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Scattering theory for graphs isomorphic to a
homogeneous tree at infinity *'

Yves Colin de Verdiere & Francoise Truc?

September 5, 2012

Abstract

We describe the spectral theory of the adjacency operator of a graph
which is isomorphic to homogeneous trees at infinity. Using some combi-
natorics, we reduce the problem to a scattering problem for a finite rank
perturbation of the adjacency operator on an homogeneous tree. We de-
velopp this scattering theory using the classical recipes for Schrodinger
operators in Euclidian spaces.

Introduction

The aim of this paper is to describe in an explicit way the spectral theory of the
adjacency operator on an infinite graph I' which, outside of a finite sub-graph I',
looks like an homogeneous tree T, of degree ¢ + 1. We mainly adapt the case of
the Schrodinger operators as presented in [RS, Tke]. The proofs are often simpler
here and the main results are similar. This paper can be read as an introduction
to the scattering theory for differential operators on smooth manifolds. Even if
we do not found our results in the literature, there is probably nothing really
new for experts in the scattering theory of Schrodinger operators, except the
combinatorial part in Section 4.

The main result is an explicit spectral decomposition: the Hilbert space 1?(T")
splits into a sum of two invariant subspaces [?(T") = H,.®H,p. The first one is an
absolutely continuous part isomorphic to that of the homogeneous tree of degree

*Keywords: scattering on graphs, spectral measure, homogeneous tree, eigenfunction ex-
pansion.

T Math Subject Classification (2000): 05C12, 05C50, 05C63, 35J10, 39A12, 47B25,
81U20.

iGrenoble University, Institut Fourier, Unité mixte de recherche CNRS-UJF 5582,
BP 74, 38402-Saint Martin d’Heres Cedex (France); francoise.truc@ujf-grenoble.fr;
http://www-fourier.ujf-grenoble.fr/~trucfr/



g + 1, while the second one is finite dimensional and we have an upper bound on
its dimension. The absolutely continuous part of the spectral decomposition is
given in terms of explicit generalised eigenfunctions whose behaviour at infinity
is described in terms of a scattering matrix.

We first introduce the setup, then we recall the spectral decomposition of the
adjacency operator of a homogeneous tree using the Fourier-Helgason transform.
In Section 3, we build the generalised eigenfunctions for a Schrodinger opera-
tor with a compactly supported potential on a homogeneous tree, we define a
deformed Fourier-Helgason transform and get a spectral decomposition of this
operator. As a consequence we write the point-to-point correlations of scattered
waves in terms of the Green’s function. Then we define the transmission coef-
ficients, connect them to the scattering matrix, and get an explicit expression
of them in terms of a Dirichlet-to-Neumann operator. In section 4, we deduce
a similar spectral decomposition of any graph I' asymptotic to an homogeneous
tree T, by proving the following combinatorial result: any such graph I' is iso-
morphic to a connected component of a graph [ so that the adjacency operator
related to I is a finite rank perturbation of that related to T,.

1 The setup: graphs asymptotic to a homoge-
neous tree

Let us consider a connected graph I' = (V, Er) with Vi the set of vertices and
Er the set of edges. We write x ~ y for {x,y} € Er.

Definition 1.1 Let ¢ > 2 be a fized integer. We say that the infinite graph I' is
asymptotic to a homogeneous tree of degree ¢+ 1 if there exists a finite sub-graph
Lo of T' such that T" := T'\ T'y is a disjoint union of a finite number of trees
T, | =1,---,L, rooted at a vertex x; linked to I'y and so that all vertices of T;
different from x; are of degree q + 1. The trees T;, | = 1,--- | L, are called the
ends of I'.

Equivalently, T is infinite, has a finite number of cycles and a maximal sub-
tree of I' has all vertices of degree q + 1 except a finite number of them.

Definition 1.2 We define the boundary 0y of Iy as the set of edges of I con-
necting a vertex of Iy to a vertex of I, namely one of the x;’s. We denote by
|z|p, the distance of x € Viv to T'y.

The space of complex-valued functions on Vr is denoted
and Cy(T") is the subspace of functions with finite support. We define also

P()={feC) Y IfI*(zx) < oo}.

zeVp



It is a Hilbert space when equipped with the inner product:

(floy=>_ flx)

zeVp

Let us emphasize that we take the physicist’s notation, as in [RS] for example:
our inner product is conjugate-linear in the first vector and linear in the second.
On Cy(T'), we define the adjacency operator Ar ! by the formula:

(Arf) () =) [(y) (1)

Y~z

The operator Ar is bounded on [?(T") if and only if the degree of the vertices
of T is bounded, which is the case here. In that case, the operator Ar is self-
adjoint; otherwise, the operator Ar defined on Cy(I') could have several self-
adjoint extensions.

For any A outside the spectrum of Ar, we denote by Rr(\) the resolvent (A —
Ar)~! and by Gr(A, z,y) the matrix of Rp()), also called the Green’s function.

2 The spectral decomposition of the adjacency
matrix of the tree T, and the Fourier-Helgason
transform

2.1 Points at infinity

Let T, = (V,, E,) be the homogeneous tree of degree ¢ + 1 and let us choose
an origin, also called a root, O. We denote by |z| the combinatorial distance of
the vertex x to the root. The set of points at infinity denoted 2o is the set of
infinite simple paths starting from O. We will say that a sequence y,, € V, tends
to w € Q) if, for n large enough, y,, belongs to the path w and is going to infinity
along that path. If = is another vertex of V, the sets {1 and €2, are canonically
identified by considering paths which coincide far from O and x. There is a
canonical probability measure dop on p: dog is the unique probability measure
on (2o which is invariant by the automorphisms of T, leaving O fixed. Later on
we will always denote €) the set of points at infinity, because the root is fixed.

The Busemann function x — b, (z) associated to the point w € Qg is defined
as follows: let us denote by x, the last point lying on w in the geodesic path
joining O to z, we put b,(x) = |z,| — d(x,z,). The level sets of b, are the
horocycles associated to w. The function b, (x) goes to 400 as z tends to w. As
x tends to w’ # w, b,(x) tends to —oo and b, (x) + || remains bounded.

'If B is a linear operator from Cy(I")into C(T'), we denote by [B](z,y), x,y € Vr its matrix



2.2 The spectral Riemann surface

Let us define the Riemann surface S = R/7Z x iR with 7 = 27/logq and the
holomorphic function s — A on S defined by Ay = q%ﬂ‘s + q%—is, The physical
sheet ST = {s € S| s > 0} is mapped bijectively onto C \ I, where, as we will
see, I, is the spectrum of Ay := Ar, , namely the real segment [—2,/q,+2,/q].
We denote by S = R/7Z the circle s = 0. By the map s — ), the circle S°
is a double covering of /,. If J is a subset of C, we define by J the subset of S

defined by J:={s € S | \, € J} .

