ E, the point-to-point correlation C sc λ (x, y) of the random wave e(x, ω, s(λ)) is given by

C sc λ (x, y) = Ω e(x, ω, s(λ))e(y, ω, s(λ)) dσ O (ω) . 
Denoting again by G l the Green's function of A: (λ -A) -1 [x, y] := G(λ, x, y) for Imλ > 0 we prove the Theorem 6.1 For any λ ∈ I q \ E and any vertices x, y the point-to-point correlation can be expressed in terms of the Green's function as

C sc λ (x, y) = - 2(q 2 + 2q + 1 -λ 2 ) (q + 1) 4q -λ 2 ℑG(λ + i0, x, y) .
Proof.-

Taking the derivative with respect to λ in equation (6.1) yields:

d dλ [Π] I (x, y) = ... = -2f ′ q (λ) (q + 1) log q π sin 2 (s(λ) log q) q + q -1 -2 cos(2s(λ) log q) Ω e(x, ω, s(λ))e(y, ω, s(λ)) dσ O (ω) = q + 1 2π 4q -λ 2 (q 2 + 2q + 1 -λ 2 ) Ω e(x, ω, s(λ))e(y, ω, s(λ)) dσ O (ω).
Thus we have

d dλ [Π I ](x, y) = q + 1 2π 4q -λ 2 (q 2 + 2q + 1 -λ 2 )
C sc λ (x, y) .

Now we use the resolvent kernel of

A : (λ -A) -1 [x, y] := G(λ, x, y)
for Imλ > 0 and Stone formula (8) to write

[Π] I (x, y) = - 1 π λ a ℑG(t + i0, x, y)dt
and get the result.

The T-matrix and the S-matrix

The Lippmann-Schwinger eigenfunctions e(x, ω, s) are especially useful to describe the so-called S-matrix (S = (Ω -) * Ω + ). First we introduce the following object:

Definition 6.2 Let (ω, s) and (ω ′ , s ′ ) be in Ω × (S 0 \ Ê). Define T (ω, s; ω ′ , s ′ ) = W e 0 (ω, s), e(ω ′ , s ′ ) = (x,y)∈Vq×Vq e(x, ω ′ , s ′ )W (x, y)e 0 (y, ω, s) . 
T (.; .) is called the T -matrix.

The goal of this section is to establish a relation between S and T (Theorem 6.2).

To get the result we will need the following Lemma 6.1 For any f ∈ C 0 (T q )

F H sc (Ω + f )(ω, s) = f (ω, s) (25) 
Proof.

-

Suppose that we can prove F H((Ω + ) * f ) = F H sc (f )(= fsc ), then (25) follows from F H sc (Ω + f ) = F H((Ω + ) * Ω + f ) = f . So, by Plancherel formula it is enough to prove that (f, Ω + g) = S 0 ×Ω fsc (ω, s)ĝ(ω, s)dσ O (ω)dµ(s) . (26) 
In the sequel, we set dΣ := dσ O (ω)dµ(s) to simplify notations.

We have (f,

Ω + g) -(f, g) = ilim ε→0 0 -∞
e εt (f, e itA W e -itA 0 g)dt .

But (f, e itA h) = In the second line above we used the Lippmann-Schwinger equation and at the last step we used the isometric property of the deformed Fourier Helgason transform (Theorem 4.3 ).

We are ready to prove the following Theorem 6.2 For any f and g ∈ C 0 (T q ) (f, (S -I)g) = -2πi

(S 0 ×Ω) 2 T (ω, s; ω ′ , s ′ ) f (ω, s)δ(λ s -λ s ′ )ĝ(ω ′ , s ′ ) dΣdΣ ′
where we set: dΣdΣ ′ := dσ O (ω)dµ(s)dσ O (ω ′ )dµ(s ′ ), (see Appendix A for the precise definition of the measure δ(λ sλ s ′ )dµ(s)dµ(s ′ )). This can be written symbolically by

