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Scattering theory for graphs isomorphic to a

homogeneous tree at infinity ∗†

Yves Colin de Verdière & Françoise Truc‡

September 5, 2012

Abstract

We describe the spectral theory of the adjacency operator of a graph
which is isomorphic to homogeneous trees at infinity. Using some combi-
natorics, we reduce the problem to a scattering problem for a finite rank
perturbation of the adjacency operator on an homogeneous tree. We de-
velopp this scattering theory using the classical recipes for Schrödinger
operators in Euclidian spaces.

Introduction

The aim of this paper is to describe in an explicit way the spectral theory of the
adjacency operator on an infinite graph Γ which, outside of a finite sub-graph Γ0,
looks like an homogeneous tree Tq of degree q + 1. We mainly adapt the case of
the Schrödinger operators as presented in [RS, Ike]. The proofs are often simpler
here and the main results are similar. This paper can be read as an introduction
to the scattering theory for differential operators on smooth manifolds. Even if
we do not found our results in the literature, there is probably nothing really
new for experts in the scattering theory of Schrödinger operators, except the
combinatorial part in Section 4.

The main result is an explicit spectral decomposition: the Hilbert space l2(Γ)
splits into a sum of two invariant subspaces l2(Γ) = Hac⊕Hpp. The first one is an
absolutely continuous part isomorphic to that of the homogeneous tree of degree
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q+1, while the second one is finite dimensional and we have an upper bound on
its dimension. The absolutely continuous part of the spectral decomposition is
given in terms of explicit generalised eigenfunctions whose behaviour at infinity
is described in terms of a scattering matrix.

We first introduce the setup, then we recall the spectral decomposition of the
adjacency operator of a homogeneous tree using the Fourier-Helgason transform.
In Section 3, we build the generalised eigenfunctions for a Schrödinger opera-
tor with a compactly supported potential on a homogeneous tree, we define a
deformed Fourier-Helgason transform and get a spectral decomposition of this
operator. As a consequence we write the point-to-point correlations of scattered
waves in terms of the Green’s function. Then we define the transmission coef-
ficients, connect them to the scattering matrix, and get an explicit expression
of them in terms of a Dirichlet-to-Neumann operator. In section 4, we deduce
a similar spectral decomposition of any graph Γ asymptotic to an homogeneous
tree Tq by proving the following combinatorial result: any such graph Γ is iso-

morphic to a connected component of a graph Γ̂ so that the adjacency operator
related to Γ̂ is a finite rank perturbation of that related to Tq.

1 The setup: graphs asymptotic to a homoge-

neous tree

Let us consider a connected graph Γ = (VΓ, EΓ) with VΓ the set of vertices and
EΓ the set of edges. We write x ∼ y for {x, y} ∈ EΓ.

Definition 1.1 Let q ≥ 2 be a fixed integer. We say that the infinite graph Γ is
asymptotic to a homogeneous tree of degree q+1 if there exists a finite sub-graph
Γ0 of Γ such that Γ′ := Γ \ Γ0 is a disjoint union of a finite number of trees
Tl, l = 1, · · · , L, rooted at a vertex xl linked to Γ0 and so that all vertices of Tl

different from xl are of degree q + 1. The trees Tl, l = 1, · · · , L, are called the
ends of Γ.

Equivalently, Γ is infinite, has a finite number of cycles and a maximal sub-
tree of Γ has all vertices of degree q + 1 except a finite number of them.

Definition 1.2 We define the boundary ∂Γ0 of Γ0 as the set of edges of Γ con-
necting a vertex of Γ0 to a vertex of Γ′, namely one of the xl’s. We denote by
|x|Γ0

the distance of x ∈ VΓ′ to Γ0.

The space of complex-valued functions on VΓ is denoted

C(Γ) = {f : VΓ −→ C}
and C0(Γ) is the subspace of functions with finite support. We define also

l2(Γ) = {f ∈ C(Γ);
∑

x∈VΓ

|f |2(x) < ∞}.
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It is a Hilbert space when equipped with the inner product:

〈f |g〉 =
∑

x∈VΓ

f(x).g (x) .

Let us emphasize that we take the physicist’s notation, as in [RS] for example:
our inner product is conjugate-linear in the first vector and linear in the second.
On C0(Γ), we define the adjacency operator AΓ

1 by the formula:

(AΓf) (x) =
∑

y∼x

f (y) (1)

The operator AΓ is bounded on l2(Γ) if and only if the degree of the vertices
of Γ is bounded, which is the case here. In that case, the operator AΓ is self-
adjoint; otherwise, the operator AΓ defined on C0(Γ) could have several self-
adjoint extensions.

For any λ outside the spectrum of AΓ, we denote by RΓ(λ) the resolvent (λ−
AΓ)

−1 and by GΓ(λ, x, y) the matrix of RΓ(λ), also called the Green’s function.

2 The spectral decomposition of the adjacency

matrix of the tree Tq and the Fourier-Helgason

transform

2.1 Points at infinity

Let Tq = (Vq, Eq) be the homogeneous tree of degree q + 1 and let us choose
an origin, also called a root, O. We denote by |x| the combinatorial distance of
the vertex x to the root. The set of points at infinity denoted ΩO is the set of
infinite simple paths starting from O. We will say that a sequence yn ∈ Vq tends
to ω ∈ ΩO if, for n large enough, yn belongs to the path ω and is going to infinity
along that path. If x is another vertex of Vq, the sets ΩO and Ωx are canonically
identified by considering paths which cöıncide far from O and x. There is a
canonical probability measure dσO on ΩO: dσO is the unique probability measure
on ΩO which is invariant by the automorphisms of Tq leaving O fixed. Later on
we will always denote Ω the set of points at infinity, because the root is fixed.

The Busemann function x → bω(x) associated to the point ω ∈ ΩO is defined
as follows: let us denote by xω the last point lying on ω in the geodesic path
joining O to x, we put bω(x) = |xω| − d(x, xω). The level sets of bω are the
horocycles associated to ω. The function bω(x) goes to +∞ as x tends to ω. As
x tends to ω′ 6= ω, bω(x) tends to −∞ and bω(x) + |x| remains bounded.

1If B is a linear operator from C0(Γ)into C(Γ), we denote by [B](x, y), x, y ∈ VΓ its matrix
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2.2 The spectral Riemann surface

Let us define the Riemann surface S = R/τZ × iR with τ = 2π/ log q and the

holomorphic function s → λs on S defined by λs = q
1

2
+is + q

1

2
−is. The physical

sheet S+ = {s ∈ S | ℑs > 0} is mapped bijectively onto C \ Iq where, as we will
see, Iq is the spectrum of A0 := ATq

, namely the real segment [−2
√
q,+2

√
q].

We denote by S0 = R/τZ the circle ℑs = 0. By the map s → λs, the circle S0

is a double covering of Iq. If J is a subset of C, we define by Ĵ the subset of S

defined by Ĵ := {s ∈ S | λs ∈ J} .

2.3 Calculation of the Green’s function

We denote by A0 (resp. G0) the adjacency operator (resp. the Green’s function)
on Tq. We will compute explicitly G0(λ, x, y). Using the homogeneity of the tree
Tq, it is enough to compute G0(λ,O, x) for an x ∈ Vq, that is the value f(x) of
the l2 solution of

(λ− A0)f = δO . (2)

The function f(x) depends only on the distance d(x,O) = |x| to the origin O, so
we set f(x) = uk if |x| = k, k ∈ N, and rewrite equation (2) as follows:

i) λuk − quk+1 − uk−1 = 0 for k ≥ 1

ii) λu0 − (q + 1)u1 = 1

iii)
∑∞

n=0(q + 1)qn−1u2
n < +∞

The last condition stands for f to be in l2(Tq).

