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DECORATED HYPERTREES

BÉRÉNICE OGER

Abstract. C. Jensen, J. McCammond and J. Meier have used weighted hy-
pertrees to compute the Euler characteristic of a subgroup of the automorphism
group of a free product. Weighted hypertrees also appear in the study of the
homology of the hypertree poset. We link them to decorated hypertrees after
a general study on decorated hypertrees, which we enumerate using box trees.

Keywords: Enumerative combinatorics; Species; Hypertrees; Symmetric group
action.
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Introduction

Hypergraphs are generalizations of graphs introduced by C. Berge in his book
[Ber89] during the 1980’s. Like graphs, they are defined by their vertices and edges,
but the edges can contain more than two vertices. Hypertrees are hypergraphs in
which there is one and only one walk between every pair of vertices. For a finite set
I, we can endow the set of hypertrees on the vertex set I with a structure of poset:
given two hypertrees H and K, H � K if each edge in K is a subset of some edge in
H . Recently, the hypertree poset has been used by C. Jensen, J. McCammond and
J. Meier in their articles [MM04], [JMM07] and [JMM06] for the study of a subgroup
of the automorphism group of the free groups. The characteristic polynomial of the
poset has been computed by F. Chapoton in the article [Cha07] and we have studied,
in the article [Oge], the character of the action of the symmetric group on the
homology and the Whitney homology of the hypertree poset. In another direction,
K. Ebrahimi-Fard and D. Manchon explained in their article [EFM] how hypertrees
are organized in a combinatorial Hopf algebra which generalize the Connes-Kreimer
Hopf algebra of trees.

In this article, we consider hypertrees endowed with additional structures on
edges, around vertices or with both. A typical example would be hypertrees with a
cyclic order on the elements of every edge, and with a total order on the set of edges
containing a given vertex, for every vertex. When the additional structure is on
edges, the hypertrees are called decorated hypertrees. When both kinds of additional
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structures are present, the hypertrees are called bi-decorated hypertrees. Decorated
hypertrees appear in the article [JMM07] of C. Jensen, J. McCammond and J. Meier
for the computation of the Euler characteristic of a subgroup of the automorphism
group of a free product. In his article [Cha07], F. Chapoton has introduced a kind of
bi-decorated hypertrees to compute the characteristic polynomial of the hypertree
poset. Moreover, in the article [Oge], the character of the action of the symmetric
group on the Whitney homology of the hypertree poset is related to another kind of
bi-decorated hypertrees. Motivated by these examples, this present article aims at
studying decorated hypertrees in general and showing that several known objects,
such as the ones appearing in articles [JMM07], [Oge], [Cha07] are indeed decorated
hypertrees.

For the general study of decorated hypertrees, we use the notion of combinatorial
species and a trick often used for the study of trees: we root the hypertrees. Indeed,
rooted trees and hypertrees are often easier to study than unrooted ones. Therefore,
we define rooted hypertrees, edge-pointed hypertrees and rooted edge-pointed hyper-
trees, which are hypertrees with respectively a distinguished vertex, a distinguished
edge and a distinguished vertex inside a distinguished edge. We also define hollow
hypertrees, which are hypertrees with one vertex labelled by # in one and only
one edge. As decorated hypertrees and rooted and pointed variants of them are
linked by the dissymetry principle 1.27, we study rooted and pointed decorated hy-
pertrees to obtain results for decorated hypertrees. We get other relations between
decorated hypertrees and rooted and pointed variants of them in Proposition 1.29.
These relations are used to study the action of the symmetric group for some par-
ticular cases in §3. They are generalized for bi-decorated hypertrees in Proposition
4.6.

One of our main enumerative results is Theorem 2.8, which describes generating
series of decorated hypertrees and all their pointed and rooted variants:

Theorem. Given a species S, the generating series of the species of edge-decorated
rooted hypertrees, edge-decorated hollow hypertrees and edge-decorated hypertrees
have the following expressions:
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where ES (k, n) is the number of sets of k sets on n vertices with a S ′-structure on
each of them and S ′ is the differential of the species S.

The generating series of the species of rooted edge-decorated edge-pointed hyper-
trees and the species of edge-decorated edge-pointed hypertrees are related to the
species of rooted edge-decorated hypertrees and the species of hollow edge-decorated
hypertrees by the following relations:

Sre
S (x) = tSr

S (x)× Sh
S (x) ,

Se
S (x) = SS (x) + Sre

S (x) − Sr
S (x) .

These formulas give the cardinality of all types of decorated hypertrees in terms of
decorated sets.
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To prove this theorem, we introduce the notion of box trees. A box tree is a
graph whose vertices are sets of elements and whose edges are oriented from an
element of a vertex to an other vertex. Moreover, the graph obtained by collapsing
all the elements of a vertex to a single point has to be a rooted oriented tree.

Our next aim is to prove that decorated hypertrees and bi-decorated hypertrees,
for some specific choices of decorations, can be linked to known objects of various
origins. For decorated hypertrees, two cases are studied in §3. The first one is
the weighted hypertrees introduced in [JMM07], which corresponds to hypertrees

with edges decorated by the linear species P̂reLie. The rooted variants of these
hypertrees are hypertrees where every edge e contains a single vertex and a rooted
tree whose vertices are the other vertices of e. These hypertrees are in bijection
with 2-coloured rooted trees, which are rooted trees whose edges are either blue or
red. This bijection gives the character for the action of the symmetric group on the
hollow variant of these decorated hypertrees. The relations between species found

in §1 then allow to find the character for the other P̂reLie-decorated hypertrees.
The second type of decorated hypertrees studied in §3 are hypertrees with edges

decorated by the linear species L̂ie. We link them with the operad Λ which was
introduced in the article of F. Chapoton [Cha02].

For bi-decorated hypertrees, we link two types of them with the hypertree poset.
The first case is hypertrees with their edges decorated by the set species Comm and
the neighbourhood of their vertices decorated by the cycle species. These hypertrees
are called cyclic hypertrees and presented as hypertrees with a cyclic ordering of
edges around every vertex in the article [Cha07]. The second case is hypertrees
with their edges decorated by the set species Comm and the neighbourhood of
their vertices decorated by the species ΣLie. We show that the character of the
action of the symmetric group on the Whitney homology of the hypertree poset is
the same as the character of the action of the symmetric group on these hypertrees.

Let us now precisely describe the contents of the different sections. In §1, we
recall the definition of hypergraphs and hypertrees and we define the species of
edge-decorated hypertrees and its rooted and pointed variants before giving re-
lations between them. In §2, we enumerate edge-decorated hypertrees using box

trees. After this general study, we examine the case of P̂reLie-decorated hypertrees

and L̂ie-decorated hypertrees by computing their cycle index series in §3. In the
last section §4, we generalize edge-decorated hypertrees by also decorating neigh-
bourhoods of vertices and link bi-decorated hypertrees with cyclic hypertrees and
the hypertree poset.

We use the notation |E| for the cardinality of a finite set E. We will use the
language of species, defined in the book of F. Bergeron, G. Labelle and P. Leroux
[BLL98] and recalled in 1.9. The exponents r, e and re mean respectively rooted,
edge-pointed and edge-pointed rooted.

We particularly thank V. Dotsenko for his useful proof of the Koszulness of the
operad Λ.

1. Description and relations of the edge-decorated hypertrees

In this section, we introduce a type of weighted hypertrees, named edge-decorated
hypertrees, and give functional equations satisfied by them.

1.1. From hypergraphs to rooted and pointed hypertrees. We first recall
the definition of hypergraphs and hypertrees.
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Figure 1.1. A hypergraph on {1, 2, 3, 4, 5, 6, 7}.
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Figure 1.2. A hypertree on {1, 2, 3, 4}.

Definition 1.1. A hypergraph (on a set V ) is an ordered pair (V,E) where V is
a finite set and E is a collection of parts of V of cardinality at least two. The
elements of V are called vertices and those of E are called edges.

An example of hypergraph is presented in figure 1.1.

Definition 1.2. Let H = (V,E) be a hypergraph, v and w two vertices of H . A
walk from v to w in H is an alternating sequence of vertices and edges

(v = v1, e1, v2, . . . , en, vn+1 = w)

where

• for all i in {1, . . . , n+ 1}, vi ∈ V , ei ∈ E
• and for all i in {1, . . . , n}, {vi, vi+1} ⊆ ei.

Example 1.3. In figure 1.1, there are several walks from 4 to 2 as, for instance:
(4, A, 7, B, 6, C, 2) and (4, A, 7, B, 6, C, 1, D, 2).

In this article, we are interested in a special type of hypergraphs: hypertrees.

Definition 1.4. A hypertree is a non-empty hypergraph H such that, given any
vertices v and w in H ,

• there exists a walk from v to w in H with distinct edges ei, i.e. H is
connected,

• and this walk is unique, i.e. H has no cycle.

The pair H = (V,E) is called hypertree on V . If V is the set {1, . . . , n}, then H
is called a hypertree on n vertices.

Let us remark that we can consider hypertrees as bipartite trees, where one type
of vertex is labelled by elements of V , the other type is not labelled and every
vertex of this type stands for an edge of the hypertree. An example of hypertree is
presented in figure 1.2.

We now recall rooted and pointed variants of hypertrees.

Definition 1.5. A rooted hypertree is a hypertree H together with a vertex s of
H . The hypertree H is said to be rooted at s and s is called the root of H .

An example of rooted hypertrees is presented in figure 1.3.

Definition 1.6. An edge-pointed hypertree is a hypertree H together with an edge
e of H . The hypertree H is said to be pointed at e.

An example of edge-pointed hypertree is presented in figure 1.4.
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Figure 1.3. A hypertree on nine vertices, rooted at 1.
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Figure 1.4. A hypertree on seven vertices, pointed at the edge {1, 2, 3, 4}.
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Figure 1.5. A hypertree on seven vertices, pointed at edge
{1, 2, 3, 4} and rooted at 3.
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Figure 1.6. A hollow hypertree on eight vertices. The hollow
edge is the edge {1, 2, 3, 4}.

Definition 1.7. An edge-pointed rooted hypertree is a hypertree H on at least two
vertices, together with an edge a of H and a vertex v of a. The hypertree H is said
to be pointed at a and rooted at s.