S(ω, s; ω ′ , s ′ ) = δ(s -s ′ ) -2πiT (ω, s; ω ′ , s ′ )δ(λ s -λ s ′ ) . (27) 
Proof.-

From the definition of S we get that (f, (S-I)g) = ((Ω --Ω + )f, Ω + g) = lim T →∞ -T

T (e itA (iW )e -itA 0 f, Ω + g)dt

= (-i)lim ε→0 +∞ -∞ e -ε|t| (e itA W e -itA 0 f, Ω + g)dt = (-i)lim ε→0 +∞ -∞ e -ε|t| L(t)dt , with 
L(t) = S 0 ×Ω F H sc (e itA W e -itA 0 f )(ω ′ , s ′ )F H sc (Ω + g)(ω ′ , s ′ ) dΣ ′ .
(28) In the last step we used the isometric property of F H sc and the fact that Ω + g ∈ H ac . Moreover we have F H sc (Ω + g)(ω ′ , s ′ ) = ĝ(ω ′ , s ′ ) (Lemma 6.1) and F H sc (e itA W e

-itA 0 f )(ω ′ , s ′ ) = e iλ s ′ t F H sc (W e -itA 0 f )(ω ′ , s ′ ) = e iλ s ′ t x∈Vq (W e -itA 0 f )(x)e(x, ω ′ , s ′ ) =
x,y∈Vq S 0 ×Ω e i(λ s ′ -λs)t W (x, y)e 0 (y, ω, s) f(ω, s)e(x, ω ′ , s ′ ) dΣ . Thus the expression in (28) is

L(t) =
x,y∈Vq (S 0 ×Ω) 2 e i(λs-λ s ′ )t-ε|t| V (x, y)e 0 (y, ω, s) f (ω, s)e(x, ω ′ , s ′ )ĝ(ω ′ , s ′ ) dΣdΣ ′ and after doing the t-integration we get, (f, (S-I)g) = (-i)lim ε→0

(S 0 ×Ω) 2 T (ω, s; ω ′ , s ′ ) 2ε (λ s -λ s ′ ) 2 + ε 2 f (ω, s)ĝ(ω ′ , s ′ ) dΣdΣ ′ .
We conclude by noticing as previously that the measures

dl ε = 2εdµ(s)dµ(s ′ ) (λ s -λ s ′ ) 2 + ε 2 converge weakly to 2πδ(λ s -λ s ′ )dµ(s)dµ(s ′ ) as ε → 0 + .
A consequence of the relation between T and S is the unitarity relation for T : Theorem 6.3 Suppose α / ∈ E. Then for any s and s ′ ∈ S + with λ s = λ s ′ = α, and for any (ω, ω ′ ) ∈ Ω × Ω,

ℑT (ω, s; ω ′ , s ′ ) = π S 0 ×Ω T (ω ′′ , s ′′ ; ω, s)T (ω ′′ , s ′′ ; ω ′ , s ′ )δ(λ s ′′ -α)dΣ ′′ (29) 
where g(y; ω, s) = z∈K W (y, z)e(z, ω, s).

Let us look at the asymptotic behaviour of e scatt (x; ω, s) as x → ω ′ . We have seen (Theorem 3.1) that the Green's function G 0 (λ s ; x, y) satisfies equation ( 4)

G 0 (λ s ; x, y) = C(s)q (-1 2 +is)d(x,y) ; then ( 5) and ( 6) imply that, if x → ω ′ ,

e scatt (x; ω, s) = τ (s, ω, ω ′ )q (-1 2 +is)|x| , with τ (s, ω, ω ′ ) = C(s) y∈K g(y; ω, s)q ( 1 2 -is)b ω ′ (y) = C(s) (y,z)∈K×K
e(z, ω, s)W (z, y)e 0 (y, ω ′ , s) .

Noticing that e 0 (y, ω ′ , s) = e 0 (y, ω ′ , -s) we get that τ (s, ω, ω ′ ) = C(s)T (ω ′ , -s; ω, s) .

and from (27) we derive formula (30).