• If λ /∈ Iq, the equation
qα2 − λα + 1 = 0

admits an unique solution α such that |α| < 1/
√
q. From i) and iii), we get

that uk = Cαk and the constant C is determined by ii) :

C = Cλ =
1

λ− (q + 1)α
.

Therefore we have

G0(λ,O, x) =
2qα|x|

λ(q − 1) + (q + 1)F (λ)

where F (λ) denotes the determination of
√
λ2 − 4q in C\Iq equivalent to λ

as λ tends to infinity. Thus using the invariance of the Green’s function by
the group of automorphisms of the tree, we see that the Green’s function
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G0(λ, x, y) is a function of the distance d(x, y) and we have, for any x, y ∈
V (Tq),

G0(λ, x, y) = Cλα
d(x,y) . (3)

The operator of matrix G0(λ, ., .) is clearly bounded in l2(Tq) and λ is not
in the spectrum of A0.

• If λ ∈ Iq, there is no l2 solution of Equation (2) and λ is in the spectrum
of A0.

Using the parameter s ∈ S+, we have

α = q−
1

2
+is, Cλs

:= C(s) =
1

q
1

2
−is − q−

1

2
+is

and F (λs) = q
1

2
−is − q

1

2
+is .

Theorem 2.1 The spectrum of A0 is the interval Iq = [−2
√
q,+2

√
q].

The Green’s function of the tree Tq is given, for s ∈ S+ by

G0(λs, x, y) = C(s)q(−
1

2
+is)d(x,y) =

q(−
1

2
+is)d(x,y)

q
1

2
−is − q−

1

2
+is

. (4)

As a function of s, the Green’s function extends meromorphically to S with two
poles −i/2 and −i/2 + τ/2.

Moreover we have, for any x ∈ Vq and any y belonging to the path ω,

G0(λs, x, y) = Grad(λs, y)q
( 1
2
−is)bω(x) (5)

with
Grad(λs, y) = C(s)q(−

1

2
+is)|y| (6)

Proof.–

The last result comes from the definition bω(x) = |xω| − d(x, xω).

�

2.4 The density of states

Let us recall how to introduce a notion of spectral measure (also called density
of states) on the graph Γ. To a given continuous function φ : R → R, we
associate by the functional calculus an operator φ(AΓ) on l2(Γ), which has a
matrix [φ(AΓ)](x, x

′). We consider then, for any x ∈ VΓ, the linear form on
C(R,R)

Lx(φ) = [φ(AΓ)](x, x) .

Lx is positive and verifies Lx(1) = 1, so we have Lx(φ) =
∫
R
φdex where dex is a

probability measure on R, supported by the spectrum of AΓ which is called the
spectral measure of Γ at the vertex x.

The density of states of Tq is given by the
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Theorem 2.2 (See for example [CdV2]) The spectral measure dex of Tq is inde-
pendent of the vertex x and is given by

dex(λ) := de(λ) =
(q + 1)

√
4q − λ2

2π ((q + 1)2 − λ2)
dλ (7)

Proof.–

For the sake of clarity, we recall the main ingredients:
1) an explicit computation of the diagonal entries of the Green’s

function

G0(λ, x, x) =
2q

λ(q − 1)− (q + 1)F (λ)

where F (λ) denotes as previously the determination of
√

λ2 − 4q in
C/Iq (with Iq = [−2

√
q, 2

√
q]) equivalent to λ for great values of λ.

2) The expression of the spectral measure via Stone formula

de(λ) =
−1

2iπ
(G(λ+ i0, x, x)−G(λ− i0, x, x)) dt . (8)

�

2.5 The Fourier-Helgason transform

Let us recall the definition of the Fourier-Helgason transform on the tree Tq with
the root O.

Definition 2.1 For any f ∈ C0(Tq), the Fourier-Helgason transform FH(f) is
the function defined by

FH(f)(ω, s) := f̂(ω, s) =
∑

x∈Vq

f(x)q(1/2+is)bω(x) . (9)

for any ω ∈ ΩO and any s ∈ S.

Let us set
e0(x, ω, s) := q(1/2−is)bω(x) ,

and denote by e0(ω, s) the function x → e0(x;ω, s). If we restrict ourselves to
s ∈ S0, the previous definition writes

f̂(ω, s) = 〈e0(ω, s)|f〉 =
∑

x∈VΓ

f (x) e0(x, ω, s) . (10)

We have
∀s ∈ S0, A0e0(ω, s) = λse0(ω, s) ,

and the completeness of the set {e0(ω, s), s ∈ S0, ω ∈ Ω} is expressed by the
following inversion formula (see [CMS]):
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Theorem 2.3 For any f ∈ C0(Tq), the following inverse transform holds

f(x) =

∫

S0

∫

Ω

e0(x, ω, s)f̂(ω, s)dσO(ω)dµ(s) (11)

where

dµ(s) =
(q + 1) log q

π

sin2(s log q)

q + q−1 − 2 cos(2s log q)
|ds| . (12)

Moreover the Fourier-Helgason transform extends to a unitary map from l2(Tq)
into L2(Ω× S0, dσO ⊗ dµ).

The Fourier-Helgason transform is not surjective: its range is the subspace
L2
even(Ω×S0, dσO ⊗ dµ) of the functions F of L2(Ω×S0, dσO ⊗ dµ) which satisfy

the symmetry condition (see, for example, [CS] or [FN])
∫

Ω

e0(x, ω, s)F (ω, s)dσO(ω) =

∫

Ω

e0(x, ω,−s)F (ω,−s)dσO(ω) .

The Fourier-Helgason transform provides a spectral resolution of A0: if φ : R → R

is continuous,
φ(A0) = (FH)−1φ(λs)FH ,

where φ(λs) denotes the operator of multiplication by that function on L2
even(Ω×

S0, dσ0 ⊗ dµ).

Corollary 2.1 From the inverse Fourier-Helgason transform formula (11) we
find back the expression of the spectral measure of Tq (see Theorem 2.2).

Proof.–

By homogeneity of the tree Tq, for any φ ∈ C0(Tq), [φ(A0)](x, x) is
independent of x. Using (11), we get

[φ(A0)](O,O) =

∫

Ω

∫

S0

Φ(λs)e0(O, ω, s)e0(0, ω, s) dσO(ω)dµ(s) =

∫

S0

Φ(λs) dµ(s).

Let us perform the change of variables

s = fq(λ) :=
1

log q
arccos

λ

2
√
q
.

Using (12) and the fact that, by the map s → λs, the circle S0 is a
double covering of Iq, we write

[φ(A0)](x, x) = 2
(q + 1) log q

π

∫

Iq

Φ(λ)
1− λ2/4q

q + q−1 + 2− λ2/q
f ′
q(λ)dλ

= 2
(q + 1)

4π

∫

Iq

√
4q − λ2

(q + 1)2 − λ2
Φ(λ)dλ ,

which actually implies formula (7).

�
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3 A scattering problem for a Schrödinger op-

erator with a compactly supported non local

potential

We are concerned here with the scattering on Tq between the adjacency operator
A0 and the Schrödinger operator A = A0 + W , where W is a compactly sup-
ported non local potential. More precisely the Hermitian matrix (also denoted
W ) associated to this potential is supported by K ×K where K is a finite part
of Vq. We assume in what follows that K is chosen minimal, so that:

K = {x ∈ Vq | ∃y ∈ Vq with Vx,y 6= 0} .