An example of edge-pointed rooted hypertree is presented in figure 1.5.

Definition 1.8. A hollow hypertree with vertex set I is a hypertree on the set
{#}∪I, such that the vertex labelled by #, called the gap, belongs to one and only
one edge.

An example of hollow hypertree is presented in figure 1.6.

1.2. Definitions of decorated hypertrees. From a hypertree, we can define
what we call an edge-decorated hypertree. This definition uses the following notion
of species :

Definition 1.9. A species F is a functor from the category of finite sets and
bijections to the category of finite sets. To a finite set I, the species F associates a
finite set F (I) independent from the nature of I.

Example 1.10. • The map which associates to a finite set I the set of total
orders on I is a species, called the linear order species and denoted by
Assoc.
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• The map which associates to a finite set I the set {I} is a species, called
the set species and denoted by E .

• The map which associates to a finite set I the set of cyclic orders on I is a
species, called the cycle species and denoted by Cycle.

• The map which associates to a finite set I the set of hypertrees on I is a
species, called the hypertrees species and denoted by H.

• The map which associates to a finite set I the set I is a species, called the
the pointed set species and denoted by Perm.

• The map defined for every finite set I by:

I 7→

{
{I} if |I| ≥ 1,
∅ otherwise,

is a species denoted by Comm.
• The map defined for every finite set I by:

I 7→

{
{I} if |I| = 1,
∅ otherwise,

is a species, called the singleton species and denoted by X .

The map which associates to a finite set I the set of rooted (resp. edge-pointed,
edge-pointed rooted, hollow) hypertrees on I is a species, called the rooted (resp.
edge-pointed, edge-pointed rooted, hollow) hypertrees species and denoted by Hr

(resp. He, Hre, Hh).

Definition 1.11 ([BLL98]). Let F and G be two species. An isomorphism of F
to G is a family of bijections αU : F (U) 7→ G (U), where U is a finite set, such that
for any finite set V , any bijection σ : U 7→ V and any F -structure s ∈ F (u), the
following equality holds:

σ � αU (s) = αV (σ � s)

where the � stands for the action of the symmetric group on the structure.
The two species F and G are then said to be isomorphic.

Having defined species, we can now give the definition of an edge-decorated hy-
pertree.

Definition 1.12. Given a species S, an edge-decorated (edge-pointed) hypertree is
obtained from an (edge-pointed) hypertree H by choosing for every edge e of H an
element of S (Ve), where Ve is the set of vertices in the edge e.

Given a species S, the map which associates to a finite set I the set of edge-
decorated hypertrees on I is a species, called the S-edge-decorated hypertrees
species and denoted by HS . The map which associates to a finite set I the set
of edge-decorated edge-pointed hypertrees on I is a species, called the S-edge-
decorated edge-pointed hypertrees species and denoted by He

S . When the species
used is obvious, we will omit to write it.

Example 1.13. We consider two different decorations of the same hypertree H .
An edge-decorated hypertree obtained from H by decorating its edges with the

cycle species Cycle is drawn in the left part of figure 1.7.
An edge-decorated hypertree obtained from H by decorating its edges with the

pointed set species Perm is drawn in the right part of figure 1.7. The vertex of
each edge with a star ∗ next to it is the pointed vertex of the edge: for instance,
the pointed vertex of {9, 11} is 9, the pointed vertex of {9, 10} is 10, the pointed
vertex of {8, 9} is 9 and the pointed vertex of {12, 13, 1, 8} is 12.

In figure 1.8, we now decorate the edge-pointed hypertree of figure 1.4 with the
species of trees, which associates to a finite set I the set of trees with vertex set
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Figure 1.7. Edge-decorated hypertrees.
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Figure 1.8. Edge-pointed decorated hypertree.

I. The edges are represented by rectangles on the scheme, with the pointed edge
represented by the double rectangle.

We now give definitions for rooted or hollow variants of edge-decorated hyper-
trees.

To define edge-decorated rooted hypertrees, we will need the following operation
on species:

Definition 1.14. Let F be a species. The differential of F is the species defined
as follow:

F ′ (I) = F (I ⊔ {•}) .

Example 1.15. Considering the examples of species given in Example 1.10, their
differentials are the following:

• The differential of the cycle species Cycle is the linear order species Assoc.
• The differential of the set species E is E .
• The differential of the pointed set species Perm is the species Perm′ such

that, for all finite set I, the set Perm′ (I) is equal to the set E (I)∪Perm(I).

We can now define the decoration for edges of rooted variants of hypertrees.
There is a definition of edge-decorated rooted, edge-decorated edge-pointed rooted
or edge-decorated hollow hypertrees analogous to the one of edge-decorated hyper-
trees and edge-decorated edge-pointed hypertrees:

Definition 1.16. Given a species S, an edge-decorated (edge-pointed) rooted hy-
pertree (resp. edge-decorated hollow hypertree) is obtained from an (edge-pointed)
rooted (resp. hollow) hypertree H by choosing for every edge e of H an element of
S (Ve), where Ve is the set of vertices in the edge e.

In rooted or hollow hypertrees, there is one distinguished vertex in every edge.
Therefore, using the definition of the differential of a species, we obtain the following
equivalent definition:

Definition 1.17. Let us consider a rooted (resp. edge-pointed rooted, resp. hol-
low) hypertree H . Given an edge e of H , there is one vertex of e which is the
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Figure 1.9. Rooted hypertrees decorated by the cycle species.
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Figure 1.10. Rooted hypertrees decorated by the species of lists.

nearest from the root (resp. the gap) of H in e: let us call it the petiole of e.
Then, an edge-decorated rooted hypertree (resp. edge-decorated rooted edge-pointed
hypertree, resp. edge-decorated hollow hypertree) is obtained from the hypertree H
by choosing for every edge e of H an element in the set S ′

(
V l
e

)
, where the set V l

e

is the set of vertices of e different from the petiole.

The map which associates to a finite set I the set of edge-decorated rooted
hypertrees on I is a species, called the S-edge-decorated rooted hypertrees species
and denoted by Hr

S .
The map which associates to a finite set I the set of edge-decorated edge-pointed

rooted hypertrees on I is a species, called the S-edge-decorated edge-pointed rooted
hypertrees species and denoted by Hre

S .
The map which associates to a finite set I the set of edge-decorated hollow

hypertrees on I is a species, called the S-edge-decorated hollow hypertrees species
and denoted by Hh

S .

Example 1.18. We give an example of an edge-decorated rooted hypertree. The
left-side part of figure 1.9 is the one obtained when edges are decorated by the
cycles species. The right-side part of figure 1.9 is the same rooted hypertree in
which the set of elements of an edge different from the petiole forms a list. The two
pictures are two representations of the same hypertree.

We now decorate the edges of an edge-pointed rooted hypertree with the species
of lists, represented on the left-side of figure 1.10. The small numbers inside the
edges near every vertex is the number of the vertex in the list. The derivative of
the species of lists is the species of the unions of two lists. Hence this decorated
hypertree is equivalent to the right-side hypertree of the figure where, for all edges,
the set of vertices different from the petiole is separated into two lists. We draw a
dashed line for the separation in an edge between the two lists. In the edge {2, 7},
the second list is empty.

In figure 1.11, we give an example of an edge-decorated hollow hypertree deco-
rated by the species of non-empty pointed sets Perm. As previously, the left part
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Figure 1.11. Rooted hypertrees decorated by the species of
pointed sets.

of the example is obtained with the first definition of edge-decorated hollow hyper-
trees. We draw a star ∗ next to the pointed vertex. The right part is obtained with
the second definition.

We now generalize these definitions to linear species.

1.3. Generalization to linear species and first relations with other trees.

Definition 1.17 motivates the introduction of rooted or hollow hypertrees with edges
decorated by species which are not the differential of a species but of a linear species.

Definition 1.19. A linear species F is a functor from the category of finite sets
and bijections to the category of vector spaces. To a finite set I, the species F
associates a vector space F (I) independent from the nature of I.

We define the differential of linear species:

Definition 1.20. Let F be a linear species. The differential of F is the species
defined as follow:

F ′ (I) = F (I ⊔ {•}) .

We can define the same operations as for species on linear species.
We can now generalize the decoration of edges of hypertrees:

Definition 1.21. Given a linear species S, an edge-decorated (edge-pointed) hyper-
tree is obtained from an (edge-pointed) hypertree H by choosing for every edge e
of H an element of S (Ve), where Ve is the set of vertices in the edge e.

This decoration is multi-linear.

We define similarly edge-decorated (edge-pointed) rooted hypertrees and edge-
decorated hollow hypertrees.

Let us consider a species S. When there exists a species or a linear species F
such that F ′ = S, we denote it by Ŝ.

For every cyclic or anticyclic operad C, there always exists a linear species Ĉ.

This proves the existence of the linear species P̂reLie, L̂ie, P̂erm and Âssoc. This
case of operads is examined in the article of F. Chapoton [Cha05] and in the article
of E. Getzler and M. Kapranov [GK95].

We will now say species for species or linear species.
The notion of edge-decorated hollow hypertrees can be related with different

objects according to the decoration. For instance, if we consider the linear species

P̂erm whose derivative is the species Perm, the associated edge-decorated hollow
hypertrees will be related with what is called fat trees.

In figure 1.12, we first give an example of P̂erm-edge-decorated hollow hypertree,
where Perm is the species of non-empty pointed sets. The pointed vertex of each
edge is marked by a star ∗ next to it. The petiole of the edge {2, 6, 7} is 2. Remark
that vertices 8, 9, 4 and 5 are necessarily pointed because they are alone with the
petiole in their edge.

Definition 1.22 ( [Zas02]). A fat tree on a set V is a partition of V , whose parts
are called vertices, together with edges linking elements of different vertices, such
that:
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Figure 1.12. A P̂erm-edge-decorated hollow hypertree.
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Figure 1.13. A rooted fat tree.

• a walk on the fat tree is an alternating sequence (a1, b1, c1, a2, . . . , cn), where
for every i, ai and ci are elements of different vertices and bi is an edge
between ai and ci, and for every i between 1 and n − 1, ci and ai+1 are
elements of the same vertex;

• For every pair of elements of different vertices (a, c), there exists one and
only one walk from a to c.