Remark 6.1 For any y ∈ K we have b ω (y) = b ω ′ (y) if ω and ω ′ belong to the same end of T q \ K. This implies that the function ω ′ → τ (s, ω, ω ′ ) is in fact constant in each end of T q \ K, so that the transmission coefficient τ (s, ω, ω ′ ) can be written as a function τ (s, ω, l). Moreover the reduced Lippmann-Schwinger equation depends only on the restriction of e 0 to K, this implies that the function ω → τ (s, ω, l) is also constant in each end of T q \ K. Finally, we get an L × L matrix depending on s, denoted by

S(s) = (S(l ′ , -s, l, s)) l,l ′ = - 2iπ C(s) (τ (s, l, l ′ )) l,l ′ .

Computation of the transmission coefficients in terms of the Dirichlet-to Neumann operator

In this section, we compute the transmission coefficients following the method of [START_REF] Smilansky | Exterior-Interior Duality for Discrete Graphs[END_REF]. Let us recall that

K = {x ∈ V q | ∃y ∈ V q with W x,y = 0} .
We recall that |x| denotes the combinatorial distance of the vertex x to the root O of T q . Let us set B n-1 = {x ∈ V Γ | |x| ≤ n -1}, where n is chosen so that

x 1 O T 1 x L x 2 x - 1 
Figure 7: The tree T 2 , the ball B n-1 and the end T 1 for n = 3.

n -2 is the supremum of |x| for x in K. We denote by T l the ends of T q \ B n-1 (1 ≤ l ≤ L), by x l the root of T l and by Ω l the boundary of T l , which consists in the set of all geodesic rays starting from x l and staying into T l . The set of the roots {x l | l = 1, • • • , L} is the circle of radius n and L = (q + 1)q n-1 . From now on, we consider a fixed l (1 ≤ l ≤ L), a fixed geodesic ray ω in Ω l , and the associated "incoming plane wave" ∀x ∈ V q , e 0 (x, ω, s) = q (1/2-is)bω (x) , where s ∈ S 0 . We recall that such a plane wave is a generalized eigenfunction for the adjacency operator A 0 on T q in the sense that it satisfies (λ s -A 0 )e 0 (x, ω, s) = 0 (λ s = 2 √ q cos(s log q)) , but is not in l 2 . We are looking for solutions e(.; ω, s) = e 0 (.; ω, s) + e scat (.; ω, s), x ∈ V q of the equation (λ s -A)e(.; ω, s) = 0,

where the scattered wave e scat (.; ω, s) satisfies:

e scat (x, ω, s) = τ (s, ω, l ′ )Φ s (x) if x ∈ V (T l ′ ) , (32) 
where Φ s (x) = q (-1/2+is)|x| (the so-called radiation condition) and the coefficients τ (s, ω, l ′ ) are the transmission coefficients. These radial waves are generalized eigenfunctions of A 0 in the sense defined previously. We want to get an explicit expression of the transmission vector ----→ τ (s, ω) := (τ (s, ω, 1),

• • • , τ (s, ω, l ′ ), • • • , τ (s, ω, L)). (33) 
As we shall see, the transmission vector does not depend on the choice of the geodesic ray ω, it is uniquely determined by the choice of l; we define

---→ τ (s, l) := ----→ τ (s, ω), ∀ω ∈ Ω l . (34) 
We thus recover the result of the previous section, with the following relation

∀l, l ′ τ (s, l, l ′ ) = - C(s) 2iπ S(l ′ , -s, l, s) .
We begin with noticing that b ω (x l ′ ) does not depend of ω ∈ Ω l for any l ′ ∈ {1, • • • , L}. We set

-→ A l := (α -bω(x 1 ) , • • • , α -bω(x L ) ) = (α -b l (x 1 ) , • • • , α -b l (x L ) ) (α = q -1/2+is ),
and denote by -→ E l the vector in R L having all null coordinates excepted the l-th coordinate, which is equal to 1. We will prove the following Theorem 6.5 Consider the integer n so that B n-2 is the smallest ball containing the finite graph K.