Let us first describe the spectral theory of A: it follows from [RS], Sec. XI 3, and
from the fact that A is a finite rank perturbation of A0 (see also Section 3.3) that
the Hilbert space l2(Tq) admits an orthogonal decomposition into two subspaces
invariant by A: l2(Tq) = Hac ⊕Hpp where

• Hac is the isometric image of l2(Tq) by the wave operator

Ω+ = s− lim
t→−∞

eitAe−itA0 .

We have A|Hac
= Ω+A0(Ω

+)⋆, so that the corresponding part of the spectral
decomposition is isomorphic to that of A0 which is an absolutely continuous
spectrum on the interval Iq.

• The space Hpp is finite dimensional, admits an orthonormal basis of l2

eigenfunctions associated to a finite set of eigenvalues, some of them can be
embedded in the continuous spectrum Iq.

We will denote by Pac and Ppp the orthogonal projections on both subspaces.
In order to make the spectral decomposition more explicit, we will introduce

suitable generalised eigenfunctions of A. These generalised eigenfunctions are
particular solutions of

(λs −A)e(., ω, s) = 0 , (13)

meaning not l2 solutions, but only point-wise solutions. For the adjacency op-
erator A0, these generalised eigenfunctions are called the “the plane waves” and
given by the e0(ω, s)’s with s ∈ S0 and ω ∈ ΩO. They give the Fourier-Helgason
transform which is the spectral decomposition of A0.

We are going to prove a similar eigenfunction expansion theorem for A, using
generalised eigenfunctions of A. We will mainly adapt the presentation of [RS],
Sec. XI.6, for Schrödinger operators in R3 (see also [Ike]). Our first goal is to
build the generalised eigenfunctions x → e(x, ω, s) also denoted e(ω, s). We will
derive and solve the so-called Lippmann-Schwinger equation. This is an integral
equation that e(ω, s) will satisfy.
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3.1 Formal derivation of the Lippmann-Schwinger equa-
tion

Let us proceed first in a formal way by transferring the functions e0(ω, s) by the
wave operator: if e(ω, s) is the image of e0(ω, s) by the wave operator Ω+ in some
sense (they are not in l2!), then we should have e0(ω, s) = limt→−∞eitA0e−itAe(ω, s)

= limt→−∞[e(ω, s)− i

∫ t

0

eiuA0We−iuAe(ω, s)du]

= e(ω, s)− ilimε→0

∫ −∞

0

eiuA0We−iuλseεue(ω, s)du

= e(ω, s) + limε→0[(A0 − (λs + iε))−1We](ω, s) .

So e(ω, s) should obey the following ”Lippmann-Schwinger-type” equation

e(ω, s) = e0(ω, s) +G0(λs)We(ω, s) . (14)

3.2 Existence and unicity of the solution for the modified

”Lippmann-Schwinger-type” equation

Let χ ∈ C0(Tq) be a compactly supported real-valued function so that Wχ =
χW = W . For example χ can be the characteristic function of K. We first
introduce a modified ”Lippmann-Schwinger-type” equation. If e(ω, s) obeys (14)
and a(ω, s) = χe(ω, s), then a obeys

a(ω, s) = χe0(ω, s) + χG0(λs)Wa(ω, s) . (15)

Let Ks be the finite rank operator on l2(Tq) defined by Ks = χG0(λs)W . The
map s → Ks extends holomorphically to ℑs > −1

2
. Equation (15) takes the form

a(., ω, s) = η(., ω, s) +Ksa(., ω, s), (16)

where η(., ω, s) ∈ C0(Tq). By the analytic Fredholm theorem ([RS], p 101), there

exists a finite subset Ê of S0, defined by Ê =: {s ∈ S0; ker(Id − Ks) 6= 0}, so
that equation (15) has a unique solution a(ω, s) ∈ C0(Tq) whenever s /∈ Ê . Since

Ks = K−s, the subset Ê is invariant by s → −s and consequently is the inverse
image by s → λs of a subset of Iq which we denote by E .

For s /∈ Ê , the function e(ω, s) = e0(ω, s) + G0(λs)Wa(ω, s) is the unique
solution of the Lippmann-Schwinger equation (14).

3.3 The set E and the pure point spectrum

Proposition 3.1 The set E as defined in Section 3.2 is independent of the choice
of χ with Wχ = χW = W .
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The “minimal” χ is χW = 1K. If a is a non trivial solution of a−χWG0(λs)Wa =
0, and χχW = χW , a is also solution of a− χG0(λs)Wa = 0.

Conversely, if a − χG0(λs)Wa = 0, we have χWa − χWG0(λs)Wa = 0. We
have to prove that χWa 6= 0. If χWa = 0, we would have Wa = 0 and a = 0.

Proposition 3.2 If (A−λ)f = 0 with λ ∈ Iq and f ∈ l2(Tq), then Supp(f) ⊂ K̂

where K̂ is the smallest subset of Vq so that Supp(W ) ⊂ K̂×K̂ and all connected

components of Tq \ K̂ are infinite.

Proof.–

We will proceed by contradiction. Let x ∈ Vq\K̂ be so that f(x) 6= 0.
Let us define an infinite sub-tree Tx of Tq as follows: let yα, α =
1, · · · , a be the vertices of Tq which satisfy yα ∼ x and yα is closer
to K than x. Then Tx is the connected component of x in the graph
obtained from Tq by removing the edges {x, yα} for α = 1, · · · , a. Let
us consider the ”averaged” function

n ∈ N → f̄x(n) :=
1

qn

∑

z∈Tx, d(x,z)=n

f(z) .

Then f̄x satisfies the ordinary difference equation λg(n)− qg(n+1)−
g(n− 1) = 0.

We thus get a contradiction, since this equation has no non-zero
l2 solution when λ is in Iq.

�

Corollary 3.1 #{σpp(A) ∩ Iq} ≤ #K̂.

This holds because any eigenfunction associated to an eigenvalue in {σpp(A)∩Iq}
is supported in K̂ and the dimension of the vector space of functions supported
in K̂ is #K̂.

Theorem 3.1 If s ∈ S0, (A− λs)f = 0 and f ∈ l2(Tq) \ 0, then s ∈ Ê.
Conversely, if s ∈ Ê ⊂ S0, there exists f 6= 0 so that (A − λs)f = 0 and

f(x) = O
(
q−|x|/2).

Proof.–

Due to Proposition 3.2, the support of such an f is included in K̂ and
(λs − A0)f = Wf . We apply G0(λs) to both sides of the equation,
because every sum is finite. We have G0(λs)(λs − A0)f = f : this
is true for λs /∈ Iq because Iq is the spectrum of A0 and hence by
continuity (G0(λs) extends holomorphically near S0) for every λs since

10



f is compactly supported. Hence f − G0(λs)Wf = 0. If we choose
for χ the characteristic function of K̂, we get f − χG0(λs)Wf = 0.
We have a non trivial solution of a−Ksa = 0, namely a = f .

Conversely, let us start from a, a non trivial solution of a−Ksa = 0
and define f = G0(λs)Wa. Then (λs−A)f = 0 by the same reasoning
as before. Moreover f is a finite linear combination of the functions
G0(λs, ., y), y ∈ Supp(W ) and we use Equation (6) to get the bound
in x.

�

Theorem 3.2 The pure point spectrum σpp(A) of A splits into 3 parts

σpp(A) = σ−
pp(A) ∪ σ+

pp(A) ∪ σ0
pp(A)

where σ−
pp(A) = σpp(A)∩]−∞,−2

√
q[, σ+

pp(A) = σpp(A)∩]2√q,+∞[, and σ0
pp(A) =

σpp(A) ∩ Iq. We have #σ±
pp(A) ≤ #Supp(W ) and #σ0

pp(A) ≤ #K̂.