A rooted fat tree is a fat tree with a distinguished element called the root.

In figure 1.13, an example of a rooted fat tree is presented. The root is circled.

Proposition 1.23. The species of P̂erm-edge-decorated hollow hypertrees is iso-
morphic to the species of rooted fat trees.

Proof. First, remark that P̂erm-edge-decorated hollow hypertrees are hollow hyper-
trees where in every edge, the set of vertices different from the petiole is a pointed
set.

Let us consider a rooted fat tree FT on a finite set V . We call petiole of an edge
e the closest vertex of e from the root and end the other vertex.

Let us consider a vertex v of the rooted fat tree. We form an edge of a hypergraph
by considering the set of elements of V in the vertex v and the petiole of the edge
linking this vertex to the root, if the root is not in the considered edge. Let us call
E the set of such edges. The hypergraph H = (E, V ) thus obtained is a hypertree
because every path in H was in FT . If we put a gap in the edge of E containing
the root of FT , we obtain a hollow hypertree. Moreover, the end of every edge in
FT gives a pointed element in the set of vertices of an edge of H different from the
petiole. This structure is the same as the one obtained by decorating edges with

P̂erm.
Conversely, let us now take a P̂erm-edge-decorated hollow hypertree H . We

consider a structure whose vertices are the edges of H without their petiole and
without the gap, with the pointed elements of every edge of H linking to their
petiole by an edge in the new structure: this is a fat tree FT . By distinguishing the
vertex of FT obtained from the hollow edge of H , we obtain a rooted fat tree. �

Example 1.24. The two previous figures 1.12 and 1.13 are related by the bijection
of the proof.

1.4. Relations.
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1.4.1. Dissymetry principle. The reader may consult the book [BLL98, Chapter
2.3] for a deeper explanation on the dissymmetry principle. In a general way, a
dissymmetry principle is the use of a natural center to obtain the expression of a
non pointed species in terms of pointed species. An example of this principle is the
use of the center of a tree to express unrooted trees in terms of rooted trees.

We will consider the following weight on any hypertree (pointed or not, rooted
or not, hollow or not):

Definition 1.25. The weight of a hypertree H with edge set E is given by:

Wt (H) = t|E|−1.

The expression of the hypertrees species in term of pointed and rooted hypertrees
species is the following:

Proposition 1.26 ([Oge]). The species of hypertrees and the one of rooted hyper-
trees are related by:

(1.1) H+Hre = Hr +He.

This bijection links hypertrees with k edges with hypertrees with k edges, and
therefore it preserves the weight on hypertrees. Pointing a vertex or an edge of a
hypertree and then decorating its edges is just the same as decorating its edges and
then pointing a vertex or an edge. Therefore, the decoration of edges is compatible
with the previous property 1.26 and we obtain:

Proposition 1.27 (Dissymmetry principle for edge-decorated hypertrees). Given
a species S, the following relation holds:

(1.2) HS +Hre
S = Hr

S +He
S .

1.4.2. Functional equations. To establish relations between species, we will need
the following operations on species:

Definition 1.28. Let F and G be two species. We define the following operations
on species:

• (F +G) (I) = F (I) ⊔G (I), (addition)
• (F ×G) (I) = F (I)×G (I), (product)
• (F ◦G) (I) =

⊔
π∈P(I) F (π) ×

∏
J∈π G (J), where P (I) runs on the set of

partitions of I.(plethystic substitution)

The previous species are related by the following proposition:

Proposition 1.29. Given a species or a linear species S such that |S (∅)| = 0 and
|S ({1})| = 0, the species HS , Hr

S , He
S , Hre

S and Hh
S satisfy:

(1.3) Hr
S = X ×H′

S ,

(1.4) tHr
S = X +X × Comm ◦

(
t×Hh

S

)
,

(1.5) Hh
S = S′ ◦ tHr

S ,

(1.6) He
S = S ◦ tHr

S ,

(1.7) Hre
S = Hh

S × tHr
S = X ×

(
X (1 + Comm)

)
◦ Hh

S .
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Proof. If we multiply the series by t, the power of t corresponds to the number of
edges in the associated hypertrees.

• The first relation is due to the relation between a species and its rooted
variants.

• The second one is obtained from a decomposition of a rooted hypertree.
If there is only one vertex, the label of the hypertree corresponds to the
singleton species X . As there is no edge, the power of t is 0. Otherwise,
we separate the label of the root which correxponds to a multiplication
by X . It remains a hypertree with a gap contained in different edges.
Separating these edges, we obtain a non-empty set of hollow hypertrees
with edges decorated by S. There is the same number of edges in the set of
hollow hypertrees as in the rooted hypertree. This operation is a bijection
of species because a vertex alone is a rooted edge-decorated hypertree and
taking a non-empty forest of hollow edge-decorated hypertrees and linking
them by their gap on which we put a label gives a rooted edge-decorated
hypertree.

• The third relation is obtained by pointing the vertices in the hollow edge and
breaking the edge: we obtain a non-empty forest of rooted edge-decorated
hypertrees. As we break an edge, there is one edge less in the forest of
rooted hypertrees than in the hollow hypertree: we can simplify the t in
front of Hh

S . The set of roots is a S ′-structure and induces this structure on
the set of trees: we obtain a S ′-structure in which all elements are rooted
edge-decorated hypertrees. As this operation is reversible and does not
depend on the labels of the hollow hypertree, this is a bijection of species.

• The fourth relation is obtained by pointing the vertices in the pointed
edge and breaking it: we obtain a non-empty forest of at least two rooted
edge-decorated hypertrees. As we break an edge, there is one edge less
in the forest of rooted hypertrees than in the edge-pointed hypertree: we
can simplify the t in front of He

S . The set of roots is a S-structure and
induces this structure on the set of tree: we obtain a S-structure in which
all elements are rooted edge-decorated hypertrees. As this operation is
reversible and does not depend on the labels of the hollow hypertree, this
is a bijection of species.

• The last relation is obtained by separating the pointed edge from the other
edges containing the root and putting a gap in the pointed edge instead
of the root: the connected component of the pointed edge gives an edge-
decorated hollow hypertree and the connected component containing the
root gives a rooted edge-decorated hypertree. There is the same number
of edges in the edge-pointed rooted hypertree as in the union of the hollow
and the rooted hypertree. �

Corollary 1.30. Using the equations (1.4) and (1.5) of the previous proposition,
we obtain:

(1.8) tHr
S = X +X × Comm ◦ (t× S′ ◦ tHr

S)

and

(1.9) Hh
S = S′ ◦

(
X +X × Comm ◦

(
t×Hh

S

))
.

2. Counting edge-decorated hypertrees using box trees

In this section, we count edge-decorated hypertrees and rooted and pointed vari-
ants of them using a new type of tree-like structure, called box trees.
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89

Figure 2.1. A box tree.

2.1. Box trees. Let us consider a quadruple (L, V,R,E), where

• L is a finite set called the set of labels,
• V is a partition of L called the set of vertices,
• R is an element of V called the root,
• E is a map from V − {R} to L called the set of edges.

We will denote by Ẽ, the map from V − {R} to V which associates to a vertex v

the vertex v′ containing the label E (v). The pair
(
V, Ẽ

)
is then an oriented graph,

with vertices labelled by subsets of L.

Definition 2.1. A quadruple (L, V,R,E) is a box tree if and only if the graph(
V, Ẽ

)
is a tree, rooted in R, with edges oriented toward the root.

A label l is called parent of a vertex v if E (v) = l.

In figure 2.1, an example of box trees is presented. The root is the double
rectangle.

The difference between box trees and fat trees is mainly in the edges, which are
between labels for fat trees and a label and a vertex for box trees.

Proposition 2.2. Let us consider L a finite set of cardinality n and V a partition
of L into k + 1 parts p0, p1, . . . , pk, where the cardinality of pi is ni. The number
of box trees Np0;p1,...,pk

on k + 1 vertices with root labelled by p0 and the other k
vertices labelled by one of the k other pi is given by:

Np0;p1,...,pk
= n0 × nk−1.

Proof. We prove this statement by induction on k.
For k = 1, there is only one vertex attached to a label of the root. As there is

n0 labels in the root, there is n0 box trees on two vertices.
If this statement holds for all q < k, we compute the number Np0;p1,...,pk

of box
tree on k+ 1 vertices satisfying the hypothesis. It can be obtained by summing on
the number of vertices attached to the root, called its children.

If the root has j children, with respectively ni1 , . . . , nij labels, there are nj
0 ways

of attaching them to the root. Moreover, cutting the root and gluing together the
children of the root in one vertex, we obtain a box tree on k + 1 − j vertices and
n−n0 labels, with root having ni1+· · ·+nij labels. Using the induction hypothesis,
we obtain:

Np0;p1,...,pk
=

k∑

j=1

nj
0

∑

0<i1<···<ij

(
ni1 + · · ·+ nij

)
(n− n0)

k−j−1
.

In the second sum
∑

0<i1<···<ij

(
ni1 + · · ·+ nij

)
, every ni appears

(
k−1
j−1

)
times,

for i ≥ 1. Indeed, in this case the vertex labelled by pi is a child of the root so we
choose the j− 1 other children among the k− 1 other vertices. Therefore, we have:
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11 812

2 7 13 14

Figure 2.2. The box tree associated with the edge-decorated
rooted hypertree of figure 1.18.

Np0;p1,...,pk
=

k∑

j=1

(
k − 1

j − 1

)
nj
0 (n− n0)

k−j
= n0 × nk−1.

This gives the expected result. �

2.2. Enumeration of decorated hypertrees.

Proposition 2.3. Given a species S, every rooted hypertree with k edges and n
vertices, whose edges are decorated by S, can be decomposed as a triple (r, S, BT )
where:

• r is the root of the hypertree,
• S is a set of k sets on n− 1 vertices with a S ′-structure on each of them,
• and BT is a box tree on k + 1 vertices with root labelled by r and each of

the other vertices is labelled by one of the k sets of the previous point.