Set Γ = B n , ∂Γ = {x l ′ , 1 ≤ l ′ ≤ L}, denote by A n the restriction of A to B n in the sense that A n = (A x,y ) (x,y)∈Bn , define I n in the same way, set B = A nλ s I n and denote by DN s the corresponding Dirichlet-to Neumann operator (see Definition 6.4, Appendix B).

Then DN s and the transmission vector ---→ τ (s, l) defined by (32),(33) and (34) exist for any s /

∈ E 0 = {s ∈ S 0 ; λ s ∈ σ( A n-1 )} and (τ (s, l, l ′ )) = -α -2n 1 C(s) DN s + q 1/2+is I -1 + A , with A n-1 = (A x,y ) (x,y)∈B n-1 , A = (A l,l ′ ) = (α d(x l ,x l ′ ) ), α = q -1/2+is . Proof.-
Let us recall that we have fixed l (1 ≤ l ≤ L) and a geodesic ray ω in Ω l . From now on we write e(x) instead of e(x, ω, s) for any x ∈ V q for simplicity. Equation (31) splits into 3 expressions, depending on where x is taken.

• If x / ∈ B n the equation is already verified, since A coincide with A 0 on each end T l ′ .

• if x ∈ B n-1 , the equation becomes the Dirichlet problem Ae(x) = λ s e(x), x ∈ B n-1 , e |∂Γ = f , and is uniquely solvable for any s outside E 0 , the prescribed values of the function f at the boundary being given by the L-vector e l =: (e(x 1 )...e(x L ))

to be determined in the sequel. where x - l ′ is the unique interior neighbor of x l ′ , (see figure 7), and where we used that the potential W vanishes outside B n-2 .

• if x ∈ ∂Γ = {x l ′ , 1 ≤ l ′ ≤ L} = B n \ B n-1 ,
According to definition 6. Now it remains to compute x∼x l ′ ,x∈T l ′ e(x). We have, for x ∈ T l ′ , e(x) = q (1/2-is)bω (x) + τ (s, ω, l ′ )Φ s (x). According to the expression of the radial function Φ s , we get, for any s / ∈ E 0 and l ′ ∈ {1, • • • , L}, that Φ s (x l ′ ) = q (-1/2+is)|x l ′ | = q n(-1/2+is) Φ s (x) = q (-1/2+is)(n+1) ∀x ∈ T l ′ x ∼ x l ′ .

Let us write the set N l = {x ∈ T l , x ∼ x l } as N l = {y l } ∪ Ñl , where y l belongs to the infinite path ω whereas the q -1 vertices of Ñl do not. Then, using the properties of the Busemann function we have

b ω (x l ) = b l (x l ) = |x l | = n b ω (y l ) = n + 1 b ω (x) = b l (x l ) -1 = n -1, ∀x ∈ Ñl b ω (x) = b l (x l ′ ) -1 ∀x ∈ N l ′ , l ′ = l .
So we get for any l ′ ∈ {1, • • • , L} and after setting α = q -1/2+is , e(x l ′ ) = α -b l (x l ′ ) + τ (s, ω, l ′ )α n e(x) = α -b l (x l ′ )+ε + τ (s, ω, l ′ )α n+1

with

ε = 1 ∀x ∈ Ñl ε = 1, ∀ x ∈ N l ′ l ′ = l ε = -1 if x = y l .
Hence we have x∼x l ′ ,x∈T l ′ e(x) = qα -b l (x l ′ )+1 + qτ (s, ω, l ′ )α n+1 if l ′ = l x∼x l ,x∈T l e(x) = (q -1)α -b l (x l )+1 + α -b l (x l )-1 + qτ (s, ω, l ′ )α n+1 .

These equations can be summarised, for any l ′ ∈ {1, • • • , L}, as and write e l = (e(x 1 ), ...e(x L )) = A l + α n ----→ τ (s, ω) (recall that A l and ----→ τ (s, ω) are L-vectors having respectively α -b l (x l ′ ) and τ (s, ω, l ′ ) as their l ′ -coordinate).