2.3 Calculation of the Green’s function

We denote by A (resp. Gy) the adjacency operator (resp. the Green’s function)
on T,. We will compute explicitly Go(A, z,y). Using the homogeneity of the tree
T,, it is enough to compute Go(A, O, x) for an x € V,, that is the value f(z) of
the ? solution of

(A= Ao)f = do . (2)

The function f(z) depends only on the distance d(z,O) = |z| to the origin O, so
we set f(z) = uy if |z| = k, k € N, and rewrite equation (2) as follows:

i) Mup — qugs1 —ug—1 =0  for k>1
i) AMug — (¢ + Duy =1
i) Y0 o0+ 1) < oo
The last condition stands for f to be in I*(T,).

o If A\ ¢ I,, the equation
g’ —da+1=0

admits an unique solution a such that |a| < 1/,/g. From i) and iii), we get
that u, = Ca* and the constant C' is determined by ii) :

1
C=C=——7r—.
YT A= (g+1a
Therefore we have
200/
Go(A,O,fL') = “

Mg—1)+(¢g+1)F(N)

where F'(\) denotes the determination of \/A? — 4¢ in C\ I, equivalent to A
as A tends to infinity. Thus using the invariance of the Green’s function by
the group of automorphisms of the tree, we see that the Green’s function



Go(A, z,y) is a function of the distance d(x,y) and we have, for any z,y €
V(Tq)a

Go(\, z,y) = Cra®@¥) (3)
The operator of matrix Gy(J, .,.) is clearly bounded in {*(T,) and X is not
in the spectrum of Ajg.

e If \ € I, there is no [? solution of Equation (2) and A is in the spectrum
of AQ.

Using the parameter s € ST, we have

1

qéfis _ q*%+is

a= q7%+i3’ CAS = C(S) - and F<)\s) = q%fis _ q%Jrl'S )

Theorem 2.1 The spectrum of Ao is the interval I, = [—2./q, +2./4].
The Green’s function of the tree T, is given, for s € ST by

, (
Go(Ae,7,y) = Cls)g 3100 = e
qﬁfls _ qf§+zs

(4)

As a function of s, the Green’s function extends meromorphically to S with two
poles —i/2 and —i/2 4+ /2.
Moreover we have, for any x € V, and any y belonging to the path w,

Go(As, 2,y) = Graa(As, y)g2 ") (5)

with .
Grad(Asa y) = C(S)q(_§+25)|y‘ (6)

Proof.—

The last result comes from the definition b, (x) = |z, | — d(z, x,).

2.4 The density of states

Let us recall how to introduce a notion of spectral measure (also called density
of states) on the graph I'. To a given continuous function ¢ : R — R, we
associate by the functional calculus an operator ¢(Ar) on [?(T), which has a
matrix [¢(Ar)](z,2’). We consider then, for any z € Vi, the linear form on
C(R,R)
Lo(¢) = [0(Ar)](z, ) -
L, is positive and verifies L,(1) = 1, so we have L,(¢) = [; ¢de, where de, is a
probability measure on R, supported by the spectrum of Ar which is called the
spectral measure of I' at the vertex x.
The density of states of T, is given by the

bt



Theorem 2.2 (See for example [CdV2]) The spectral measure de, of T, is inde-
pendent of the vertex x and is given by

o (g +1)\/4q— N
dea(N) = de(3) = 5 L Vad =) (7)

Proof.—

For the sake of clarity, we recall the main ingredients:
1) an explicit computation of the diagonal entries of the Green’s

function
2q

AMg—=1) = (¢+1DF()
where F'(\) denotes as previously the determination of /A% — 4¢ in
C/1, (with I, = [-2,/q,2,/q]) equivalent to X for great values of A.

2) The expression of the spectral measure via Stone formula

Go(\,z,z) =

de(\) = (GIAN+1i0,z,2) — G(A— 0,2, x)) dt . (8)

2

2.5 The Fourier-Helgason transform

Let us recall the definition of the Fourier-Helgason transform on the tree T, with
the root O.

Definition 2.1 For any f € Cy(T,), the Fourier-Helgason transform FH(f) is
the function defined by

FH(f)(w, ) = flw,s) =Y fla)g!/>rbe0) 9)

zeVy
for any w € Qo and any s € S.

Let us set
cof,,5) 1= g2

and denote by eg(w, s) the function x — eo(z;w,s). If we restrict ourselves to
s € SY, the previous definition writes

flw, s) = (eo(w, s)|f) = Zf )eo(z,w, s) . (10)

zeVr

We have
Vs € So, Apeo(w, s) = Asep(w, s)

and the completeness of the set {eg(w,s), s € S°, w € Q} is expressed by the
following inversion formula (see [CMS)):



Theorem 2.3 For any f € Cy(T,), the following inverse transform holds

fa) = | / €o(, 0, ) f(w, 5)doo (w)du(s) (11)

where

d _ (g+1)logg sin” (s log q)
pis) = T q+q ' —2cos(2slogq)
Moreover the Fourier-Helgason transform extends to a unitary map from 1*(T,)
into L*(Q x S° dop @ du).
The Fourier-Helgason transform is not surjective: its range is the subspace
L2,..(Qx 8% dop @du) of the functions F of L*(Q2 x S°,doo @ du) which satisfy

even

the symmetry condition (see, for example, [CS] or [FN])

/Qeo(x,w, s)F(w, s)dop(w) = /Qeo(x,w, —$)F(w, —s)dop(w) .

The Fourier-Helgason transform provides a spectral resolution of Ag: if ¢ : R — R
18 continuous,

|ds| . (12)

0(Ao) = (FH) " ¢(\)FH |
where ¢(N;) denotes the operator of multiplication by that function on L?
SY doy @ dp).

Corollary 2.1 From the inverse Fourier-Helgason transform formula (11) we
find back the expression of the spectral measure of T, (see Theorem 2.2).