The first estimate comes from the mini-max principle and the fact that W is a
rank N perturbation of A0 with N = #Supp(W ). The second one is already
proved.

The reader could ask if there can really be some compactly supported eigen-
functions. They can exist as shown by the following 2 examples.

Example 3.1 Γ is a tree with root 0 and Wx,0 = W0,x = −1 for any x ∼ O. All
other entries of W vanish. Then if H = AΓ +W , f = δ(0), we have Hf = 0.

Example 3.2 The graph Γ is the union of a cycle with 4 vertices {1, 2, 3, 4} and a
tree whose root is attached to 2 neighbouring vertices of the cycle. If f(p) = (−1)p

on the cycle and 0 on all other vertices, AΓf = 0.

However the proof of the following result is left to the reader:

Proposition 3.3 If Γ is an infinite tree, then AΓ has no compactly supported
eigenfunction.

3.4 The deformed Fourier-Helgason transform

Definition 3.1 We define the deformed Fourier-Helgason transform FHsc of
f ∈ C0(Tq) as the function f̂sc on Ω× (S0 \ Ê) defined by

f̂sc(ω, s) = 〈e(ω, s)|f〉 =
∑

x∈VΓ

f (x) e(x, ω, s) . (17)

We want to prove the following

11



Theorem 3.3 For any f ∈ C0(Tq) and any closed interval J ⊂ Iq \ E , if we

denote by Ĵ the inverse image of J by s → λs, the following inverse transform
holds

PJf(x) =

∫

Ĵ

∫

Ω

e(x, ω, s)f̂sc(ω, s)dσO(ω)dµ(s) . (18)

Moreover, f → f̂sc extends to an isometry from Hac onto L2
even(Ω×S0, dσO⊗dµ).

3.4.1 The relation of the deformed Fourier-Helgason transform with
the resolvent

Denoting, with a slight abuse of notation, for s ∈ S+, by G(s) the operator
(λs−A)−1 and similarly by G0(s) the operator (λs−A0)

−1, we have the resolvent
equation

G(s) = G0(s) +G0(s)WG(s) (19)

For σ ∈ S0 and s in S+, we set

h(s;ω, σ) = (λs − λσ)G(s)e0(ω, σ) ,

where the right-handside is a convergent series which identifies to (λs−λσ)-times
the inverse Fourier-Helgason transform of y → G(s; x, y).

Then equation (19) for G gives an integral equation for h

h(s;ω, σ) = e0(ω, σ) +G0(s)Wh(s;ω, σ)

and, if p(s;ω, σ) = χh(s;ω, σ),

p(s;ω, σ) = χe0(ω, σ) + χG0(s)Wp(s;ω, σ) . (20)

The key fact is the relation between (20) and the modified ”Lippmann-Schwinger-
type” equation (15). If s ∈ S+ is fixed and σ = s, then the equation for p(s;ω, s)
is identical to equation (15) for a(ω, s).

This can be used to prove

Lemma 3.1 Let f ∈ C0(Tq) be fixed and s ∈ S+. Then the function

Φ(s;ω, σ) =
∑

x∈Vq

h(x; s;ω, σ)f(x)

has a holomorphic extension in σ to S+ and

Φ(s;ω, s) =
∑

x∈Vq

e(x, ω, s)f(x) = f̂sc(ω, s) .

We thus have related f̂sc to the resolvent.

12



3.4.2 End of the proof of Theorem 3.3

Let λs = Λ+iε with Λ ∈ Iq\E and ε > 0, and s ∈ S+ (this implies 0 < ℜs < τ/2).
Up to a factor of (Λ+iε−λσ), (ω, σ) → h(x; s;ω, σ) is the inverse Fourier-Helgason
transform of y → G(λs, x, y); so the Plancherel theorem implies (after multiplying
by f(x)f(y)) that

(λs − λs)
∑

z∈Vq

G(λs, x, z)G(λs, z, y)f(x)f(y) = ...

....2iε

∫

S0

∫

Ω

h(x; s;ω, σ)h(y; s;ω, σ)f(x)f(y)

|λσ − Λ|2 + ε2
dσO(ω)dµ(σ)

If we sum over all x’s and y’s, we obtain for the left-hand side

(λs − λs)〈G(λs)f,G(λs)f〉 = (λs − λs)〈f |G(λs)G(λs)f〉 = 〈f |[G(λs)−G(λs)]f〉

whereas the right-hand side becomes
∫

S0

∫

Ω

2iε

|λσ − Λ|2 + ε2| |Φ(s;ω, σ)|
2dσO(ω)dµ(σ) .

We thus conclude that, for any closed sub-interval J of Iq disjoint from E ,

1

2πi

∫

J

〈f |[G(Λ+iε)−G(Λ−iε)]f〉dΛ =
1

π

∫

J

dΛ

∫

S0

∫

Ω

ε

|λσ − Λ|2 + ε2
|Φ(s, ω, σ)|2dσO(ω)dµ(σ)

As ε → 0, Stone’s formula implies that the left-hand side approaches ‖PJf‖2.
Moreover the measures

dlε =
εdΛ

π[|λσ − Λ|2 + ε2]

converge weakly to δ(Λ−λσ) as ε → 0+. So one has to put Λ = λσ, which implies
σ = ±s.

Thus one gets that the right-hand side tends to
∫
Ĵ

∫
Ω
|f̂sc(ω, σ)|2|dσO(ω)dµ(σ),

where Ĵ is the inverse image of J by s → λs.

3.5 Correlation of scattered plane waves

In the paper [CdV3], the first author computed the point-to-point correlations
of the plane waves for a scattering problem in R

d in terms of the Green’s func-
tion: for a fixed spectral parameter, plane waves are viewed as random waves
parametrised by the direction of their incoming part. The motivation comes from
passive imaging in seismology, a method developped by Michel Campillo’s seis-
mology group in Grenoble, as described for example in the papers [CdV4, CdV5].
Following a similar method, we will compute the correlation of plane waves for
our graphs viewed as random waves parametrised by points at infinity.
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From (11), we get, for any φ ∈ C0(Tq), the following formula for the kernel of
φ(A):

[φ(A)](x, y) =

∫

Ω

∫

S0

Φ(λs)e(x, ω, s)e(y, ω, s) dσO(ω)dµ(s)

Taking φ = 1I , the characteristic function of some interval I = [a, λ] ⊂ Iq, we
get:

[ΠI ](x, y) = 2

∫

Ω

∫ fq(a)

fq(λ)

e(x, ω, s)e(y, ω, s) dσO(ω)dµ(s)

where fq(t) =
1

log q
Arccos t

2
√
q
(see section 2.5) . In particular fq(λs) = s.

If we consider the plane wave e(x, ω, s(λ)) as a random wave, we can define
the point-to-point correlation Csc

λ (x, y) of such a random wave in the usual way:

Definition 3.2 The point-to-point correlation Csc
λ (x, y) of the random wave e(x, ω, s(λ))

is given by

Csc
λ (x, y) =

∫

Ω

e(x, ω, s(λ))e(y, ω, s(λ)) dσ(ω) .

Denoting as usual by G the resolvent kernel of A: [(λ − A)−1](x, y) :=
G(λ, x, y) for Imλ > 0 we prove the

Theorem 3.4 For any λ ∈ Iq and any vertices x, y the point-to-point correlation
can be expressed in terms of the Green’s function as

Csc
λ (x, y) = −2(q2 + 2q + 1− λ2)

(q + 1)
√
4q − λ2

ℑG(λ+ i0, x, y) .

Proof.–

Taking the derivative with respect to λ in equation (3.5) yields:

d

dλ
[ΠI ] (x, y) = ...