Substituting in (37) and denoting by E l the vector in R L having all null coordinates except x l = 1, we get DN s [ A l + α n ----→ τ (s, ω)] + qα A l + α -n (α -1α) E l + q ----→ τ (s, ω)α n+1 = 0 which yields α n (DN s + qαI) ----→ τ (s, ω) = α -n (αα -1 ) E l -(qαI + DN s ) A l .

Using the expression of α and C(s), we have then α n DN s + q 1/2+is I ----→ τ (s, ω) = -α -n C(s) E lq 1/2+is I + DN s A l .

Since the matrix DN s is real symmetric, DN s + q 1/2+is I is an invertible matrix for any s ∈ S 0 so that λ s / ∈ σ( A n-1 ), and ----→ τ (s, ω) = -α -2n C(s) DN s + q 1/2+is I -1 E lα -n A l .

We conclude the proof by noticing that, for any l ′ ∈ {1, • • • , L}, b l (x l ′ ) = nd(x l , x l ′ ).

to Γ, namely b i,j = 0 if i = j and {i, j} / ∈ E.

After setting V 0 = V \ ∂Γ, we define B 0 : R V 0 → R V 0 as the restriction of B to the functions which vanish on ∂Γ . We have the following 

Figure 1 :

 1 Figure 1: A graph Γ asymptotic to a regular 2-tree with L = 3; the edge boundary ∂ e Γ 0 has 4 edges.

  x → b ω (x) associated to the point ω ∈ Ω O is defined as follows: let us denote by x ω the last point lying on ω in the geodesic path joining O to x, (take x ω = O in the case where O belongs to the geodesic from x to ω), and let us set b ω (x) = |x ω |d(x, x ω ). The level sets of b ω are the horocycles associated to ω. We notice that the function b ω (x) increases by one for one of x's neighbors, namely the one of the ray from x to ω, and decreases for the others. Thus the function b ω (x) goes to +∞ as x tends to ω. As x tends to ω ′ = ω, the function b ω (x) tends to -∞, whereas the quantity b ω (x) + |x| remains bounded, since it tends to 2|x ω |.

Proposition 3 . 1 Figure 2 :

 312 Figure2: A regular tree with q = 2 and some level-sets of a Buseman function

Figure 3 :

 3 Figure 3: The surface S, the map Λ from S to C, and the double cover of S 0 over I q .

Theorem 4 . 2

 42 The pure point spectrum σ pp (A) of A splits into 3 parts

Example 4 . 1 Γ 4 . 4

 4144 is a tree with root O and W x,0 = W 0,x = -1 for any x ∼ O. All other entries of W vanish. Then ifH = A Γ + W , f = δ(0), we have Hf = 0.Example 4.2 The graph Γ is the union of a cycle with 4 vertices {1, 2, 3, 4} and a tree whose root is attached to 2 neighboring vertices of the cycle. If f (p) = (-1) p on the cycle and 0 on all other vertices, A Γ f = 0. However the proof of the following result is left to the reader: Proposition 4.3 If Γ is an infinite tree, then A Γ has no compactly supported eigenfunction. The deformed Fourier-Helgason transform Definition 4.1 We define the deformed Fourier-Helgason transform F H sc of f ∈ C 0 (T q ) as the function fsc on Ω × (S 0 \ Ê) defined by fsc (ω, s) = e(ω, s), f = x∈V Γ f (x) e(x, ω, s) .

  , σ)] = e 0 (ω, σ) , so equation (22) for G gives an integral equation for h h(s; ω, σ) = e 0 (ω, σ) + G 0 (s)W h(s; ω, σ) and, if p(s; ω, σ) = χh(s; ω, σ), p(s; ω, σ) = χe 0 (ω, σ) + χG 0 (s)W p(s; ω, σ) .(23)The key fact is the relation between (23) and the modified "Lippmann-Schwingertype" equation (17). If s ∈ S + is fixed and σ = s, then the equation for p(s; ω, s) is identical to equation (17) for a(ω, s). This can be used to prove Lemma 4.1 Let us consider f ∈ C 0 (T q ) , ω ∈ Ω and s ∈ S + . Then the function Φ(s; ω, σ) = x∈Vq h(x; s; ω, σ)f (x), ∀σ ∈ S 0 has a holomorphic extension in σ to S + and Φ(s; ω, s) = x∈Vq e(x, ω, s)f (x) = fsc (ω, s) .