Proof.—

By homogeneity of the tree T, for any ¢ € Co(T,), [¢(Ao)](x, x) is
independent of z. Using (11), we get

0 x

even (

06(40))(0.0) = [ [ $(0)eal0,3)en(0.0.5) doo(e)in(s) = | @A) du(s)

Let us perform the change of variables
arccos ——

1
s = fq(A) == log g 2\/—

Using (12) and the fact that, by the map s — A, the circle S is a
double covering of I,, we write

ot (aa) =2 B [ () i

INCES)) \4q — N2
=2t /Iq(q+1)2_>\2<1>()\)d>\,

which actually implies formula (7).




3 A scattering problem for a Schrodinger op-
erator with a compactly supported non local
potential

We are concerned here with the scattering on T, between the adjacency operator
Ag and the Schrodinger operator A = Ay + W, where W is a compactly sup-
ported non local potential. More precisely the Hermitian matrix (also denoted
W) associated to this potential is supported by K x K where K is a finite part
of V,. We assume in what follows that K is chosen minimal, so that:

K={zxeV,|3yeV, with V,, #0} .

Let us first describe the spectral theory of A: it follows from [RS], Sec. XI 3, and
from the fact that A is a finite rank perturbation of Ay (see also Section 3.3) that
the Hilbert space [*(T,) admits an orthogonal decomposition into two subspaces
invariant by A: (*(T,) = Hac ® Hpp where

e .. is the isometric image of (*(T,) by the wave operator

QF =5 — lim ee7ito

t——o0 '
We have Ay, = Q7 Ag(27)*, so that the corresponding part of the spectral
decomposition is isomorphic to that of Ay which is an absolutely continuous

spectrum on the interval I,.

e The space H,, is finite dimensional, admits an orthonormal basis of [
eigenfunctions associated to a finite set of eigenvalues, some of them can be
embedded in the continuous spectrum I,,.

We will denote by P,. and P, the orthogonal projections on both subspaces.

In order to make the spectral decomposition more explicit, we will introduce
suitable generalised eigenfunctions of A. These generalised eigenfunctions are
particular solutions of

(As — A)e(,w,s) =0, (13)

meaning not {2 solutions, but only point-wise solutions. For the adjacency op-
erator Ay, these generalised eigenfunctions are called the “the plane waves” and
given by the eg(w, s)’s with s € S® and w € Qp. They give the Fourier-Helgason
transform which is the spectral decomposition of Ajg.

We are going to prove a similar eigenfunction expansion theorem for A, using
generalised eigenfunctions of A. We will mainly adapt the presentation of [RS],
Sec. X1.6, for Schrodinger operators in R? (see also [Tke]). Our first goal is to
build the generalised eigenfunctions x — e(x,w, s) also denoted e(w, s). We will
derive and solve the so-called Lippmann-Schwinger equation. This is an integral
equation that e(w, s) will satisfy.



3.1 Formal derivation of the Lippmann-Schwinger equa-
tion
Let us proceed first in a formal way by transferring the functions ey(w, s) by the

wave operator: if e(w, s) is the image of eg(w, s) by the wave operator Q in some
sense (they are not in [2!), then we should have e(w, 5) = lim,_, e’ e " e(w, 5)

¢
= lim;,_o[e(w,s) — 2/ ey e Ae(w, s)dul
0

—o0
e(w,s) — ilima_m/ A e A el e (1), 8 )du
0

e(w, s) 4+ limg_0[(Ag — (\s + i) " Wel(w, s) .

So e(w, s) should obey the following ” Lippmann-Schwinger-type” equation

e(w, s) = ep(w, s) + Go(As)We(w, s) . (14)

3.2 Existence and unicity of the solution for the modified
” Lippmann-Schwinger-type” equation

Let x € Cy(T,) be a compactly supported real-valued function so that Wy =
xW = W. For example y can be the characteristic function of K. We first
introduce a modified ” Lippmann-Schwinger-type” equation. If e(w, s) obeys (14)
and a(w, s) = xe(w, s), then a obeys

a(w, s) = xeo(w, s) + xGo(As) Wa(w, s) . (15)

Let K be the finite rank operator on [?(T,) defined by Ky = xGo(As)W. The
map s — K, extends holomorphically to &s > —%. Equation (15) takes the form

a(,,w,s) =n(,w,s)+ Ka(.,w,s), (16)

where 7(.,w, s) € Cy(T,). By the analytic Fredholm theorem ([RS], p 101), there
exists a finite subset £ of S, defined by £ =: {s € S%ker(Id — K,) # 0}, so
that equation (15) has a unique solution a(w, s) € Cy(T,) whenever s ¢ £ . Since

K, = K_g, the subset £ is invariant by s — —s and consequently is the inverse
image by s — A; of a subset of I, which we denote by £.

For s ¢ &, the function e(w,s) = ey(w,s) + Go(A)Wa(w, s) is the unique
solution of the Lippmann-Schwinger equation (14).

3.3 The set £ and the pure point spectrum

Proposition 3.1 The set £ as defined in Section 3.2 is independent of the choice
of x with Wy =xW =W.



The “minimal” x is xw = 1k. If a is a non trivial solution of a — xw Go(As)Wa =
0, and xxw = xw, a is also solution of a — xGo(As)Wa = 0.

Conversely, if a — xGo(As)Wa = 0, we have xwa — xwGo(As)Wa = 0. We
have to prove that xwa # 0. If yyra = 0, we would have Wa = 0 and a = 0.

Proposition 3.2 If (A—\)f = 0 with A\ € I, and f € 1*(T,), then Supp(f) C K
where K is the smallest subset of Vi, so that Supp(W') C K x K and all connected
components of T, \ K are infinite.

Proof.—

We will proceed by contradiction. Let 2 € V,\ K be so that f(z) # 0.
Let us define an infinite sub-tree T, of T, as follows: let y,,a =
1,---,a be the vertices of T, which satisfy y, ~ x and y, is closer
to K than x. Then T, is the connected component of x in the graph
obtained from T, by removing the edges {x,y,} fora =1,--- ,a. Let
us consider the ”averaged” function

- 1
ne€N-= fi(n) = — Z f(z) .
q z2€Ty, d(z,z)=n

Then f, satisfies the ordinary difference equation Ag(n) —qg(n+1) —
g(n—1)=0.

We thus get a contradiction, since this equation has no non-zero
[? solution when A is in I,.

Corollary 3.1 #{o,,(A) N1} < #K.

This holds because any eigenfunction associated to an eigenvalue in {o,,(A)N1,}

is supported in K and the dimension of the vector space of functions supported
in K is #K.
Theorem 3.1 If s € S°, (A—\,)f =0 and f € [*(T,)\ 0, then s € £.