Proof. Given a rooted edge-decorated hypertree H with k edges and n vertices and
with root labelled by r, the edges give a set S of k sets on n − 1 vertices with a
S ′-structure on each of them. Indeed, considering an edge e, the set of vertices
of e different from the petiole is endowed with a S ′-structure, because the rooted
hypertree is edge-decorated. Moreover, every vertex different from the root is the
petiole of all edges containing it, except the closest edge from the root, which always
exists as the hypertree is connected. Therefore, every vertex different from the root
is counted once in the sets of S. Then, we call set of vertices V the set of the k
previous sets and the root. For all edges e in H , we can link the corresponding
vertex of V to the petiole of e which belongs to another vertex of V : let us call BT
the result. As H is a hypertree, for every vertex v there is only one path between
the root and v thus, there is also one and only one path from the root to the vertices
containing v in BT : BT is a box tree with root labelled by r.

Conversely, given a box tree BT with root labelled by r and the other vertices
labelled by one of the k sets on n− 1 vertices with a S ′-structure on each of them,
we can call parent of a vertex the label linked to it with an edge. Calling the set
of labels V , we can define E as a set of subsets of V obtained by taking, for every
vertex of BT , the union of the set of its labels with its parent. We thus obtain a
hypertree rooted in r. Moreover, the S-structure on every vertex of BT induces an
S-edge-decoration of the rooted hypertree.

Let us remark that this application is a bijection of sets but not a bijection of
species. �

Example 2.4. The previous bijection associates to the edge-decorated rooted hy-
pertree of figure 1.18 the root 3, the set of lists {(15, 1), (14, 7, 13, 2), (4, 5, 6), (8),
(10, 9), (11), (12)} and the box tree in figure 2.2.



DECORATED HYPERTREES 15

The order of the elements in each box does not matter.

Proposition 2.5. Given a species S, every hollow hypertree with k edges and n
vertices, whose edges are decorated by S can be decomposed as a pair (S, BT ) where:

• S is a set of k sets on n vertices with a S ′-structure on each of them,
• and BT is a box tree on k vertices with each vertex labelled by one of the k

sets of the previous point.

Proof. We adapt the proof of the theorem for rooted hypertrees to hollow hyper-
trees.

Given a hollow edge-decorated hypertree H with k edges and n vertices, the edges
give a set S of k sets on n vertices with a S ′-structure on each of them. Indeed,
considering an edge e, the set of vertices of e different from the petiole or the gap of
e is endowed with a S ′-structure, because the hollow hypertree is edge-decorated.
Moreover, every vertex is the petiole of all edges containing it, except the closest
from the hollow edge, which always exists as the hypertree is connected. Therefore
every vertex is counted exactly once in the set S.Then, we call set of vertices V
the set of the k previous sets. For all non-hollow edges e in H , we can link the
corresponding vertex of V to the petiole of e which belongs to another vertex of V :
let us call BT the result. The vertices that were in the hollow edge form the root
of BT . As H is a hypertree, for every vertex v there is only one path between the
hollow edge and v thus, there is also one and only one path from the root to the
vertices containing v in BT : BT is a box tree with root labelled by vertices of the
hollow edge.

Conversely, given a box tree BT with vertices labelled by one of the k sets on
n vertices with a S ′-structure on each of them, we can call parent of a vertex the
label linked to it with an edge. Calling the set of labels V , we can define E as a
set of subsets of V obtained by taking, for every vertex of BT different from its
root, the union of the set of its labels with its parent and by taking the set of
labels of the root of BT with a gap. We thus obtain a hollow hypertree. Moreover,
the S ′-structure on every vertex of BT induces an S-edge-decoration of the hollow
hypertree. �

Example 2.6. Figure 2.1 is the box tree associated to the hypertree of figure 1.12,
with the set of pointed sets {{1, 2, 3},{6,7}, {8}, {9}, {4}, {5}}.

To every species F , we can associate the following generating series:

CF (x) =
∑

n≥0

|F ({1, . . . , n})|
xn

n!
.

We can combine this series with the weight t.

Example 2.7. The generating series of species defined in Example 1.10 are:

• CAssoc (x) =
1

1−x ,

• CE (x) = exp (x),
• CX (x) = x,
• CComm (x) = exp (x)− 1.

Let SS , Sr
S , Sh

S , Se
S and Sre

S be the weighted generating series of HS , Hr
S , Hh

S ,
He

S and Hre
S . Let also ES (k, n) be the number of sets of k sets on n vertices with a

S ′-structure on each of them. By convention, we choose ES (1, 1) to be equal to 1.
Using Proposition 2.2, the previous propositions 2.3 and 2.5 imply:
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Theorem 2.8. Given a species S, the generating series of the species of edge-
decorated rooted hypertrees, edge-decorated hollow hypertrees and edge-decorated hy-
pertrees have the following expressions:

(2.1) Sr
S (x) =

x

t
+

1

t

∑

n≥2

n−1∑

k=1

ES (k, n− 1) (nt)
k xn

n!
,

(2.2) Sh
S (x) =

∑

n≥1

n∑

k=1

ES (k, n) (nt)k−1 xn

n!

and

(2.3) SS (x) =
x

t
+
∑

n≥2

n−1∑

k=1

ES (k, n− 1) (nt)k−1 xn

n!
,

where ES (k, n) is the number of sets of k sets on n vertices with a S ′-structure on
each of them.

The generating series of the species of rooted edge-decorated edge-pointed hyper-
trees and the species of edge-decorated edge-pointed hypertrees are related to the
species of rooted edge-decorated hypertrees and the species of hollow edge-decorated
hypertrees by the following relations:

(2.4) Sre
S (x) = tSr

S (x)× Sh
S (x) ,

(2.5) Se
S (x) = SS (x) + Sre

S (x) − Sr
S (x) .

These formulas give the cardinality of all types of decorated hypertrees in terms
of decorated sets.

Proof. • According to Proposition 2.3, the number of rooted hypertrees on k
edges and n vertices is given by:

(Sr
S)n,k (x) = n× ES (k, n− 1)nk−1tk−1,

where we have n different ways to choose the root, ES (k, n− 1) ways to
make a set of k sets on the n − 1 vertices left with a S ′-structure on each
of them and 1 × nk−1 ways to organize these sets into a box tree with its
root fixed, according to Proposition 2.2.

• Let us apply Proposition 2.5. We have ES (k, n) ways to make a set of k
sets on the n vertices with a S ′-structure on each of them. Then consider
that ni1 , . . . , nik are the cardinality of each of these sets. We choose the
j-th of these sets as the root of a box tree on k vertices and n labels. The
number of box trees obtained is nij × nk−2, according to Proposition 2.2.

As
∑k

j=1 nij × nk−2 = nk−1, we obtain the expected result.

• We prove Equation (2.3) by an integration of Formula (2.1).
• The last equations are obtained by translating in terms of generating series

Equations (1.2) and (1.7) on species. �

Example 2.9. • Let Assoc be the species of non-empty lists. The number
of partitions of a set of cardinality n in k lists is

(
n−1
k−1

)
n!
k! . Therefore, if

we consider hypertrees decorated by Âssoc, the generating series of edge-
decorated rooted hypertrees and edge-decorated hollow hypertrees are:

Sr
S (x) =

x

t
+

1

t

∑

n≥2

n−1∑

k=1

(
n− 2

k − 1

)
(n− 1)!

k!
(nt)k

xn

n!
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and

Sh
S (x) =

∑

n≥1

n∑

k=1

(
n− 1

k − 1

)
n!

k!
(nt)k−1 xn

n!
.

• Let Perm be the species of non-empty pointed sets. The number of parti-
tions of a set of cardinality n in k pointed sets is

(
n
k

)
× kn−k. Indeed, we

choose the pointed vertex in each set and then we map the other vertices
to these pointed vertices. Therefore, if we consider hypertrees decorated

by P̂erm, the generating series of edge-decorated rooted hypertrees and
edge-decorated hollow hypertrees are:

Sr
S (x) =

x

t
+

1

t

∑

n≥2

n−1∑

k=1

(
n− 1

k

)
kn−1−k (nt)

k xn

n!

and

Sh
S (x) =

∑

n≥1

n∑

k=1

(
n

k

)
kn−k (nt)k−1 xn

n!
.

• Let Comm be the species of non-empty sets. The number of partitions of
a set of cardinality n in k sets is given by S (n, k), a Stirling number of the

second type. Therefore, if we consider hypertrees decorated by Ĉomm, the
generating series of edge-decorated rooted hypertrees and edge-decorated
hollow hypertrees are:

Sr
S (x) =

x

t
+

1

t

∑

n≥2

n−1∑

k=1

S (n− 1, k) (nt)
k xn

n!
,

and

Sh
S (x) =

∑

n≥1

n∑

k=1

S (n, k) (nt)k−1 xn

n!
.

These decorated hypertrees are isomorphic to non-decorated hypertrees.
This result was first proven by I. Gessel and L. Kalikow in [GK05].

• The number of partitions of a set of cardinality n in k cycles is given by
|s (n, k) |, the absolute value of a Stirling number of the first kind. There-
fore, if we consider hypertrees decorated by the species of cycles, the gener-
ating series of edge-decorated rooted hypertrees and edge-decorated hollow
hypertrees are:

Sr
S (x) =

x

t
+

1

t

∑

n≥2

n−1∑

k=1

|s (n− 1, k) | (nt)k
xn

n!

and

Sh
S (x) =

∑

n≥1

n∑

k=1

|s (n, k) | (nt)k−1 xn

n!
.

These series are the same as the one for the decoration by L̂ie. We will
see this last case in details in Section 3.2.

2.3. Refinement. Let us now introduce two weights: one on the set of box trees
and the other on the set of rooted and hollow hypertrees.

Definition 2.10. Let BT = (L, V,R,E) be a box tree, we define the following
weight on it:

W (BT ) =
∏

i∈L

x
|E−1(i)|
i ,
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where the xi are formal variables. The power of xi is then the number of children
of the label i, for every label i of L.

With this weight, the number of box trees is given by:

Proposition 2.11. The number of weighted box trees N{i1,...,ip};k,n with n labels
{1, . . . , n}, k + 1 vertices, k edges and its root labelled by {i1, . . . , ip} is:

N{i1,...,ip};k,n =
(
xi1 + · · ·+ xip

)
(

n∑

i=1

xi

)k−1

.