  Proof.-From Euler formula applied to F , we get1 = |V F | -|E F |. Moreover |V F | = m + M.Let us choose a root inside F and orient the edges from that root. Then we count the edges by partitioning them with their m possible origins; this gives |E F | = (q + 1) + (m -1)q.

S 0 elim ε→0 x∈Vq 0 -∞ S 0

 000 ×Ωfsc (ω, s) e iλst ĥsc (ω, s) dΣ if either f or h is in H ac . As a result (using definition 4.1) (f, e itA W e -itA 0 g) = x∈Vq S 0 ×Ω fsc (ω, s) e iλst (W e -itA 0 g)(x)e(x, ω, s)dΣ. εt (f, e itA W e -itA 0 g)dt= ×Ω fsc (ω, s) W (x) e -it(A 0 -λs+iε) g(x)e(x, ω, s) dΣ = -ilim ε→0 x∈Vq S 0 ×Ω fsc (ω, s) W (x) [(A 0 -λ s +iε) -1 g](x)e(x, ω, s) dΣ = ilim ε→0 x,y ∈Vq S 0 ×Ω fsc (ω, s) W (x)G 0 (λ s + iε)(x, y)g(y)e(x, ω, s) dΣ = i y∈Vq S 0 ×Ω fsc (ω, s)[ x∈Vq G 0 (λ s )(x, y)W (x)e(x,ω, s)]g(y) dΣ = i y∈Vq S 0 ×Ω fsc (ω, s)[e(y, ω, s)e 0 (y, ω, s)]g(y) dΣ = i(f, g)i S 0 ×Ω fsc (ω, s)ĝ(ω, s) dΣ.

  then x is one of the roots x l ′ , and equation (31) writes:∀l ′ ∈ {1, • • • , L}, e(x - l ′ ) + x∼x l ′ ,x∈T l ′ e(x) = λ s e(x l ′ ) (35)

  4 (Appendix B), the Dirichlet-to Neumann operator DN s corresponding to B = A nλ s I n writes DN s ( e l )(x l ′ ) = e(x - l ′ )λ s e(x l ′ ) ∀l ′ ∈ {1, • • • , L}, Therefore, if s / ∈ E 0 , (35) can be rewritten as follows ∀l ′ ∈ {1, • • • , L}, DN s ( e l )(x l ′ ) + x∼x l ′ ,x∈T l ′ e(x) = 0 (36)

  x∼x l ′ ,x∈T l ′ e(x) = α -b l (x l ′ )+1 [q + δ ll ′ (α -2 -1)] + qτ (s, ω, l ′ )α n+1 so that equation (36) gives, for any l ′ ∈ {1, • • • , L} DN s ( e l )(x l ′ )+α -b l (x l ′ )+1 [q+δ ll ′ (α -2 -1)]+qτ (s, ω, l ′ )α n+1 = 0 . (37)Let us set DN s ( e l ) = (DN s ( e l )(x 1 ), ...DN s ( e l )(x L )),

Lemma 6 . 3

 63 Assume that B 0 is invertible. Then, for any given f ∈ C(∂Γ), there exists a unique solution F ∈ C(Γ) of the Dirichlet problem(D f ) : F |∂Γ = f and BF (l) = 0 if l ∈ V 0 .The Dirichlet-to-Neumann operator DN associated to B is the linear operator from C(∂Γ) to C(∂Γ) defined as follows: Definition 6.4 Assume that B 0 is invertible. Let f ∈ C(∂Γ), and F be the unique solution of the Dirichlet problem (D f ). Then, the Dirichlet-to-Neumann operator form DN : R ∂Γ → R ∂Γ is defined as follows: if l ∈ ∂Γ, DN (f )(l) = m i=1 b l,i F (i)(= BF (l)) .