= −2f ′
q(λ)

(q + 1) log q

π

sin2(s(λ) log q)

q + q−1 − 2 cos(2s(λ) log q)

∫

Ω

e(x, ω, s(λ))e(y, ω, s(λ)) dσO(ω)

=
q + 1

2π

√
4q − λ2

(q2 + 2q + 1− λ2)

∫

Ω

e(x, ω, s(λ))e(y, ω, s(λ)) dσO(ω).

(We have set fq(λ) = s(λ) for simplicity.)
Thus we have

d

dλ
[ΠI ](x, y) =

q + 1

2π

√
4q − λ2

(q2 + 2q + 1− λ2)
Csc

λ (x, y) .

14



Now we use the resolvent kernel of A : [λ− A)−1](x, y) := G(λ, x, y)
for Imλ > 0 and Stone formula (8) to write

[ΠI ](x, y) = −1

π

∫ λ

a

ℑG(t+ i0, x, y)dt ,

and get the result.

�

3.6 The T- matrix

3.6.1 Another feature of the deformed Fourier-Helgason transform

We will need in this section the following result

Theorem 3.5 For any f ∈ C0(Tq)

FHsc(Ω
+f)(ω, s) = f̂(ω, s) (21)

Proof.–

Suppose that we can prove

FH((Ω+)∗f) = FHsc(f) ,

then (21) follows from

FHsc(Ω
+f) = FH((Ω+)∗Ω+f) = f̂ .

So, by Plancherel formula it is enough to prove that

〈f |Ω+g〉 =
∫

S0

∫

Ω

FHscf(ω, s)ĝ(ω, s)dσO(ω)dµ(s) . (22)

We have

〈f |Ω+g〉 − 〈f |g〉 = ilimε→0

∫ 0

−∞
eεt〈f |eitAWe−itA0g〉dt

But

〈f |eitAh〉 =
∫

S0

∫

Ω

FHscf(ω, s)e
iλstFHsch(ω, s)dσO(ω)dµ(s)

if either f or h is in Hac.
As a result

〈f |eitAWe−itA0g〉 =
∑

x∈Vq

∫

S0

∫

Ω

FHscf(ω, s)e
iλst(We−itA0g)(x)e(x, ω, s)dσO(ω)dµ(s) .
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Thus

limε→0

∫ 0

−∞
eεt〈f |eitAWe−itA0g〉dt

= limε→0

∑

x∈Vq

∫ 0

−∞

∫

S0

∫

Ω

FHscf(ω, s)W (x)e−it(A0−λs+iε)g(x)e(x, ω, s)dσO(ω)dµ(s)

= −ilimε→0

∑

x∈Vq

∫

S0

∫

Ω

FHscf(ω, s)W (x)[(A0−λs+iε)−1g](x)e(x, ω, s)dσO(ω)dµ(s)

= ilimε→0

∑

x,y∈Vq

∫

S0

∫

Ω

FHscf(ω, s)W (x)G0(λs + iε)(x, y)g(y)e(x, ω, s)dσO(ω)dµ(s)

= i
∑

y∈Vq

∫

S0

∫

Ω

FHscf(ω, s)[
∑

x∈Vq

G0(λs)(x, y)W (x)e(x, ω, s)]g(y)dσO(ω)dµ(s)

= i
∑

y∈Vq

∫

S0

∫

Ω

FHscf(ω, s)[e(y, ω, s)− e0(y, ω, s)]g(y)dσO(ω)dµ(s)

= i〈f |g〉 − i

∫

S0

∫

Ω

FHscf(ω, s)ĝ(ω, s)dσO(ω)dµ(s) .

In the second line above we used the Lippmann-Schwinger equation
and at the last step we used the isometric property of the deformed
Fourier Helgason transform (Theorem 3.3 ).

�

The Lippmann-Schwinger eigenfunctions e(x, ω, s) are especially useful to de-
scribe the so-called S−matrix (S = (Ω−)∗Ω+). First we introduce the following
object:

Definition 3.3 Let (ω, s) and (ω′, s′) be in Ω× (S0 \ Ê). Define

T (ω, s;ω′, s′) = 〈We0(ω, s)|e(ω′, s′)〉 =
∑

(x,y)∈Vq×Vq

e(x, ω′, s′)W (x, y)e0(y, ω, s) .

T (.; .) is called the T−matrix.

Theorem 3.6 For any f and g ∈ C0(Tq)

(f |(S−I)g) = −2πi

∫

S0×S0

∫

Ω×Ω

T (ω, s;ω′, s′)f̂(ω, s)δ(λs−λs′)ĝ(ω
′, s′)dσO(ω)dµ(s)dσO(ω

′)dµ(s′)

(See Appendix A for the precise definition of the measure δ(λs−λs′)dµ(s)dµ(s
′)).

This can be written symbolically by

S(ω, s;ω′, s′) = δ(s− s′)− 2πiT (ω, s;ω′, s′)δ(λs − λs′) . (23)
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Proof.–

From the definition of S we get that

〈f |(S−I)g〉 = 〈(Ω−−Ω+)f |Ω+g∠ = limT→∞

∫ −T

T

〈eitA(iW )e−itA0f |Ω+g〉dt

= (−i)limε→0

∫ +∞

−∞
e−ε|t|〈eitAWe−itA0f |Ω+g〉dt

= (−i)limε→0

∫ +∞

−∞
e−ε|t|L(t)dt ,

with

L(t) =
∫

S0

∫

Ω

FHsc(eitAWe−itA0f)(ω′, s′)FHsc(Ω
+g)(ω′, s′)dσO(ω

′)dµ(s′)

(24)
In the last step we used the isometric property of FHsc and the fact
that Ω+g ∈ Hac. Moreover we have (Theorem 3.5)

FHsc(Ω
+g)(ω′, s′) = ĝ(ω′, s′)

and

FHsc(e
itAWe−itA0f)(ω′, s′) = eiλs′ tFHsc(We−itA0f)(ω′, s′)

= eiλs′ t
∑

x∈Vq

(We−itA0f)(x)e(x, ω′, s′)

=
∑

x,y∈Vq

∫

S0

∫

Ω

ei(λs′−λs)tW (x, y)e0(y, ω, s)f̂(ω, s)e(x, ω′, s′)dσO(ω)dµ(s) .

Thus the expression in (24) (we set dΣ = dσO(ω)dµ(s)dσO(ω
′)dµ(s′))

is

L(t) =
∑

x,y∈Vq

∫

S0×S0

∫

Ω×Ω

ei(λs−λs′ )t−ε|t|V (x, y)e0(y, ω, s)f̂(ω, s)e(x, ω
′, s′)ĝ(ω′, s′)dΣ

and after doing the t-integration we get,

〈f |(S−I)g〉 = (−i)limε→0

∫

S0×S0

∫

Ω×Ω

T (ω, s;ω′, s′)
2ε

(λs − λs′)2 + ε2
f̂(ω, s)ĝ(ω′, s′)dΣ .

We conclude by noticing as previously that the measures

dlε =
2εdµ(s)dµ(s′)

(λs − λs′)
2 + ε2

converge weakly to 2πδ(λs − λs′) as ε → 0+.
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�

A consequence of the relation between T and S is the unitarity relation for
T :

Theorem 3.7 Suppose α /∈ E . Then for any s and s′ ∈ S+ with λs = λs′ = α,
and for any (ω, ω′) ∈ Ω× Ω,

ℑT (ω, s;ω′, s′) = π

∫

S0

∫

Ω

T (ω′′, s′′;ω, s)T (ω′′, s′′;ω′, s′)δ(λs′′ − α)dµ(s′′)dσO(ω
′′)

(25)

Proof.–

By Theorem 3.6 we have

ˆ(Sf)(ω, s) = f̂(ω, s)−2πi

∫

S0

∫

Ω

T (ω, s;ω′, s′)f̂(ω′, s′)δ(λs−λs′)dσO(ω
′)dµ(s′) .