Proof. We prove this statement by induction on k. Let us call V1 the root and
V2, . . . , Vk the other vertices.

For k = 1, there is only one vertex attached to a label of the root. Thus, the
weight of box trees on two vertices with root V1 is

∑
i∈V1

xi.
If this statement holds for all q < k, we want the number N{i1,...,ip};k,n of box

trees on k + 1 vertices. It can be obtained by summing on the number of vertices
attached to the root, called its children.

If the root has j children Va1 , . . . , Vaj
, each of them is attached to a label of the

root: this gives a term
(
xi1 + · · ·+ xip

)j
. Moreover, cutting the root and linking

together the children of the root, we obtain a box tree on k + 1 − j vertices and
with the same labels except the ones of V0 which is deleted, with root having the
labels of Va1 ∪ . . . ∪ Vaj

. Using the induction hypothesis, we obtain:

N{i1,...,ip};k,n =

k−1∑

j=1

(
xi1 + · · ·+ xip

)j ∑

0<i1<···<ij


 ∑

i∈Vi1∪...∪Vij

xi




∑

i/∈V0

xi




k−j−1

.

In the second sum
∑

0<i1<···<ij

(∑
i∈Vi1∪...∪Vij

xi

)
, every xα ∈ Vi appears

(
k−1
j−1

)

times, for i ≥ 2. Therefore, we have:

N{i1,...,ip};k,n =
k−1∑

j=1

(
k − 1

j − 1

)(∑

i∈V0

xi

)j

∑

i/∈V0

xi




k−j

=

(∑

i∈V0

xi

)(
k∑

l=0

∑

i∈Vl

xi

)k−1

. �

The weight on the set of hypertrees on n vertices is defined as follow.

Definition 2.12. Let H = (V,E) be a rooted or a hollow hypertree on n vertices,
we define the following weight on it:

W (H) =
∏

i∈V

x
p(i)
i ,

where p (i) is the number of edges whose petiole is i.

These weights are related by the following proposition:

Theorem 2.13. Given a species S, every weighted rooted hypertree on n vertices
with k edges, whose edges are decorated by S can be decomposed as a triple (r, S, BT )
where:

• r is the root of the hypertree,
• S is a set of k sets on n− 1 vertices with a S ′-structure on each of them,
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• and BT is a weighted box tree on k + 1 vertices with root labelled by r and
each of the other vertices labelled by one of the k sets of the previous point.

Proof. We only have to prove the compatibility with weights of the bijection of the
proof of Proposition 2.3. This compatibility is due to the fact that the set of petioles
of both rooted hypertree and box tree related in the theorem is the same. �

Example 2.14. The weight of the rooted hypertree of Example 1.18, which cor-
responds to the weight of the box tree of Example 2.4, is: x3

3x
2
6x9x12.

Theorem 2.15. Given a species S, every weighted hollow hypertree on n vertices
with k edges, whose edges are decorated by S can be decomposed as a pair (S, BT )
where:

• S is a set of k sets on n vertices with a S ′-structure on each of them,
• and BT is a weighted box tree on k vertices with each vertex labelled by one

of the k sets of the previous point.

Proof. In the same way as we proved the compatibility with weights of the bijection
of the proof of Proposition 2.3 in the case of rooted weighted hypertrees, we can
prove that the proof of Proposition 2.5 is compatible with weights. �

Example 2.16. The weight of the rooted hypertree of figure 1.12, which corre-
sponds to the weight of the box tree of figure 2.1, is: x2x3x4x

2
7.

Let SS,W , Sr
S,W , Sh

S,W , Se
S,W and Sre

S,W be the weighted generating series of HS ,

Hr
S , Hh

S , He
S and Hre

S . Let also be ES (k, n) the number of sets of k sets on n
vertices with a S ′-structure on each of them.

Using Proposition 2.11, the previous theorems 2.15 and 2.13 imply:

Corollary 2.17. The generating series of the species of edge-decorated rooted hy-
pertrees and edge-decorated hollow hypertrees have the following expressions:

(2.6) Sr
S (x) =

x

t
+
∑

n≥2

n−1∑

k=1

(x1 + · · ·+ xn)ES (k, n− 1)
(
(x1 + · · ·+ xn) t

)k−1 xn

n!

and

(2.7) Sh
S (x) =

∑

n≥1

n∑

k=1

ES (k, n)
(
(x1 + · · ·+ xn) t

)k−1xn

n!
.

This corollary will be used in the next section where we specialize the results for
operads Lie and PreLie.

3. Two cases of edge-decorated hypertrees

3.1. P̂reLie-decorated hypertrees. In their article [JMM07], C. Jensen, J. Mc-
Cammond and J. Meier introduce a weight on the set of hypertrees. We prove here

that this weight is related to a decoration of edges by the linear species P̂reLie,
whose differential is PreLie, which associates to a finite set I the set of labelled
rooted trees with labels in I.

3.1.1. Application of the enumeration of decorated hypertrees. Applying the results
of the previous section on counting edge-decorated hypertrees, we obtain the fol-
lowing proposition:

Proposition 3.1. The generating series of the species of rooted hypertrees decorated

by the linear species P̂reLie is given by:

Sr

P̂reLie
=

x

t
+
∑

n≥2

n (tn+ n− 1)n−2 xn

n!
.
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This equation is the specialization in xi = 1 of the one counting rooted weighted
hypertrees in [JMM07, Theorem 3.9].

The generating series of the species of hypertrees decorated by P̂reLie is given by:

S
P̂reLie

= x+
∑

n≥2

(tn+ n− 1)
n−2 xn

n!
.

The generating series of the species of hollow hypertrees decorated by P̂reLie is
given by:

Sh

P̂reLie
=
∑

n≥1

(tn+ n)n−1 xn

n!
.

Proof. There is a classical formula for the number of forest of k trees on n vertices,
which can be found in the book of M. Aigner and G. Ziegler [AZ04]:

(3.1) EPreLie (k, n) =

(
n

k

)
k × nn−1−k =

(
n− 1

k − 1

)
nn−k.

Using the expressions of Theorem 2.8, we obtain:

Sr

P̂reLie
(x) =

x

t
+
∑

n≥2

n−1∑

k=1

n

(
n− 2

k − 1

)
(n− 1)

n−1−k
(nt)

k−1 xn

n!

and

Sh

P̂reLie
(x) =

∑

n≥1

n∑

k=1

(
n− 1

k − 1

)
nn−1−(k−1) (nt)

k−1 xn

n!
.

Re-indexing the sums, it gives:

Sr

P̂reLie
=

x

t
+
∑

n≥2

n−2∑

k=0

n

(
n− 2

k

)
(n− 1)

n−2−k
(nt)

k xn

n!

and

Sh

P̂reLie
(x) =

∑

n≥1

n−1∑

k=0

(
n− 1

k

)
nn−1−k (nt)

k xn

n!
.

Using the binomial theorem, we obtain the expected results for Sr

P̂reLie
and

Sh

P̂reLie
. The series S

P̂reLie
is then obtained by the use of the first equation of

Proposition 1.29. �

3.1.2. Link with 2-coloured rooted trees. We now draw the link between trees whose
edges can be either blue (0) or red (1) and edge-decorated hypertrees to compute
the generating series of edge-pointed and rooted edge-pointed decorated hypertrees.

Definition 3.2. A 2-coloured rooted tree is a rooted tree (V,E), where V is the
set of vertices and E ⊆ V × V is the set of edges, together with a map ϕ from E
to {0, 1}. It is equivalent to the data of a tree (V,E) and a partition E0 ∪E1 of E,
with E0 ∩ E1 = ∅.

An example of 2-coloured rooted tree is presented in figure 3.1. The edges of E1

are dashed whereas the edges of E0 are plain.

Proposition 3.3. The species of hollow hypertrees decorated by P̂reLie is isomor-
phic to the species of 2-coloured rooted trees.

Proof. A hollow hypertree with edges decorated by P̂reLie is a hollow hypertree in
which, for all edges e, the vertices of e different from the gap or the petiole form a
rooted tree.
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Figure 3.1. A 2-coloured rooted tree.
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Figure 3.2. A hollow hypertree decorated by P̂reLie.

Let us consider a hollow hypertree H decorated by P̂reLie on vertex set V . We
call E0, the set of edges between elements of V in the rooted trees obtained from

the decoration by P̂reLie. The graph (V,E0) is then a forest of trees obtained by
deleting the edges of the hypertree H and forgetting the roots. For any edge e of
H , we write re for the root of the rooted tree in e and pe for the petiole of e. Let
E1 be the set of edges between re and pe for all edges e of H . By definition of
the sets, the intersection of E0 with E1 is empty. Moreover, to every path in H
corresponds a path in (V,E0 ∪ E1). As H is a hypertree, the graph (V,E0 ∪ E1) is
a tree T . We root that tree in the root r of the tree in the hollow edge of H : T is
then a 2-coloured tree rooted in r.

Conversely, let T = (V,E0 ∪E1) be a 2-coloured rooted tree. The graph (V,E0)
is a forest of trees: we can root these trees in their closest vertex from the root.
Let us call T1, . . . , Tn this forest, where T1 is the tree rooted in the root of T . For
all i between 2 and n, there is one vertex of V closer from the root of T than the
root of Ti: we call this vertex pi. Then, we consider the hypergraph whose set of
vertices is V , with edges containing the vertices of T1 or the vertices of a Ti and pi
for all i between 2 and n. Adding the edges of every Ti, we obtain a hypergraph

decorated by P̂reLie. Moreover, paths in T and in the hypergraph are the same:
the hypergraph is then a hypertree. �

Example 3.4. The hollow tree with edges decorated by P̂reLie associated to the
2-coloured rooted tree of figure 3.1 is the hollow tree of figure 3.2.

Remark that this proposition gives the expression for Sh

P̂reLie
found previously

in Proposition 3.1.