Conversely, if s € € C S°, there emists f # 0 so that (A= X)f =0 and
F@) = 0 (q+172).
Proof.—
Due to Proposition 3.2, the support of such an f is included in K and
(As — Ag)f = W f. We apply Go(As) to both sides of the equation,
because every sum is finite. We have Go(A;)(As — Ag)f = f: this

is true for Ay ¢ I, because I, is the spectrum of A, and hence by
continuity (Go()s) extends holomorphically near S°) for every A, since

10



f is compactly supported. Hence f — Go(As)W f = 0. If we choose
for y the characteristic function of K, we get f — XGo(As )W f = 0.
We have a non trivial solution of a — K;a = 0, namely a = f.
Conversely, let us start from a, a non trivial solution of a— Ksa = 0
and define f = Go(As)Wa. Then (A;—A)f = 0 by the same reasoning

as before. Moreover f is a finite linear combination of the functions
Go(Ass -, y), y € Supp(W) and we use Equation (6) to get the bound
in x.

Theorem 3.2 The pure point spectrum o,,(A) of A splits into 3 parts

opp(A) = a;p(A) U a;rp(A) U agp(A)
where o, (A) = oy (A)N]—00, =2,/q(, 0, (A) = opp(A)N]2,/7, —i—o?[, and o) (A) =
opp(A) N1, We have #o5 (A) < #Supp(W) and #0),(A) < #K.

The first estimate comes from the mini-max principle and the fact that W is a
rank N perturbation of Ay with N = #Supp(W). The second one is already
proved.

The reader could ask if there can really be some compactly supported eigen-
functions. They can exist as shown by the following 2 examples.

Example 3.1 T is a tree with root 0 and Wy o =Wy, = —1 for any x ~ O. All
other entries of W wvanish. Then if H = Ar+ W, f = (0), we have Hf = 0.

Example 3.2 The graph T is the union of a cycle with 4 vertices {1,2,3,4} and a
tree whose root is attached to 2 neighbouring vertices of the cycle. If f(p) = (—1)P
on the cycle and 0 on all other vertices, Apf = 0.

However the proof of the following result is left to the reader:
Proposition 3.3 If ' is an infinite tree, then Ar has no compactly supported

eigenfunction.

3.4 The deformed Fourier-Helgason transform

Definition 3.1 We define the deformed Fourier-Helgason transform FHs. of
f € Co(Ty) as the function fo on Q x (S°\ &) defined by

fsc(w,s) e(w, s)|f) = Z f(z)e(r,w s) ) (17)

zeVr

We want to prove the following

11



Theorem 3.3 For any f € Cy(T,) and any closed interval J C I, \ &, if we
denote by J the inverse image of J by s — Ag, the following inverse transform

holds
P f(x) = /, /Q e(x,w, 8) fsolw, s)doo(w)du(s) . (18)

Moreover, f — fsc extends to an isometry from Hae onto L2, (Q2x S°, doo@dpu).

even

3.4.1 The relation of the deformed Fourier-Helgason transform with
the resolvent

Denoting, with a slight abuse of notation, for s € S*, by G(s) the operator
(As —A)~! and similarly by Go(s) the operator (A, — Ag) ™!, we have the resolvent
equation

G(s) = Go(s) + Go(s)WGE(s) (19)
For o € S° and s in S*, we set
h(s;w,0) = (As — Ay )G(8)ep(w, o)

where the right-handside is a convergent series which identifies to (As — A, )-times
the inverse Fourier-Helgason transform of y — G(s;x,y).
Then equation (19) for G gives an integral equation for h

h(s;w,0) = eo(w,0) + Go(s)Wh(s;w, o)
and, if p(s;w, o) = xh(s;w,0),
p(s;w,0) = xeo(w, o) + xGo(s)Wp(s;w, o) . (20)

The key fact is the relation between (20) and the modified ” Lippmann-Schwinger-
type” equation (15). If s € ST is fixed and o = s, then the equation for p(s;w, s)
is identical to equation (15) for a(w, s).

This can be used to prove

Lemma 3.1 Let f € Cy(T,) be fized and s € St. Then the function

O(s;w,0) = Z h(x; s;w,0) f(x)

zeVy

has a holomorphic extension in o to ST and

O(s;w,s) = Z e(x,w,s)f(z) = fulw,s) .

reVy

We thus have related fsc to the resolvent.

12



3.4.2 End of the proof of Theorem 3.3

Let A\ = A+ie with A € [\ and e > 0, and s € ST (this implies 0 < Rs < 7/2).
Up to a factor of (A+ie—\,), (w,0) — h(x; s;w, o) is the inverse Fourier-Helgason
transform of y — G(\g, , y); so the Plancherel theorem implies (after multiplying

by f(z)f(y)) that
()\s - Xs) Z G(Xs,l‘, Z)G(Xsa Z,Q)Mf(?/) =

z€Vy

e [ e VG ST 110

Ao — A% + &2
If we sum over all x’s and y’s, we obtain for the left-hand side

(s = A NG, GO = (A = ASIG)G () f) = (FIIG(A) = GO

whereas the right-hand side becomes

2ie
q) : 2d d .
/S()/g; |>\U — A|2 +€2|‘ (37&}70’)‘ UO(M) M(U)

We thus conclude that, for any closed sub-interval J of I, disjoint from &,

%/J(f|[G(A+i5)—G(A—i5)]f)dA: %/Jd/\/so/ﬂm@(s,w,aﬂgdao(w)d,u(a)

As e — 0, Stone’s formula implies that the left-hand side approaches || Py f||?.
Moreover the measures
edA

(| Ae — A2 + 2]
converge weakly to 6(A—\,) ase — 07. So one has to put A = \,, which implies
o = *s.

Thus one gets that the right-hand side tends to [ [, | foe(w, 0) 2| doo(w)du(o),
where J is the inverse image of J by s — \,.

dle =

3.5 Correlation of scattered plane waves

In the paper [CdV3], the first author computed the point-to-point correlations
of the plane waves for a scattering problem in R? in terms of the Green’s func-
tion: for a fixed spectral parameter, plane waves are viewed as random waves
parametrised by the direction of their incoming part. The motivation comes from
passive imaging in seismology, a method developped by Michel Campillo’s seis-
mology group in Grenoble, as described for example in the papers [CdV4, CdV5].
Following a similar method, we will compute the correlation of plane waves for
our graphs viewed as random waves parametrised by points at infinity.