The adjoint of the map M : f̂ → ˆ(Sf) is clearly given by

(M∗(g))(ω, s) = g(ω, s)+2πi

∫

S0

∫

Ω

T (ω′, s′;ω, s)g(ω′, s′)δ(λs−λs′)dσO(ω
′)dµ(s′) .

The relation M∗M = I, which follows from S∗S = I, implies that
(25) holds.

�

3.7 The S-matrix and the asymptotics of the deformed

plane waves

Theorem 3.8 There exist “transmission coefficients” τ(s, ω, ω′) so that the so-
lution of the Lippmann-Schwinger equation (14) writes

e(x, ω, s) = e0(x, ω, s) + τ(s, ω, ω′)q(−
1

2
+is)|x|

for any x close enough to ω′ , and these coefficients are related to the scattering
matrix by the following formula

S(ω′,−s;ω, s) = − 2iπ

C(s)
τ(s, ω, ω′) (26)

with C(s) =
1

q
1

2
−is − q−

1

2
+is

.

Proof.–
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From the study of the Lippmann-Schwinger equation (14), we
write the decomposition

e(x, ω, s) = e0(x, ω, s) + escatt(x, ω, s) ,

where
escatt(x, ω, s) =

∑

y∈K
G0(λs, x, y)g(y, ω, s)

where g(y, ω, s) =
∑

z∈K W (y, z)e(z, ω, s).
Let us look at the asymptotic behaviour of escatt(x, ω, s) as x → ω′.

The Green’s function G0(λs; x, y) satisfies equation (4)

G0(λs; x, y) = C(s)q(−
1

2
+is)d(x,y);

then (5) and (6) imply that, if x → ω′,

escatt(x, ω, s) = τ(s, ω, ω′)q(−
1

2
+is)|x| ,

with

τ(s, ω, ω′) = C(s)
∑

y∈K
g(y, ω, s)q(

1

2
−is)bω′(y) = C(s)

∑

(y,z)∈K×K

e(z, ω, s)W (z, y)e0(y, ω
′, s) .

Noticing that e0(y, ω
′, s) = e0(y, ω′,−s) we get that

τ(s, ω, ω′) = C(s)T (ω′,−s;ω, s) .

and from (23) we derive formula (26).

�

Remark 3.1 The functions bω(y) and bω′(y) are equal if ω and ω′ belong to the
same end of Tq \ K. This implies that the function ω′ → τ(s, ω, ω′) is in fact
constant in each end of Tq \K, so that the transmission coefficient τ(s, ω, ω′) can
be written as a function τ(s, ω, l). Moreover the reduced Lippmann-Schwinger
equation depends only on the restriction of e0 to K, this implies that the function
ω → τ(s, ω, l) is also constant in each end of Tq \K. Finally, we get an L × L
matrix depending on s, denoted by

S̃(s) = (S(l′,−s, l, s))l,l′ = − 2iπ

C(s)
(τ(s, l, l′))l,l′

.
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3.8 Computation of the transmission coefficients in terms
of the Dirichlet-to Neumann operator

In this section, we compute the transmission coefficients following the method of
[S].

We denote the distance between x and the root O of Tq by |x|, and by Bn−1

the ball of radius n − 1 where n − 2 is the supremum of |x| for x in K. We
denote by Tl the ends of Tq \ Bn−1 (1 ≤ l ≤ L), by xl the root of Tl and by Ωl

the boundary of Tl, which consists in the set of all geodesic rays starting from xl

and staying into Tl. The set of the roots {xl|l = 1, · · · , L} is the circle of radius
n and L = (q + 1)qn−1. From now on, we consider a fixed l (1 ≤ l ≤ L), a fixed
geodesic ray ω in Ωl, and the associated ”incoming plane wave”

∀x ∈ Vq, e0(x, ω, s) = q(1/2−is)bω(x),

where s ∈ S0. Such a plane wave is a generalised eigenfunction for the adjacency
operator A0 on Tq in the sense that it satisfies

(λs − A0)e0(x, ω, s) = 0 (λs = 2
√
q cos(s log q)) ,

but is not in l2. We are looking for solutions

e(., ω, s) = e0(., ω, s) + escat(., ω, s), x ∈ Vq

of the equation
(λs −A)e(., ω, s) = 0, (27)

where the scattered wave escat(., ω, s) satisfies:

escat(x, ω, s) = τ(s, ω, l′)Φs(x) if x ∈ V (Tl′) , (28)

where
Φs(x) = q(−1/2+is)|x|

(the so-called radiation condition) and the coefficients τ(s, ω, l′) are the transmis-
sion coefficients. These radial waves are generalised eigenfunctions of A0 in the
sense defined previously. We want to get an explicit expression of the transmission
vector −−−−→

τ(s, ω) := (τ(s, ω, 1), · · · , τ(s, ω, l′), · · · , τ(s, ω, L)). (29)

As we shall see, the transmission vector does not depend on the choice of the
geodesic ray ω, it is uniquely determined by the choice of l; we define

−−−→
τ(s, l) :=

−−−−→
τ(s, ω), ∀ω ∈ Ωl . (30)

We thus recover the result of the previous section, with the following relation

∀l, l′ τ(s, l, l′) = −C(s)

2iπ
S(l′,−s, l, s) .
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We begin with noticing that bω(xl′) does not depend of ω ∈ Ωl for any l′ ∈
{1, · · · , L}. We set

−→
Al := (α−bω(x1), · · · , α−bω(xL)) = (α−bl(x1), · · · , α−bl(xL)) (α = q−1/2+is),

and denote by
−→
El the vector in RL having all null coordinates excepted the l-th

coordinate, which is equal to 1.
We have the following

Theorem 3.9 Consider the integer n so that Bn−2 is the smallest ball containing
the finite graph K.

Set Γ = Bn, ∂Γ = {xl′ , 1 ≤ l′ ≤ L}, denote by Ân the restriction of A to

Bn in the sense that Ân = (Ax,y)(x,y)∈Bn
, define In in the same way, set B =

Ân − λsIn and denote by DN s the corresponding Dirichlet-to Neumann operator
(see Definition 4.3, Appendix B).

Then DN s and the transmission vector
−−−→
τ(s, l) defined by (28),(29) and (30)

exist for any
s /∈ E = {s ∈ S0 , λs ∈ σ(Ân−1)}

and

(τ(s, l, l′)) = −α−2n

[
1

C(s)

(
DN s + q1/2+isI

)−1
+A

]
,

with Ân−1 = (Ax,y)(x,y)∈Bn−1
, A = (Al,l′) = (αd(xl,xl′)), α = q−1/2+is .

Proof.–

Let us recall that we have fixed l (1 ≤ l ≤ L) and a geodesic ray ω
in Ωl. From now on we write e(x) instead of e(x, ω, s) for any x ∈ Vq

for simplicity.
Equation (27) splits into 3 expressions, depending on where x is

taken.

• If x /∈ Bn the equation is already verified, since A coincide with
A0 on each end Tl′.

• if x ∈ Bn−1, the equation becomes the Dirichlet problem Ae(x) =
λse(x), x ∈ Bn−1, e|∂Γ = f , and is uniquely solvable for any s
outside E , the prescribed values of the function f at the boundary
being given by the L-vector

~el =: (e(x1), · · · , e(xL))

to be determined in the sequel.
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• if x ∈ Bn \ Bn−1 (which means that x is one of the roots xl′ )
equation (27) writes:

∀l′ ∈ {1, · · · , L}, e(x−
l′ ) +

∑

x∼xl′ ,x∈Tl′

e(x) = λse(xl′)

where x−
l′ is the unique interior neighbor of xl′ , and where we

used that the potential W vanishes outside Bn−2.