Let us now link rooted edge-pointed hypertrees decorated by P̂reLie with 2-
coloured trees. We consider that edges of E0 are blue and edges of E1 are red.
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Proposition 3.5. The set of rooted edge-pointed hypertrees decorated by P̂reLie is
in one-to-one correspondence with the set of 2-coloured rooted trees whose root has
exactly one blue child (and possibly some red children).

Proof. Given a rooted edge-pointed hypertrees H decorated by P̂reLie with k edges
and n vertices, we consider its pointed set of vertices (r, V ). We draw in blue all
the edges obtained from the PreLie-structure in the edges of H : it gives a forest of
k + 1 trees with n − k − 1 blue edges. We link r with the root of the tree in the
pointed edge of H with a blue edge: it gives a forest of k trees with n−k blue edges.
Now, for all non-pointed edges e, we link the petiole of e with the root of the tree
in e. We thus obtain a 2-coloured graph G on n vertices with n− k + k − 1 edges.
Let us show that this graph is connected. A path between the root and a vertex
x in H is a sequence of paths in trees of the edges of H from the root to a vertex
which is the petiole of an edge and paths from the petiole of an edge to the root
of the corresponding trees. As these paths also exist in G, we obtain a 2-coloured
rooted trees whose root has exactly one blue child and possibly some red children.

Conversely, given such a 2-coloured rooted tree T , we delete red edges of T . We
root all connected component in the vertices that was the closest in T from the
root of T . For every connected component Ck, we put Ck and the parent of the
root of Ck, if it exists, in the edge of a hypergraph H . We root the hypergraph
in the root of T , point the edge containing the blue edge adjacent to the root and
delete this blue edge. We thus obtain a rooted edge-pointed hypertrees decorated by

P̂reLie. Indeed, the hypergraph is rooted and edge-pointed and every edge contains
a rooted tree and a vertex so that the hypergraph can be seen as decorated by

P̂reLie. Moreover, every vertex connected by an edge in T are in the same edge in
H so H is connected. Finally, a cycle in H would come from a cycle in T , which
does not exist so H is a hypertree. The weight of the hypertree corresponds to the
number of red edges. �

3.1.3. Computation of generating series of edge-pointed hypertrees. We now use the
analogy with 2-coloured rooted trees to compute the value of the other generating
series:

Proposition 3.6. The generating series of the species of rooted edge-pointed hy-

pertrees decorated by P̂reLie is given by:

Sre

P̂reLie
= x+

∑

n≥2

n (n+ tn− 1)
n−3

(n− 1) (1 + 2t)
xn

n!
.

The generating series of the species of edge-pointed hypertrees decorated by P̂reLie
is given by:

Se

P̂reLie
= x+

∑

n≥2

(n+ tn− 1)n−3 (n− 1) (1 + tn)
xn

n!
.

Proof. • We linked rooted edge-pointed hypertrees decorated by P̂reLie with
2-coloured rooted trees whose root has exactly one blue child (and possibly
some red children) in Proposition 3.5. We count the 2-coloured rooted trees
using the number of red edges as a weight on 2-coloured trees.

Then, there is n ways to choose the root of the 2-coloured rooted tree. If
the root have k children, k−1 of them are red, there is k ways to choose the
blue one and the set of the children forms a forest of k 2-coloured rooted
trees on n− 1 vertices.
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Let us count the forests of k 2-coloured rooted trees on n − 1 vertices.
We use Formula (3.1):

EPreLie (k, n− 1) =

(
n− 2

k − 1

)
(n− 1)

n−1−k
.

There is n− 1−k edges in the forest and each of them is either blue or red.
Hence the number of forests of k 2-coloured rooted trees on n− 1 vertices
is
(
n−2
k−1

)
× (n− 1)

n−1−k
(1 + t)

n−1−k
.

Finally, the n-th coefficient of the series is:

(
Sre

P̂reLie

)
n
= n

n−1∑

k=1

ktk−1

(
n− 2

k − 1

)(
(n− 1) (1 + t)

)n−1−k
.

A quick computation using re-indexation and the binomial theorem gives
the result.

• We obtain the second generating series thanks to the dissymetry principle
of Proposition 1.27. �

3.1.4. Refinement. We now use weights defined in Part 2.3 on rooted and hollow
hypertrees. With these weights, we will obtain the same results as in [JMM07].

Proposition 3.7. The generating series of the weighted species of hollow hypertrees

decorated by P̂reLie is given by:

Sh

P̂reLie
= x+

∑

n≥2

(
(x1 + · · ·+ xn) t+ n

)n−1xn

n!
.

The generating series of the weighted species of rooted hypertrees decorated by

P̂reLie is given by:

Sr

P̂reLie
= x+

∑

n≥2

(x1 + · · ·+ xn)
(
(x1 + · · ·+ xn) t+ n− 1

)n−2xn

n!
.

Hence the weighted rooted hypertrees enumerated in [JMM07, Theorem 3.9] are

in bijection with the P̂reLie-decorated rooted hypertrees.

Proof. We use the formulas of Corollary 2.17. �

We can separate the second n into y1, . . . , yn by introducing the following weight

on P̂reLie-decorated hollow hypertrees. First, we need some definitions:

Definition 3.8. Given a rooted forest and a vertex v of it, a child v′ of the vertex
v is a vertex v′ linked to v by an edge and such that v is on the path from v′ to the
root. The degree of v in the rooted forest is the number of children of v in it.

Using this definition, we can define the following weight on the set of forests of
rooted trees on a set of vertices V .

Definition 3.9. Let F be a forest of rooted trees on a set of vertices V , we define
the following weight on it:

W (F ) =
∏

i∈V

y
s(i)
i ,

where s (i) is the number of children of the vertex i.

The bijection between P̂reLie-decorated hollow hypertrees and box trees and set
of decorated sets of Proposition 2.5 and the weights introduced in Definitions 2.10

and 3.9 give a weight on the set of P̂reLie-decorated hollow hypertrees:
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Definition 3.10. Let H be a P̂reLie-decorated hollow hypertree on a set of vertices
V , we define the following weight on it:

W (T ) =
∏

i∈V

x
p(i)
i y

s(i)
i ,

where p (i) is the number of edges of H whose petiole is i and s (i) is the number

of child of v in the tree of the P̂reLie decoration.

Using the bijection with box trees and sets of decorated sets, we can compute

the generating series of the weighted species of P̂reLie-decorated hollow hypertrees.

Proposition 3.11. The generating series of the weighted species of hollow hyper-

trees whose edges are decorated by P̂reLie is given by:

Sc
t = x+

∑

n≥2

(
(x1 + · · ·+ xn) t+ y1 + · · · yn

)n−1xn

n!
.

Proof. In Stanley’s book [Sta01, proposition 5.3.2], the formula for the number of
forest of k trees on n vertices is given by:

(3.2) EPreLie (t, k, n) =

(
n− 1

k − 1

)


n∑

j=1

∑

i∈Vj

yi




n−k

.

We use Corollary 2.17 to obtain the expected results. �

3.1.5. Computation of cycle index series of hypertrees decorated by P̂reLie. The
reader may consult Appendix 5 for basic definitions on cycle index series. We
denote the cycle index series of usual species in the same way as the species itself.

We compute the cycle index series of hypertrees decorated by P̂reLie. We do not
write the argument of the cycle index series (t, p1, p2, . . .) in this subsection.

Proposition 3.12. The cycle index series of hollow hypertrees decorated by P̂reLie
is given by:

(3.3) Zh

P̂reLie
=

1

1 + t
PreLie ◦ (1 + t) p1.

Proof. By Proposition 3.3, the cycle index series of hollow hypertrees decorated by

P̂reLie is given by the cycle index series of 2-coloured rooted trees. �

Let us define the following expressions, for λ a partition of an integer n, written
λ ⊢ n:

fk (λ) =
∑

l|k

lλl

and

Pk (λ) =
(
(1 + tk)fk (λ) − 1

)λk − kλk(t
k + 1)×

(
(1 + tk)fk (λ) − 1

)λk−1
.

We obtain the following expression for the cycle index series of hypertrees deco-

rated by P̂reLie:

Proposition 3.13. The cycle index series of rooted hypertrees decorated by P̂reLie
is given by:

(3.4) Zr

P̂reLie
=
∑

n≥1

∑

λ⊢n,λ1 6=0

λ1 (λ1t+ λ1 − 1)λ1−2
∏

k≥2

Pk (λ)
pλ
zλ

.

The cycle index series of edge-pointed rooted hypertrees decorated by P̂reLie is
given by:
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(3.5) Zre

P̂reLie
=
∑

n≥1

∑

λ⊢n,λ1 6=0

λ1 (λ1 − 1) (2t+ 1) (λ1 + λ1t− 1)
λ1−3

∏

k≥2

Pk (λ)
pλ
zλ

.

The cycle index series of edge-pointed hypertrees decorated by P̂reLie is given by:

(3.6) Ze

P̂reLie
=
∑

n≥1

∑

λ⊢n,λ1 6=0

(λ1 − 1) (1 + λ1t) (λ1 + λ1t− 1)λ1−3
∏

k≥2

Pk (λ)
pλ
zλ

.

The cycle index series of hypertrees decorated by P̂reLie is given by:

(3.7) Z
P̂reLie

=
∑

n≥1

∑

λ⊢n,λ1 6=0

(λ1t+ λ1 − 1)
λ1−2

∏

k≥2

Pk (λ)
pλ
zλ

.

Proof. We use Proposition 1.29 and the cycle index series of hollow hypertrees

decorated by P̂reLie to compute the other series.

• The series Zr

P̂reLie
satisfies:

Zr

P̂reLie
=

p1
t
×

(
(1 + Comm) ◦

(
t× Zh

P̂reLie

))
.

Using the result of Proposition 3.12, it gives:

Zr

P̂reLie
=

p1
t
×

(
(1 + Comm) ◦

(
t

1 + t
PreLie ◦

(
(1 + t) p1

)))
.

We now use methods from the proof of the lemma 4 in the article of V.
Dotsenko and A. Khoroshkin [DK07] and from the proof of the proposition
7.2 in the article of F. Chapoton [Cha07].