13



From (11), we get, for any ¢ € Cy(T,), the following formula for the kernel of
¢(A):

(2, ) &/QJQO e, @, S)eqwsw, s) doo(w)dp(s)

Taking ¢ = 1;, the characteristic function of some interval I = [a, \] C I, we
get:

[ ](x,y) —2//f " e(z,w, s)e(y,w, s) doo(w)du(s)

where f,(t) = Arcc057 (see section 2.5) . In particular f,()\s) = s.

If we consider the plane wave e(x,w, s(\)) as a random wave, we can define
the point-to-point correlation C{(z,y) of such a random wave in the usual way:

Definition 3.2 The point-to-point correlation C3°(x,y) of the random wave e(x,w, s(\))
s given by

W@@=LMwammwwmmww

Denoting as usual by G the resolvent kernel of A: [(A — A)7!(x,y) =
G(\, z,y) for ImA > 0 we prove the

Theorem 3.4 For any A € I, and any vertices x,y the point-to-point correlation
can be expressed in terms of the Green’s function as

2(¢* +2¢+1—)\?)

(q+1)\/4qg — N\?

CY(z,y) = — SG(A 410, z,y) .

Proof.—
Taking the derivative with respect to A in equation (3.5) yields:

d

=) (@) =

— apeR SR st el () doo(e

q+q ' —2cos(2s(\)logq)
g+l  \ig— N\ S
o (@ +2q+1-X) Le(x’”’s(A))e(y’”’s(A>> doo(w).

(We have set f,(A) = s(A) for simplicity.)

Thus we have

d qg+1 \VA4q — N2

(@ y) = =5 (@ +20+1— )2

X, y) -

14



Now we use the resolvent kernel of A : [\ — A)7!](z,y) := G\, z,y)

for ImA > 0 and Stone formula (8) to write

A
SG(t + 40, x, y)dt

3 |

[H[](ZL‘,y) ==

and get the result.

3.6 The T- matrix
3.6.1 Another feature of the deformed Fourier-Helgason transform
We will need in this section the following result

Theorem 3.5 For any f € Cy(T,)
FHae( 2 f)w,5) = f(w, s) (21)
Proof.—
Suppose that we can prove
FHQT)f) = FHw(f) .
then (21) follows from
FHe(2f) = FH(QT) Q) = |

So, by Plancherel formula it is enough to prove that

(f12tg) / / FHf (@, 93w, )doo(w)du(s) . (22)

We have
0

(10 g) — (flg) = flimaso / S fletAW e gy di

—00

But
(fle™hn) = / / FHef (w, 8)e™ FH o h(w, s)doo(w)du(s)

if either f or h is in H,e.
As a result

(fle™ W e tAog) = / /F?—[SCf w, 5)eMH(We 0 g) (z)e(x, w, s)doo(w)du(s) .

reVy

15



Thus o
lim5_>0 / 6t<f|6itAW6—itAo >dt

e Y [ [ FHFGIW @ 0 oo ()

zeVy

= —ilim__, Z/ /f%scf w, $)W (2)[(Ag—As+ig) ' g](x)e(x, w, s)doo(w)du(s)

zeVy

= dlim._,o Z / /.FHSCf w, )W (z)Go(As + ie)(z,y)g(y)e(x,w, s)doo(w)du(s)

z,yeVy

—iy / / FHo @, 9> Golh) (@ )W (2)e(w: 0, 9)lg()dorolw)di(s)

yeVy zeVy

—iy / / FHof (@, 9) (g, 0.5) — eoly, 2, 9)g(y)doo(w)du(s)

yeVy

—i(flg) — i / / FHF @, 9)3(w, s)doo(w)du(s)

In the second line above we used the Lippmann-Schwinger equation
and at the last step we used the isometric property of the deformed
Fourier Helgason transform (Theorem 3.3 ).

O

The Lippmann-Schwinger eigenfunctions e(z,w, s) are especially useful to de-

scribe the so-called S—matrix (S = (27)*QT). First we introduce the following
object:

Definition 3.3 Let (w, s) and («', ') be in Q x (S°\ €). Define

T(w,s;w', ") = (Wep(w, s)|e(w', s")) = Z e(x, ', "YW (x,y)eo(y,w,s) .
(x,y)EVyxVy

T(.;.) is called the T—matriz.

Theorem 3.6 For any f and g € Cy(T,)

(f1(S—T)g) = —2mi / . / T3, F, 000 =A)i0 )0 )i (5) oo o)

(See Appendiz A for the precise definition of the measure 6(As — g )dp(s)du(s") ).
This can be written symbolically by

S(w,s;0,8") =d(s — §') = 2miT (w, s;0', 8 )0(As — A) . (23)

16



Proof.—

From the definition of S we get that

-T

(F1(S=T)g) = (0 —QH) FIQ gL = limgso. / (AW )it Fltg) de

400
= (—i)lime_,o/ e AW e~ £1Qt gV dt

o

+o0
= (—i)lim._,g / e~lL(t)dt

o0

with

L(t) = /50 /Q.FHSC(G”AWe—”AOf)(w', )V FHee(QTg) (', 8")doo (W) du(s")

(24)
In the last step we used the isometric property of FHg. and the fact
that Qg € H,e. Moreover we have (Theorem 3.5)

FHe(Qg) (W, 8) = g, 8)
and

FHa( " AWe ™ ) (o) = M FHu(We 0 f) (o, )

= MY (WeTt o f) (a)e(w, o, 8)

zeVy
= Z / /ei(AS’_’\S)tW(:p,y)eo(y,w,s)f(w,s)e(x,w’,s’)dcro(w)du(s).
x,yeVy 50JQ

Thus the expression in (24) (we set d¥ = doo(w)du(s)doo(w)du(s"))
1s

L(t) = Z/ / O A=Y (3 o (y, @, 8) f (w, 8)el(x, o', ) (o, 8)dE
S0x S0 JOxQ

z,yeVy

and after doing the t-integration we get,

2e A
—_[ = (—1 1 c T oot ’
I(5=Dg)y = (=i [ | T o) e )
We conclude by noticing as previously that the measures

_ 2ed(s)dp(s)
€ ()\S _ )\8/)2 +€2

converge weakly to 2md(As — A\y) as e — 0.

17



U
A consequence of the relation between 7" and S is the unitarity relation for
T

Theorem 3.7 Suppose a ¢ E. Then for any s and s' € ST with \; = \y = «,
and for any (w,w’) €  x €,
ST (w, 530, 8") = 7T/ / T(w", 8" w,s)T(W", s"; W' 8")0(Agr — a)dp(s")doo(wW")
50 Jo
(25)
Proof.—

By Theorem 3.6 we have

~ ~

(SF)(w,s) = f(w,s)—2ri / / T(w, 500, ) F (o, )0 0h—Aw )doro (W )dpu(s)
so Ja
The adjoint of the map M : f — (§f) is clearly given by

(M (@) .5) = gl 5)+2mi || T30 5100, )50~ Asdro ).