According to definition 4.3, the corresponding Dirichlet-to Neumann
operator DN s writes

DN s(~el)(xl′) = e(x−
l′ )− λse(xl′) ∀l′ ∈ {1, · · · , L},

Therefore, if s /∈ E , Equation (3.8) can be rewritten as,

∀l′ ∈ {1, · · · , L}, DN s(~el)(xl′) +
∑

x∼xl′ ,x∈Tl′

e(x) = 0 (31)

Now it remains to compute
∑

x∼xl′ ,x∈Tl′
e(x). We have, for x ∈ Tl′ ,

e(x) = q(1/2−is)bω(x) + τ(s, ω, l′)Φs(x). According to the expression of
the radial function Φs, we get, for any s /∈ E and l′ ∈ {1, · · · , L}, that

Φs(xl′) = q(−1/2+is)|xl′ | = qn(−1/2+is)

Φs(x) = q(−1/2+is)(n+1) ∀x ∈ Tl′ x ∼ xl′ .

Let us write the set Nl = {x ∈ Tl, x ∼ xl} as Nl = {yl}∪ Ñl, where
yl belongs to the infinite path ω whereas the q − 1 vertices of Ñl do
not. Then, using the properties of the Busemann function we have

bω(xl) = bl(xl) = |xl| = n

bω(yl) = n+ 1

bω(x) = bl(xl)− 1 = n− 1, ∀x ∈ Ñl

bω(x) = bl(xl′)− 1 ∀x ∈ Nl′ , l′ 6= l .

So we get for any l′ ∈ {1, · · · , L} and after setting α = q−1/2+is,

e(xl′) = α−bl(xl′ ) + τ(s, ω, l′)αn

e(x) = α−bl(xl′ )+ε + τ(s, ω, l′)αn+1

with

ε = 1 ∀x ∈ Ñl

ε = 1, ∀ x ∈ Nl′ l′ 6= l

ε = −1 if x = yl .
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Hence we have
∑

x∼xl′ ,x∈Tl′

e(x) = qα−bl(xl′ )+1 + qτ(s, ω, l′)αn+1 if l′ 6= l

∑

x∼xl,x∈Tl

e(x) = (q − 1)α−bl(xl)+1 + α−bl(xl)−1 + qτ(s, ω, l′)αn+1 .

These equations can be summarised, for any l′ ∈ {1, · · · , L}, as
∑

x∼xl′ ,x∈Tl′

e(x) = α−bl(xl′)+1[q + δll′(α
−2 − 1)] + qτ(s, ω, l′)αn+1

so that equation (31) gives, for any l′ ∈ {1, · · · , L}

DN s(~el)(xl′)+α−bl(xl′)+1[q+δll′(α
−2−1)]+qτ(s, ω, l′)αn+1 = 0 . (32)

Let us set DN s(~el) = (DN s(~el)(x1), · · · ,DN s(~el)(xL)),

and write ~el = (e(x1), · · · , e(xL)) = ~Al + αn
−−−−→
τ(s, ω) (recall that

~Al and
−−−−→
τ(s, ω) are L−vectors having respectively α−bl(xl′) and τ(s, ω, l′)

as their l′−coordinate).

Substituting in (32) and denoting by ~El the vector in R
L having

all null coordinates except xl = 1, we get

DN s[ ~Al + αn
−−−−→
τ(s, ω)] + qα ~Al + α−n(α−1 − α) ~El + q

−−−−→
τ(s, ω)αn+1 = 0

which yields

αn (DN s + qαI)
−−−−→
τ(s, ω) = α−n(α− α−1) ~El − (qαI +DN s) ~Al .

Using the expression of α and C(s), we have then

αn
(
DN s + q1/2+isI

)−−−−→
τ(s, ω) = − α−n

C(s)
~El −

(
q1/2+isI +DN s

)
~Al .

Since the matrix DN s is real symmetric, DN s+ q1/2+isI is an invert-
ible matrix for any s ∈ S0 so that λs /∈ σ(Ân−1), and

−−−−→
τ(s, ω) = −α−2n

C(s)

(
DN s + q1/2+isI

)−1 ~El − α−n ~Al .

We conclude the proof by noticing that, for any l′ ∈ {1, · · · , L},
bl(xl′) = n− d(xl, xl′).

�
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3.9 Density of states

Theorem 3.10 When the vertex x tends to infinity, the densities of states dµA

x

of Γ converge weakly to the density of states de of Tq computed in Section 2.4.

Proof.–

It is enough to compute the limits of
∫
λndµA

x for n fixed and x → ∞.
By definition, we have

∫
tndµA

x = [An](x, x), and

[An](x, x) =
∑

ax,x1
ax1,x2

· · · axn−1,x

where the sum is on loops γ = (x, x1, x2, · · · , xn−1, x) of length n
based at x. If we assume that d(x,K) > n/2, the loops do not meet
K and therefore [An](x, x) = [An

0 ](x, x).

�

4 The spectral theory for a graph asymptotic to

an homogeneous tree

We are concerned here with the spectral theory of the adjacency matrix of a graph
Γ asymptotic to a homogeneous tree of degree q + 1, in the sense of Definition
1.1. We want to reduce the spectral theory of AΓ to the situation studied in
Section 3. For that, we need a preliminary combinatorial study which could be
of independent interest.

4.1 Some combinatorics

We need the following combinatorial result:

Theorem 4.1 If Γ is asymptotic to a homogeneous tree of degree q + 1, then Γ
is isomorphic to a connected component of a graph Γ̂ which can be obtained from
Tq by adding and removing a finite number of edges.

In order to prove Theorem 4.1, we first introduce an integer ν(Γ) associated
to the graph Γ; the integer ν is a combinatorial analogue of the regularised total
curvature of a Riemannian surface S which is of constant curvature ≡ K0 near
infinity, namely

∫
S
(K −K0)|dσ|.

Definition 4.1 If Γ is asymptotic to a homogeneous tree of degree q + 1, we
define ν(Γ) by

ν(Γ) =
∑

x∈VΓ

(q + 1− d(x)) + 2b1 ,

where d(x) is the degree of the vertex x and b1 is the first Betti number of Γ or
equivalently the number of edges to be removed from Γ in order to get a tree.
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Note that, if T is a maximal sub-tree of Γ, ν(T ) = ν(Γ).
We will need the

Lemma 4.1 If, for r ≥ 2, Br = {x ∈ VΓ | |x|Γ0
≤ r}, then we have

ν(Γ) = (q − 1)m−M + 2 ,

where m is the number of inner vertices of Br and M the number of boundary
vertices (i.e. connected to a vertex of Γ \Br) of Br.

Proof.–

The M boundary vertices have q neighbours in Γ \Br and one in Br.
From Euler formula applied to Γ ∩Br, we get

1− b1 = (m+M)− 1

2


 ∑

|x|Γ0
≤r−1

d(x) +M


 .

Thus
ν(Γ) =

∑

|x|Γ0
≤r−1

(q + 1− d(x)) + 2b1

is equal to

ν(Γ) = (q + 1)m− (2m+M − 2 + 2b1) + 2b1 .

�

We will also need the:

Lemma 4.2 Let F be a finite tree whose all vertices are of degree q + 1 except
the ends which are of degree 1. Let M be the number of ends and m the number
of inner vertices of F . We have the relation

M = 2 + (q − 1)m . (33)

Conversely, for each choice of (m,M) satisfying Equation (33), there exists
such a tree F .