Consider λ = (λ1 + 1, . . . , λr). We can suppose that, for i ≥ r, we have
λi = 0. The coefficient of tpλ in Zr

P̂reLie
is given by the multiple residue:

cλ =

∫
(1 + Comm) ◦

t

1 + t
PreLie ◦

(
(1 + t) p1

) r∏

i=1

dpi

pλi+1
i

,

with 1 + Comm =
∏

k≥1 exp (pk/k).

We use the substitution yl = pl ◦ t(1 + t)−1 PreLie ◦
(
(1 + t) p1

)
. By the

Koszul duality of operads applied to the operad PreLie in the article of F.
Chapoton and M. Livernet [CL01], the cycle index series PreLie satisfies(
−p1 (1 + Comm)

)
◦ −PreLie = p1. Therefore the substitution is given by

for all k ≥ 1 by:

pk =
yk
tk

exp


−

∑

l≥1

1 + tkl

tkl
ykl
l


 .

We thus obtain:

cλ =

∫ r∏

k=1

exp


yk

k
+ λk

∑

l≥1

1 + tkl

tkl
ykl
l



(
tk

yk

)λk
(
1− yk

1 + tk

tk

)
y−1
k

r∏

k=1

dyk.

Then we can rewrite:

∑

k≥1

kλk

∑

l≥1

1 + tkl

tkl
ykl
kl

=
∑

k≥1

1 + tk

tk
(fk (λ)− 1)

yk
k
,
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with fk (λ) =
(∑

l|k,l>1 lλl

)
+λ1+1. Therefore, cλ is given by the residue:

cλ =

r∏

k=1

∫
exp

(ykak
k

)
tkλk

(
1− yk

1 + tk

tk

)
dyk

yλk+1
k

,

with ak = 1 +
(
1 + tk

) (
tk
)−1

(fk (λ)− 1). This gives the expected result

as the residue of exp (az) z−n, for a constant a, is given by an−1/(n− 1)!.
• The relation (1.7) gives the following relation for the series Zre

P̂reLie
:

Zre

P̂reLie
= p1 ×

((
p1 (1 + Comm)

)
◦

t

1 + t
PreLie◦

(
(1 + t) p1

))
.

We use the same method as for rooted hypertrees with the same substi-
tution to obtain the result.

• The relation (1.6) gives the following relation for the series Ze

P̂reLie
:

Ze

P̂reLie
= P̂reLie ◦ tZr

P̂reLie
.

However the relation (50) in the article of F. Chapoton [Cha05] gives:

P̂reLie = p1

(
1 + PreLie+

1

PreLie

)
.

Hence the series Ze

P̂reLie
satisfies:

Ze

P̂reLie
= tZr

P̂reLie

(
1 + PreLie◦tZr

P̂reLie
+

1

PreLie◦tZr

P̂reLie

)
.

Moreover, using the expression of Zh

P̂reLie
in terms of Zr

P̂reLie
of relation

(1.5), and the one of the proposition, we obtain:

Ze

P̂reLie
= p1 ×

(
(1 + Comm)

(
1 +

p1
t
+

t

p1

))
◦

t

1 + t
PreLie ◦

(
(1 + t) p1

)
.

We use the same method as for rooted hypertrees with the same substi-
tution to obtain the result.

• The series Z
P̂reLie

is obtained by using the dissymetry principle 1.27. �

3.2. L̂ie-decorated hypertrees. In this part, we study L̂ie-decorated hypertrees,
where Lie is the species associated to the following cycle index series:

Lie =
∑

k≥1

µ (k)

k
log (1− pk) ,

where µ is the Möbius function, whose value is (−1)p on square-free positive integers
with p prime factors, and 0 otherwise.

3.2.1. Computation of generating series of hypertrees decorated by L̂ie. Applying
the results of the second section, we obtain the following proposition:

Proposition 3.14. The generating series of the species of rooted hypertrees deco-

rated by L̂ie is given by:

Sr
L̂ie

=
∑

n≥1

1

t

n−2∏

k=0

(nt+ k)×
xn

n!
.
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The generating series of the species of hypertrees decorated by L̂ie is given by:

S
L̂ie

=
∑

n≥1

n−2∏

k=1

(nt+ k)×
xn

n!
.

The generating series of the species of hollow hypertrees decorated by L̂ie is given
by:

Sh
L̂ie

=
∑

n≥1

n−1∏

k=1

(nt+ k)
xn

n!
.

The generating series of the species of rooted edge-pointed hypertrees decorated

by L̂ie is given by:

Sre
L̂ie

=
∑

n≥2

n−1∑

p=1

(
n

p

) n−2∏

k=0

n−p−1∏

l=1

(pt+ k)
(
(n− p) t+ l

)xn

n!
.

The generating series of the species of edge-pointed hypertrees decorated by L̂ie
is given by:

Se
L̂ie

=
∑

n≥2

n−2∏

k=0

(nt+ k)−
n−1∑

p=0

(
n

p

) n−2∏

k=0

n−p−1∏

l=1

(pt+ k)
(
(n− p) t+ l

)xn

n!
.

Proof. The three first results are obtained by applying the expressions of Formula

2.1 and the formula (2.3) of Theorem 2.8 with E
L̂ie

(k, n) = (−1)
k+n

s (k, n), where
s (k, n) is a Stirling number of the first kind. Indeed, the Stirling numbers of the
first kind satisfy the following classical equation:

n∑

k=1

s (k, n)xk =

n−1∏

k=0

(x− k) .

The fourth one is obtained using the relation (1.7) and the last one is obtained
by using the dissymetry principle of Proposition 1.27. �

3.2.2. Computation of cycle index series of hypertrees decorated by L̂ie. Let us now
study the action of the symmetric group on these hypertrees.

Let us define the following expressions, for λ = (λ1, λ2, . . .) a partition of an
integer n:

fk (λ) =
∑

l|k

lλl

and

ϕi (λ) =
∑

k|i

tk

i
µ

(
i

k

)
fk (λ) ,

where µ is the Möbius function.
Using these expressions, we have the following relations:

Proposition 3.15. The cycle index series of hollow hypertrees decorated by L̂ie is
given by:

Zh
L̂ie

=
∑

n≥1

∑

λ⊢n

∑

p≥1

µ (p)

p

r∏

i=1,i6=p

((
ϕi (λ) + λi − 1

λi

)
− ti

(
ϕi (λ) + λi − 1

λi − 1

))

×

λp∑

q=1

1

q

((
ϕp (λ) + λp − q − 1

λp − q

)
− tq

(
ϕp (λ) + λp − q − 1

λp − q − 1

))
pλ
zλ

.
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The cycle index series of rooted hypertrees decorated by L̂ie is given by:

Zr
L̂ie

=
∑

n≥1

∑

λ⊢n

1

t

(
λ1−2∏

k=0

(λ1t+ k)

)∏

i≥2

((
ϕi (λ) + λi − 1

λi

)
− ti

(
ϕi (λ) + λi − 1

λi − 1

))
pλ
zλ

.

Proof. • The equations of Corollary 1.30 give:

tZr
L̂ie

= p1 + p1 × Comm ◦
(
t× Lie ◦tZr

L̂ie

)

and

Zh
L̂ie

= Lie ◦tZr
L̂ie

.

Consider λ = (λ1, . . . , λr). We can suppose that, for i ≥ r, we have
pi = 0. The coefficient of pλ in Zr

L̂ie
is given by the residue cλ:

cλ =

∫
Zr
L̂ie

r∏

i=1

dpi

pλi+1
i

.

We use the substitution yi = pi◦tZr
L̂ie

. Let us compute first (1 + Comm)◦

tLie.

(1 + Comm) ◦ tLie = exp


∑

k≥1

tk

k
pk ◦


−

∑

l≥1

µ (l)

l
log (1− pl)






= exp


−

∑

k≥1

∑

l≥1

tk

kl
µ (l) log (1− pkl)




=
∏

k,l≥1

(1− pkl)
− tkµ(l)

kl .

Hence the substitution is given by:

pi = yi
∏

k,l≥1

(1− ykli)
tkiµ(l)

kl .

With this substitution, we obtain:

cλ =

∫
y1
t

r∏

i=1

∏

k,l≥1

(1− ykli)
−

λit
kiµ(l)

kl

(
1−

tiyi
1− yi

)
dyi

yλi+1
i

.

We then separate the terms in each of the yj. It gives:

cλ =

∫
y1
t
(1− y1)

−λ1t

(
1−

ty1
1− y1

)
dy1

yλ1+1
1

×
r∏

i=2

∫
(1− yi)

−ϕi(λ)

(
1−

tiyi
1− yi

)
dyi

yλi+1
i

,

where we set:

ϕi (λ) =
∑

j|k|i

tk

i
µ

(
i

k

)
jλj =

∑

k|i

tk

i
µ

(
i

k

)
fk (λ) .

We now compute the following integral:
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∫
yqp (1− yp)

−ϕp(λ)−1
(1− yp (1 + tp))

dyp

y
λp+1
p

=
∑

j≥0

(
ϕp (λ) + j

j

)(∫
yq+j−λp−1
p dyp − (1 + tp)

∫
yq+j−λp
p dyp

)

=

(
ϕp (λ) + λp − q − 1

λp − q

)
− tp

(
ϕp (λ) + λp − q − 1

λp − q − 1

)
.

This computation applied to cλ give the expected result for Zr
L̂ie

.

• Calling λ = (λ1, . . . , λr). We can suppose that, for i ≥ r, we have pi = 0.
The coefficient of pλ in Zh

L̂ie
is given by the residue dλ:

dλ =

∫
Lie ◦tZr

L̂ie

r∏

i=1

dpi

pλi+1
i

.

To compute dλ, we use the same substitution yi = pi ◦ tZr
L̂ie

. It gives,

expanding log:

dλ = −

∫ ∑

p≥1

µ (p)

p
log (1− yp)

r∏

i=1

∏

k,l≥1

(1− ykli)
−

iλit
kiµ(l)

kli

(
1−

tiyi
1− yi

)
dyi

yλi+1
i

=
∑

p≥1

µ (p)

p

∑

q≥1

1

q

∫
yqp

r∏

i=1

(1− yi)
−ϕi(λ)

(
1−

tiyi
1− yi

)
dyi

yλi+1
i

.