The relation M*M = I, which follows from S*S = I, implies that
(25) holds.

t

3.7 The S-matrix and the asymptotics of the deformed
plane waves

Theorem 3.8 There exist “transmission coefficients” 7(s,w,w’) so that the so-
lution of the Lippmann-Schwinger equation (14) writes

G(ZL',(,L), 3) = 60($,w, S) + T(S,w’w/)q(_%"’is)‘x‘

for any x close enough to w' , and these coefficients are related to the scattering
matriz by the following formula

20T

C(s)

S, —s;w,s) = —

7(s,w,w") (26)

1
1 .
2" —q

with  C(s) =

7%+is ’
Proof.—

18



From the study of the Lippmann-Schwinger equation (14), we
write the decomposition

e(xuwv S) - €0<.§L’,w, 3) + escatt<x7w7 8) )

where

escatt<x7 w, 8) = Z G0<)‘S7 x, y)g(y7 w, 8)

yeK

where g(y,w,s) = >, W(y, 2)e(z, w, s).
Let us look at the asymptotic behaviour of egea (7, w, s) as x — W'
The Green’s function Go(\s; z, y) satisfies equation (4

Go(Asi2,y) = O(s)g "z e,
then (5) and (6) imply that, if z — &',
escatt<x7 w, 3) = T(S, w, w/)q(féjLis)‘x‘ ,

with

T<87 W w/) = C<S) Z g<y7 W S)q(%iié\)bw/(y) = C<S) Z 6(2, W S>W<Z7 y)€0<y7 wla 8) :

yeK (y,2)eKxK

Noticing that eq(y,w’, s) = eg(y,w’, —s) we get that
T(s,w,w') = C(s)T (W', —s;w, s) .
and from (23) we derive formula (26).

O

Remark 3.1 The functions b,(y) and by (y) are equal if w and W' belong to the
same end of T, \ K. This implies that the function w' — 7(s,w,w’) is in fact
constant in each end of T, \ K, so that the transmission coefficient T(s,w,w’) can
be written as a function 7(s,w,l). Moreover the reduced Lippmann-Schwinger
equation depends only on the restriction of ey to K, this implies that the function
w — 7(s,w, 1) is also constant in each end of T, \ K. Finally, we get an L x L
matrix depending on s, denoted by
- 2im

S(s) = (S, =s,1,8)),p = D) (T(s,,1))0

19



3.8 Computation of the transmission coefficients in terms
of the Dirichlet-to Neumann operator

In this section, we compute the transmission coefficients following the method of
[S].

We denote the distance between z and the root O of T, by |z|, and by B,
the ball of radius n — 1 where n — 2 is the supremum of |z| for z in K. We
denote by T the ends of T, \ B,—; (1 <1 < L), by z; the root of 7} and by €,
the boundary of 7T;, which consists in the set of all geodesic rays starting from x;
and staying into 7;. The set of the roots {x;|l = 1,---, L} is the circle of radius
n and L = (¢+ 1)¢""'. From now on, we consider a fixed [ (1 <1< L), a fixed

geodesic ray w in ), and the associated "incoming plane wave”
Ve eV, e(r,w,s)= (1125 @)

where s € SY. Such a plane wave is a generalised eigenfunction for the adjacency
operator Ay on T, in the sense that it satisfies

(As — Ao)eo(x,w, 8) =0 (As = 2y/gcos(slogq)) ,
but is not in 1. We are looking for solutions
e(,,w,s) =eo(.,w,s)+ escar(.,w,s), x €V,

of the equation
(As — Ae(.,w,s) =0, (27)

where the scattered wave €. (., w, s) satisfies:
Cscat (T, W, 8) = T(s,w, NPs(x) if e V(Ty), (28)

where
(IDS (l‘) _ q(—1/2+is)\x\

(the so-called radiation condition) and the coefficients 7(s,w, ') are the transmis-
sion coefficients. These radial waves are generalised eigenfunctions of Ay in the
sense defined previously. We want to get an explicit expression of the transmission

vector

7(s, w; = (1(s,w, 1), ,7(s,w, '), ,7(s,w, L)). (29)
As we shall see, the transmission vector does not depend on the choice of the
geodesic ray w, it is uniquely determined by the choice of [; we define

(s, 1) :=1(s,w), VYweQ . (30)
We thus recover the result of the previous section, with the following relation

C(s)

20

VLU 7(s,1,1) = — S, —s,1,s) .
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We begin with noticing that b, (z;) does not depend of w € ; for any " €
{1,---,L}. We set

9

Z = (O{_bw($1)’ - a_bw(xL)) _ (a—bl(m)’ - ’a—bz(xL)) (Oz _ q—1/2+is)’
and denote by E; the vector in RY having all null coordinates excepted the I-th
coordinate, which is equal to 1.

We have the following

Theorem 3.9 Consider the integer n so that B,,_s is the smallest ball containing
the finite graph K. .

Set I' = B, o' = {xy,1 <" < L}, denote by A, the restriction of A to
B,, in the sense that :1,\1 = (Asy)@y)eBn, define I, in the same way, set B =

o~

A, — M\, and denote by DN, the corresponding Dirichlet-to Neumann operator
(see Definition 4.3, Appendiz B).
Then DN, and the transmission vector T(S,l; defined by (28),(29) and (30)

exist for any R
sgE={se8” N\ co(A, 1)}

and

(r(s,1,1) = —a™" {% (DN + q1/2+i51)*1 . A} ’

with Ay = (Apy)@wyyen, - A= (Ar) = (al@e0)), o = g 1/2s
Proof.-

Let us recall that we have fixed [ (1 < < L) and a geodesic ray w
in ;. From now on we write e(x) instead of e(z,w, s) for any x € V
for simplicity.