Proof.–

From Euler formula applied to F , we get 1 = |VF | − |EF |. Moreover
|VF | = m + M . Let us choose a root inside F and orient the edges
from that root. Then we count the edges by partitioning them with
their m possible origins; this gives |EF | = (q + 1) + (m− 1)q.

Conversely, the statement is true for m = 1, M = q + 1 and we
proceed by induction on m by adding q edges to a boundary vertex
and the corresponding q boundary vertices, we havem → m+1, M →
M + (q − 1).
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We will now make some modifications of Γ in order to get a new graph Γ̂ with
ν(Γ̂) = 0.

Lemma 4.3 If Γ′ = M1(Γ) is defined by adding to Γ a vertex and an edge con-
necting that vertex to a vertex of Γ0, then ν(Γ′) = ν(Γ) + q − 1.

If Γ′ = M2(Γ) is defined by adding to Γ a tree whose root x is of degree q and
all other vertices of degree q + 1 and connecting x by an edge to a vertex of Γ0,
Γ′ is asymptotic to an homogeneous tree of degree q + 1 and ν(Γ′) = ν(Γ)− 1.

This Lemma is quite easy to check.
The proof of Theorem 4.1: let us now write ν(Γ) = N ′′ − (q − 1)N ′ with

N ′ ≥ 0 and N ′′ ≥ 0. By performing N ′ times the move M1 and N ′′ times the
move M2, we arrive to a graph Γ̂′ with ν(Γ̂′) = 0. Let Γ̂ be the graph obtained
by removing from Γ̂′ the (N ′ + N ′′) edges not in EΓ, one of whose vertices is in
Γ0. Then Γ is a connected component of Γ̂.

We apply Lemma 4.2 and change Γ̂′ inside Br by gluing to the boundary
vertices a tree F . We get this way a tree Tq which, by Lemma 4.2 has the same

number of vertices inside Br than Γ̂′, so that one can recover Γ̂′ by removing and
adding a finite number of edges to Tq. Removing more edges, we get Γ̂ and Γ is

a connected component of Γ̂.
In particular Γ is isomorphic to a graph obtained from Tq by removing or

adding a finite number of edges if and only if ν(Γ) = 0.

4.2 The spectral theory of Γ

From Theorem 4.1, we deduce the existence of a Hilbert space H so that l2(Γ̂) =
l2(Γ)⊕H and this decomposition is invariant by AΓ̂. Moreover AΓ̂ is a finite rank
perturbation of A0 = ATq

. This will allow us to describe the spectral theory of
AΓ by using the results of Section 3.

In order to get the spectral decomposition of AΓ in terms of the spectral
decomposition of AΓ̂ given in Section 3.4, we will need the

Lemma 4.4 Let AΓ̂ = ATq
+W with Support(W ) ⊂ K×K and K finite. Let Γ

be an unbounded connected component of Γ̂ and ω a point at infinity of Γ. Then,
for any s /∈ Ê , we have

support(e(., s, ω)) ⊂ VΓ .

Conversely, if ω′ is a point at infinity of Γ̂ which is not a point at infinity of
Γ then

support(e(., s, ω′)) ∩ VΓ = ∅ .
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Let us prove the first assertion, the proof of the second is similar. It is enough to
prove it for s ∈ S+ close to S0, because s → e(x, s, ω) is meromorphic on S. We
have then

e(s, ω) = e0(s, ω) +G0(λs)We(s, ω) .

From the explicit expression of e0, we get that the first term belongs to l2(Γ̂ \Γ),
and so does the second one, as the image of a compactly supported function by
the Green’s function for λs /∈ Iq = spectrum(A0). This proves that the restriction
of e(., s, ω) to VΓ̂ \ VΓ is an l2 eigenfunction, with eigenvalue λs, of AΓ̂. Since AΓ̂

has no eigenvalue λs for s ∈ S+ close to S0, it follows that e(x, s, ω) vanishes for
s ∈ S+ close to S0 and x /∈ VΓ.

Theorem 4.1 allows to consider the set Ω of points at infinity of Γ as a subset
of the set Ω̂ of the points at infinity of Γ̂. The space l2(Γ̂) splits as a direct sum
l2(Γ)⊕ l2(Γ̂ \ Γ) which is preserved by the adjacency matrix. Lemma 4.4 shows
that the support of the generalised eigenfunctions e(., s, ω) for ω ∈ Ω is included
in VΓ. Using this, we can state the spectral decomposition of AΓ as an immediate
corollary of Theorem 3.3:

Theorem 4.2 The Hilbert space l2(Γ) splits into a finite dimensional part Hpp

and an absolutely continuous part Hac. This decomposition is preserved by AΓ. If
f ∈ C0(Γ) and, for ω ∈ Ω, f̂(s, ω) = 〈e(., s, ω), f〉, then the map f → f̂ extends
to an isometry from Hac onto L2

even(S0×Ω, dσ0⊗dµ) which intertwines the action
of Aγ with the multiplication by λs.

Appendix A: delta measures

The goal of this Appendix is to define in a precise way the meaning of the measures
dµ = δ(S = 0)dν where dν = a(x)dx is absolutely continuous w.r. to the
Lebesgue measure in Rd and S is a C1 real valued function so that dS does not
vanish on the hypersurface S = 0. The measure dµ = δ(S = 0)dν is supported
by the hypersurface Σ := {S = 0}.

We can assume that Rd and the hypersurface S = 0 are oriented, so that we
can play with differential forms instead of measures.

The proof of the following Lemma is left to the reader:

Lemma 4.5 There exists a differential form β defined in some neighborhood of
Σ so that adx1∧· · ·∧dxd = dS∧β. Moreover the restriction of β to Σ is uniquely
defined.

Definition 4.2 If ν is the measure on Σ associated to the restriction of β to Σ.
we can view ν as a measure on Rd denoted dν = δ(S = 0)dµ.

We can view dν as weak limits: if f : R → R+ is a positive L1 function of
integral 1 and fε(t) = ε−1f(ε−1t) the measure δ(S = 0)dµ is the weak limit as
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ε → 0 of the measures dνε = fε(t)dµ (For the proof, take local coordinates so
that S = x1).

Usual choices are f1 the characteristic function of the interval [−1
2
, 1
2
] and

f2(t) =
1
π

1
1+t2

.

Appendix B: the Dirichlet-to Neumann operator

DN on a finite graph

Let Γ = (V,E) be a connected finite graph and let ∂Γ be a subset of V called the
”boundary of Γ”. Let B = (bi,j) : RV → RV be a symmetric matrix associated
to Γ, namely

bi,j = 0 if i 6= j and {i, j} /∈ E.

After setting V0 = V \ ∂Γ, we define B0 : RV0 → RV0 as the restriction of B to
the functions which vanish on ∂Γ .

We have the following

Lemma 4.6 Assume that B0 is invertible. Then, for any given f ∈ C(∂Γ), there
exists a unique solution F ∈ C(Γ) of the Dirichlet problem

(Df) : F|∂Γ = f and BF (l) = 0 if l ∈ V0, F|∂Γ = f .

The Dirichlet-to Neumann operator DN associated to B is the linear operator
from C(∂Γ) to C(∂Γ) defined as follows:

Definition 4.3 Assume that B0 is invertible. Let f ∈ C(∂Γ), and F be the
unique solution of the Dirichlet problem (Df). Then, the Dirichlet-to-Neumann
operator form DN : R∂Γ → R∂Γ is defined as follows: if l ∈ ∂Γ,

DN (f)(l) =
m∑

i=1

bl,iF (i)(= BF (l)) .
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