The setup: graphs asymptotic to a regular tree Let us consider a connected graph Γ = (V Γ , E Γ ) with V Γ the set of vertices and E Γ the set of edges. We write x ∼ y for {x, y} ∈ E Γ . Definition 2.1 Let q ≥ 2 be a fixed integer. We say that the infinite connected graph Γ is asymptotic to a regular tree of degree q + 1 if there exists a finite sub-graph Γ 0 of Γ such that Γ ′ := Γ \ Γ 0 is a disjoint union of a finite number of trees T l , l = 1, • • • , L, rooted at a vertex x l linked to Γ 0 and so that all vertices of T l different from x l are of degree q + 1. The treesT l , l = 1, • • • , L, are called the ends of Γ.Equivalently, Γ is infinite, has a finite number of cycles and a maximal subtree of Γ has all vertices of degree q + 1 except a finite number of them. Definition 2.2 We define the edge boundary (∂ e Γ 0 ) of Γ 0 as the set of edges of Γ connecting a vertex of Γ 0 to a vertex of Γ ′ , namely one of the x l 's. We denote by |x| Γ 0 the combinatorial distance of x ∈ V Γ to Γ 0 .

Acknowledgment: we thank the referee for his careful reading of our manuscript and for suggesting many improvements to our initial text.

Proof.-By Theorem 6.2 we have (Sf )(ω, s) = f (ω, s) -2πi

The adjoint of the map M : f → (Sf ) is clearly given by (M * (g))(ω, s) = g(ω, s)+2πi

The relation M * M = I, which follows from S * S = I, implies that (29) holds.

The S-matrix and the asymptotics of the deformed plane waves

Next result explicits the link between the asymptotic behavior of the generalized eigenfunctions and the coefficients of the scattering matrix.

Theorem 6.4 There exist "transmission coefficients" τ (s, ω, ω ′ ) so that the solution of the Lippmann-Schwinger equation ( 16) writes e(x; ω, s) = e 0 (x; ω, s) + τ (s, ω, ω ′ )q (-1 2 +is)|x|

for any x close enough to ω ′ , and these coefficients are related to the scattering matrix by the following formula

From the study of the Lippmann-Schwinger equation ( 16), we write the decomposition e(x; ω, s) = e 0 (x; ω, s) + e scatt (x; ω, s) , where e scatt (x; ω, s) = y∈K G 0 (λ s , x, y)g(y; ω, s)

Appendix A: delta measures

The goal of this Appendix is to define in a precise way the meaning of the measures dµ = δ(S = 0)dν where dν = a(x)dx is absolutely continuous w.r. to the Lebesgue measure in R d and S is a C 1 real valued function so that dS does not vanish on the hyper-surface S = 0. The measure dµ = δ(S = 0)dν is supported by the hyper-surface Σ := {S = 0}. We can assume that R d and the hyper-surface S = 0 are oriented, so that we can play with differential forms instead of measures.

The proof of the following Lemma is left to the reader: Lemma 6.2 There exists a differential form β defined in some neighborhood of Σ so that adx 1 ∧• • •∧dx d = dS ∧β. Moreover the restriction of β to Σ is uniquely defined.

Definition 6.3 If ν is the measure on Σ associated to the restriction of β to Σ. we can view ν as a measure on R d denoted dν = δ(S = 0)dµ.

We can view dν as weak limits: if f : R → R + is a positive L 1 function of integral 1 and f ε (t) = ε -1 f (ε -1 t) the measure δ(S = 0)dµ is the weak limit as ε → 0 of the measures dν ε = f ε (t)dµ (For the proof, take local coordinates so that S = x 1 ).

Usual choices are f 1 the characteristic function of the interval [-1 2 , 1 2 ] and

Appendix B: the Dirichlet-to-Neumann operator DN on a finite graph Let Γ = (V, E) be a connected finite graph and let ∂Γ be a subset of V called the "boundary of Γ". Let B = (b i,j ) : R V → R V be a symmetric matrix associated