Equation (27) splits into 3 expressions, depending on where z is
taken.

e If x ¢ B, the equation is already verified, since A coincide with
Ap on each end Tj.

e if x € B,_1, the equation becomes the Dirichlet problem Ae(z) =
Ase(r), x € By_1, epr = f, and is uniquely solvable for any s
outside &, the prescribed values of the function f at the boundary
being given by the L-vector

—

e =: (e(xy), -+ ,e(zr))

to be determined in the sequel.
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e if z € B, \ B,_1 (which means that z is one of the roots x; )
equation (27) writes:

Ve {l,-- L}, elzp)+ Y. e(x) = Ae(w)

xr~xy ey
where z;, is the unique interior neighbor of x;, and where we
used that the potential W vanishes outside B,,_s.
According to definition 4.3, the corresponding Dirichlet-to Neumann
operator DN writes
DN(é)(xy) = e(xy) — Ase(xy) VI €{1,---,L},

Therefore, if s ¢ £, Equation (3.8) can be rewritten as,

VI'e{l,--- L}, DNJ(é)(x)+ Y  el@)=0 (31)

Tvx ) ,:BETZ/

Now it remains to compute wal, ver, €(). We have, for z € Ty,
e(z) = ¢(1/279b(@) 4 7(s w, 1)@, (x). According to the expression of

the radial function @, we get, for any s ¢ £ and I' € {1,---, L}, that
O, (zy) = q(—1/2+is)|xl/\ _ qn(—1/2+z‘s)

@S(l’) = q(—1/2+is)(n+1) Vr € 7}/ €T ~ Zyp.

Let us write the set Ny = {x € T}, = ~x;} as N, ={y,}U N, where
y; belongs to the infinite path w whereas the ¢ — 1 vertices of N; do
not. Then, using the properties of the Busemann function we have

bo(z) = bi(z) = lul=n
bw(yl) = n+1
bo(z) = b(z)—1=n—-1, VzeN,
bw(ZL‘) = bl(l‘l/) —1 Vz e Ny, U 7é [.
So we get for any I’ € {1,---, L} and after setting a = ¢~ /2%,
e(zy) = o 0@ 4 1(s,w, 1"
e(r) = o b@*e 415w, 1"
with

e = 1 VxeNl,
, YaxeNy l/§£l
e = —1 if x=y.

e = 1
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Hence we have

Z e(x) = qa @ L gr (s w o™ if A1

x~x,r€TY

S el@) = (g— a4 aThE Ty (s w0, Uam

:BN{L'l,!L'GTl

These equations can be summarised, for any I’ € {1,--- | L}, as

Z e(x) = a @I g 4 (a2 = 1] + qr(s,w, a"

x~x, vy
so that equation (31) gives, for any I’ € {1,---, L}
DN (&) (xp)+a @ g6 (a2 =1)]+q7(s,w, o™t = 0. (32)

Let us set DN(é1) = (DNs(é1)(x1), -+ , DNg(€&)(xr)),

and write € = (e(zy), -+, e(zy)) = A, + a"T(s,w; (recall that

A and 7(s,w) are L—vectors having respectively o=@ and 7(s, w, ')
as their I'—coordinate).

Substituting in (32) and denoting by E the vector in RY having
all null coordinates except z; = 1, we get

DNS[A} + a"7 (s, wi] + qOé/Tl + Of"(ofl — a)El +q7(s,w "t =0
which yields
a" (DN s + qal) T(s,w; = a "(a—a DE, — (qgol + DN,) 4, .

Using the expression of @ and C(s), we have then

o (DNS n q1/2+isl) T(s,wi _ _g(:) B - (q1/2+isl n DNS) A

Since the matrix DN is real symmetric, DN +¢"/*7* is an invert-
ible matrix for any s € S° so that A\ ¢ 0(A,_1), and

—2n
T(S, ) = —g(s) (DNS + q1/2+“[)71 El — Oéin/i)l .

We conclude the proof by noticing that, for any " € {1,--- L},
b(xp) =n —d(x;, xp).
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3.9 Density of states

Theorem 3.10 When the vertex x tends to infinity, the densities of states dus
of I' converge weakly to the density of states de of T, computed in Section 2.4.

Proof.—

It is enough to compute the limits of [ Ndp? for n fixed and x — oo.
By definition, we have [ t"du2 = [A"](z,z), and

[A"](z, z) = Z Oz Ay, " Qa2

where the sum is on loops v = (x, 1,29, -+ ,2,_1,2) of length n
based at z. If we assume that d(z, K') > n/2, the loops do not meet
K and therefore [A"|(z, z) = [Aj](x, x).

t

4 The spectral theory for a graph asymptotic to
an homogeneous tree

We are concerned here with the spectral theory of the adjacency matrix of a graph
I' asymptotic to a homogeneous tree of degree ¢ + 1, in the sense of Definition
1.1. We want to reduce the spectral theory of Ar to the situation studied in
Section 3. For that, we need a preliminary combinatorial study which could be
of independent interest.

4.1 Some combinatorics
We need the following combinatorial result:

Theorem 4.1 If I' is asymptotic to a homogeneous tree of degree g+ 1, then I’
1s isomorphic to a connected component of a graph I which can be obtained from
T, by adding and removing a finite number of edges.

In order to prove Theorem 4.1, we first introduce an integer v(I") associated
to the graph I'; the integer v is a combinatorial analogue of the regularised total
curvature of a Riemannian surface S which is of constant curvature = K, near
infinity, namely [ (K — Ko)|dol|.

Definition 4.1 If I' is asymptotic to a homogeneous tree of degree q + 1, we
define v(I') by
AT = 3 (a1~ d(x)) + 20,

zeVr

where d(x) is the degree of the vertex x and by is the first Betti number of T' or
equivalently the number of edges to be removed from I' in order to get a tree.
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Note that, if 7" is a maximal sub-tree of I, v(T') = v(T").
We will need the

Lemma 4.1 If, forr > 2, B, ={x € V¢ | |z|p, < 1}, then we have

where m 1s the number of inner vertices of B, and M the number of boundary
vertices (i.e. connected to a vertex of I' \ B,.) of B,.

Proof.—

The M boundary vertices have ¢ neighbours in I' \ B, and one in B,..
From Euler formula applied to I' N B,., we get

1—61=(m+M)—% S dw)+ M

|z|p,<r—1

Thus
v = > (q+1—d(x))+2b

|1'|1"0ST‘71

is equal to
v(l)=(¢g+1)m — (2m+ M — 24 2by) + 2b; .

O
We will also need the:

Lemma 4.2 Let F' be a finite tree whose all vertices are of degree q + 1 except
the ends which are of degree 1. Let M be the number of ends and m the number
of inner vertices of F'. We have the relation

M=2+(q—1)m . (33)

Conversely, for each choice of (m, M) satisfying Equation (33), there exists
such a tree F'.

Proof.—

From Euler formula applied to F', we get 1 = |Vg| — |Er|. Moreover
|Vp| = m + M. Let us choose a root inside F' and orient the edges
from that root. Then we count the edges by partitioning them with
their m possible origins; this gives |Er| = (¢ + 1) + (m — 1)q.

Conversely, the statement is true for m =1, M = g+ 1 and we
proceed by induction on m by adding ¢ edges to a boundary vertex
and the corresponding ¢ boundary vertices, we have m — m—+1, M —
M+ (qg—1).
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O
~We will now make some modifications of I' in order to get a new graph [ with

v(I') = 0.

Lemma 4.3 [f 1" = M(T") is defined by adding to T a vertex and an edge con-
necting that vertex to a vertex of Iy, then v(I'") = v(T') + ¢ — 1.

If 17 = Ms(T') is defined by adding to I' a tree whose root x is of degree q and
all other vertices of degree g + 1 and connecting x by an edge to a vertex of I'y,
[ is asymptotic to an homogeneous tree of degree ¢+ 1 and v(I") = v(I") — 1.

This Lemma is quite easy to check.

The proof of Theorem 4.1: let us now write v(I') = N” — (¢ — 1)N’ with
N" > 0 and N” > 0. By performing N’ times the move M; and N” times the
move M,, we arrive to a graph IV with V(f’) = 0. Let I be the graph obtained
by removing from I” the (N + N") edges not in Er, one of whose vertices is in
['g. Then I' is a connected component of I.

We apply Lemma 4.2 and change I inside B, by gluing to the boundary
vertices a tree F'. We get this way a tree T, which, by Lemma 4.2 has the same
number of vertices inside B, than I”, so that one can recover [” by removing and
adding a finite number of edges to T,. Removing more edges, we get [ and T is
a connected component of T'.

In particular I' is isomorphic to a graph obtained from T, by removing or
adding a finite number of edges if and only if v(I") = 0.

4.2 The spectral theory of I'

From Theorem 4.1, we deduce the existence of a Hilbert space H so that [2(I') =
(') &M and this decomposition is invariant by Ap. Moreover Ay is a finite rank
perturbation of Ay = Ay, . This will allow us to describe the spectral theory of
Ar by using the results of Section 3.

In order to get the spectral decomposition of Ar in terms of the spectral
decomposition of Ay given in Section 3.4, we will need the

Lemma 4.4 Let Ay = A, + W with Support(W) C K x K and K finite. Let T’
be an unbounded connected component off and w a point at infinity of I'. Then,
for any s ¢ &, we have
support(e(.,s,w)) C Vr .
Conversely, if W' is a point at infinity of T which is not a point at infinity of
I' then
support(e(., s,w’)) N Vr =10 .
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Let us prove the first assertion, the proof of the second is similar. It is enough to
prove it for s € ST close to Sy, because s — e(x, s,w) is meromorphic on S. We
have then

e(s,w) = ep(s,w) + Go(As)We(s,w) .

From the explicit expression of ey, we get that the first term belongs to I2(I'\ "),
and so does the second one, as the image of a compactly supported function by
the Green’s function for \; ¢ I, = spectrum(A). This proves that the restriction
of e(.,s,w) to Vz \ Vi is an [? eigenfunction, with eigenvalue g, of Az, Since Ap
has no eigenvalue A, for s € ST close to Sp, it follows that e(z, s,w) vanishes for
s € ST close to Sy and x ¢ Vr.

Theorem 4.1 allows to consider the set €2 of points at infinity of I" as a subset
of the set  of the points at infinity of . The space l2(f) splits as a direct sum
2(T') @ (%(I'\ T") which is preserved by the adjacency matrix. Lemma 4.4 shows
that the support of the generalised eigenfunctions e(., s,w) for w € Q is included
in V. Using this, we can state the spectral decomposition of Ar as an immediate
corollary of Theorem 3.3:

Theorem 4.2 The Hilbert space [*(T') splits into a finite dimensional part Hypy
and an absolutely continuous part Ha.. This decomposition is preserved by Ar. If
f e Co(D) and, for w e Q, f(s,w) = (e(.,s,w), f), then the map f — f extends
to an isometry from Hae onto L2 (Sox Q, dog@du) which intertwines the action

even

of A, with the multiplication by ;.

Appendix A: delta measures

The goal of this Appendix is to define in a precise way the meaning of the measures
dpu = 6(S = 0)dv where dv = a(x)dx is absolutely continuous w.r. to the
Lebesgue measure in R? and S is a C! real valued function so that dS does not
vanish on the hypersurface S = 0. The measure dyu = §(S = 0)dv is supported
by the hypersurface ¥ := {S = 0}.

We can assume that R? and the hypersurface S = 0 are oriented, so that we
can play with differential forms instead of measures.

The proof of the following Lemma is left to the reader:

Lemma 4.5 There exists a differential form [ defined in some neighborhood of
3 so that adxy N\---Ndxyg = dSN\B. Moreover the restriction of 5 to 3 is uniquely
defined.

Definition 4.2 If v is the measure on X associated to the restriction of 5 to 3.
we can view v as a measure on R denoted dv = 6(S = 0)du.

We can view dv as weak limits: if f : R — R is a positive L' function of
integral 1 and f.(t) = 7' f(e7t) the measure §(S = 0)du is the weak limit as
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e — 0 of the measures dv. = f.(t)du (For the proof, take local coordinates so
that S = x7).

Usual choices are f; the characteristic function of the interval [—1,1] and
f(t) = 10z

Appendix B: the Dirichlet-to Neumann operator
DN on a finite graph
Let I' = (V, E)) be a connected finite graph and let OI' be a subset of V' called the

"boundary of I'”. Let B = (b;;) : RV — RY be a symmetric matrix associated
to I', namely

biy=0 ifi#£j and {i,j} ¢ E.
After setting Vo = V' \ 9T, we define By : RY — RY as the restriction of B to

the functions which vanish on oI .
We have the following

Lemma 4.6 Assume that By is invertible. Then, for any given f € C(01'), there
exists a unique solution F' € C(I') of the Dirichlet problem

(Dy) : For=fand BF(l)=01if [ € Vo, For = [ .

The Dirichlet-to Neumann operator DN associated to B is the linear operator
from C(0T") to C(OI") defined as follows:

Definition 4.3 Assume that By is invertible. Let f € C(II'), and F be the
unique solution of the Dirichlet problem (Dy). Then, the Dirichlet-to-Neumann
operator form DN : R?" — R s defined as follows: if | € OT,

DN(f)(l) = sz,iF(i)(z BE(l)) .
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