This gives the expected result. �

3.2.3. Link with the operad Λ. In this part, we link hypertrees decorated by Σ̂ Lie

and L̂ie with an operad Λ, defined in the article of F. Chapoton [Cha02]. We
recommend the reader to consult the reminder on cycle index series in Appendix 5
for the definition of the suspension Σ.

Proposition 3.16. The hollow hypertrees decorated by Σ̂ Lie and L̂ie are related
by the following relation:

Zh
L̂ie

(t, p1, p2, . . .) = ΣZh

Σ̂ Lie
(−t, p1, p2, . . .) .

Proof. According to Corollary 1.30, the series Zh

Σ̂ Lie
satisfies:

Zh

Σ̂ Lie
(t, p1, p2, . . .) = ΣLie ◦

(
p1 × (1 + Comm) ◦

(
tZh

Σ̂ Lie
(t, p1, p2, . . .)

))
.

Hence, applying the suspension and using Proposition 5.5, we obtain:

ΣZh

Σ̂ Lie
(t, p1, p2, . . .) = Lie ◦

(
−p1 × Σ (1 + Comm) ◦

(
tΣZh

Σ̂ Lie
(t, p1, p2, . . .)

))
,

= Lie ◦
(
p1 × (1 + Comm) ◦

(
−tΣZh

Σ̂ Lie
(t, p1, p2, . . .)

))
.

The last equation is the equation defining Zh
L̂ie

(−t, p1, p2, . . .), so we get the

expected result. �

Let us now introduce the operads Pasc and Λ, which have been defined in
[Cha02]. These two operads are symmetric operads in the category of graded vector
spaces defined by some binary generators and quadratic relations 1. The operad
Pasc admits an explicit basis indexed by non-empty subsets, and its underlying
species is given by :

Pasc = (1 + Comm)Σt Comm .

1These presentations can be found in [Cha02]
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The operad Λ is defined as the quadratic dual of the operad Pasc. In an unpub-
lished paper [Dot12], V. Dotsenko has proved that these operads are Koszul. This
result gives the following proposition.

Proposition 3.17. Hollow hypertrees decorated by Σ̂ Lie are related to the operad
Λ by:

Zh

Σ̂ Lie
(t, p1, p2, . . . , pi, . . .) = t−1Λ

(
t−1, tp1, . . . , t

ipi, . . .
)

= ΣΣtΛ
(
t−1, p1, . . .

)
.

Proof. Corollary 1.30 give the following relation, as Comm ◦ΣLie = p1:
(
Zh

Σ̂ Lie

)−1

=
Comm

1 + Comm ◦tp1
,

=


∏

k≥1

exp (pk/k)− 1


×

∏

k≥1

exp
(
−tkpk/k

)
.

Now, as Λ is Koszul, it satisfies ΣPasc◦Λ = p1, which gives the relation:

tp1 =
∏

k≥1

exp
(
−
pk
k

◦ Λ (t, p1, . . . , pi, . . .)
)

×
∏

k≥1

exp

(
tk

k
pk ◦ Λ (t, p1, . . . , pi, . . .)

)
− 1.

Hence, substituting t by t−1 in this expression, as 1 = t× t−1, we obtain:

p1
t

=
∏

k≥1

exp

(
−
tk

k
pk ◦ t

−1Λ
(
t−1, p1, . . . ,

))


∏

k≥1

exp
(pk
k

◦ t−1Λ
(
t−1, p1, . . . ,

))
− 1




=
(
Zh

Σ̂ Lie

)−1

◦ t−1Λ
(
t−1, p1, . . . , pi, . . .

)
.

Composing by tp1, we obtain that ΣΣtΛ
(
t−1, p1, . . .

)
is the inverse of

(
Zh

Σ̂ Lie

)−1

for the plethystic substitution. �

4. Generalizations: Bi-decorated hypertrees

4.1. Definitions of bi-decorated hypertrees and rooted or edge-pointed

variants of them. In this part, we generalize the decoration of edges studied
previously to the decoration of edges and neighbourhood of vertices.

Definition 4.1. Given two species or linear species Se and Sv, a bi-decorated
(rooted) hypertree is obtained from a Se-edge-decorated (rooted) hypertree by choos-
ing for every vertex v of H an element of Sv (Ev), where Ev is the set of edges
containing v.

A skew-bi-decorated rooted hypertree is obtained from a Se-edge-decorated rooted
hypertree H by choosing for every vertex v of H an element of S ′

v (Ev), where Ev

is the set of edges containing v.

Let us remark that when Sv is the species Comm, bi-decorated rooted hypertrees
and skew-bi-decorated rooted hypertrees are the same type of hypertrees: edge-
decorated rooted hypertrees.

The map which associates to a finite set I the set of bi-decorated (resp. bi-
decorated rooted) hypertrees on I is a species, called the (Se,Sv)-bi-decorated (resp.
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Figure 4.1. Bi-decorated hypertrees.

bi-decorated rooted) hypertrees species and denoted by HSe,Sv
(resp. HAr

Se,Sv
). The

map which associates to a finite set I the set of skew-bi-decorated rooted hypertrees
on I is a species, called the (Se,Sv)-skew-bi-decorated rooted hypertrees species and
denoted by HBr

Se,Sv
.

Example 4.2. On the right side of figure 4.1 is represented an example of bi-
decorated hypertree with the neighbourhood of vertices decorated by the species
of non-empty lists Assoc and edges decorated by the species of non-empty pointed
sets Perm. The pointed vertex of each edge is represented with a star ∗ next to
it. The order of edges around a vertex is given by the numbers around the vertex,
next to the edges. For instance, around the vertex 9, the edge {8, 9} is the first in
the list, {10, 9} is the second one and {11, 9} is the third and last one.

On the left side of figure 4.1, we have represented an example of bi-decorated
rooted hypertree, with edges decorated by the species of cycle and the neighbour-
hood of vertices decorated by the species of non-empty pointed sets Perm. When
the vertex is in only one edge, this edge is the pointed edge, otherwise, we put a
star ∗ near the pointed edge of each vertex. For instance, in the neighbourhood of
the vertex 15, the pointed edge is the edge {12, 15}, which is also pointed in the
neighbourhood of the vertex 12.

We now give definitions for edge-pointed bi-decorated hypertrees.

Definition 4.3. Given two species Se and Sv, a bi-decorated edge-pointed (rooted)
hypertree (resp. bi-decorated hollow hypertree) is obtained from a Se-edge-decorated
edge-pointed (rooted) hypertree (resp. a Se-edge-decorated hollow hypertree) H by
choosing for every vertex v of H an element of Sv (Ev), where Ev is the set of edges
containing v.

We can give an alternative definition. Given a vertex v, there is one edge con-
taining v which is the nearest from the pointed or hollow edge of H : let us call it the
branch of v. Then, a bi-decorated edge-pointed (rooted) hypertree (resp. bi-decorated
hollow hypertree) is obtained from the hypertree H by choosing for every vertex v
of H an element of S ′

v

(
El

v

)
, where El

v is the set of edges containing v different from
the branch.

The map which associates to a finite set I the set of bi-decorated edge-pointed
(resp. edge-pointed rooted, resp. hollow) hypertrees on I is a species, called the
(Se,Sv)-edge-decorated edge-pointed (resp. edge-pointed rooted, resp. hollow)
hypertrees species and denoted by He

Se,Sv
(resp. Hre

Se,Sv
, resp. Hh

Se,Sv
).

Example 4.4. We decorate the edge-pointed rooted hypertree on the left side of
the figure 4.2 by the species of cycles on edges and around vertices. This give the
planar hypertree on the right side of the figure 4.2 where the vertices and the edges
are ordered in lists according to their place in the plane. The leftmost edge attached
to the root is the pointed edge. For every vertex different from the root, the edge
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Figure 4.2. Bi-decorated rooted hypertrees.

coming from the root to the vertex is the branch of the vertex and the other edges
containing the vertex form a list.

4.2. Relations.

4.2.1. Dissymetry principle. We use the dissymetry principle of Proposition 1.27.
As the decoration around vertices is defined similarly for all types of hypertrees,
the dissymetry principle is still true for bi-decorated hypertrees.

Proposition 4.5 (Dissymmetry principle for bi-decorated hypertrees). Given two
species Se and Sv, the following relation holds:

(4.1) HSe,Sv
+Hre

Se,Sv
= HAr

Se,Sv
+He

Se,Sv
.

4.2.2. Functional equations. The previous species are linked by the following propo-
sition:

Proposition 4.6. Let consider the species Se, such that Se (∅) = ∅ and |Se ({1})| =
0, and Sv, such that Sv (∅) = ∅ and |Sv ({1})| = 1. The species HSe,Sv

, HAr
Se,Sv

,

HBr
Se,Sv

, He
Se,Sv

, Hre
Se,Sv

and Hh
Se,Sv

satisfy:

tHAr
Se,Sv

= X +X ×
(
Sv ◦ tH

h
Se,Sv

)
,(4.2)

tHBr
Se,Sv

= X +X ×
(
(S ′

v − 1) ◦ tHh
Se,Sv

)
,(4.3)

Hh
Se,Sv

= S ′
e ◦ tH

Br
Se,Sv

,(4.4)

He
Se,Sv

= Se ◦ tH
Br
Se,Sv

,(4.5)

Hre
Se,Sv

= Hh
Se,Sv

× tHBr
Se,Sv

.(4.6)

Proof. • The case of only one vertex has already been established in Propo-
sition 1.29. Otherwise, we separate the label of the root: it gives X . It
remains a hypertree with a gap contained in different edges, at least one.
By definition, those edges has an Sv-structure. Forgetting this structure,we
obtain a non-empty set of hollow hypertree with edges decorated by Se and
vertices decorated by Sv.

• This case only differs from the preceding case by the structure around the
root, which is a S ′

v-structure and not a Sv-structure.
• The third relation is obtained by pointing the vertices in the hollow edge

and breaking it: we obtain a non-empty forest of rooted edge-decorated
hypertrees. The set of roots is a S ′

e-structure and induces this structure on
the set of trees: we obtain a S ′

e-structure in which all elements are rooted
edge-decorated hypertrees. As this operation is reversible and does not
depend on the labels of the hollow hypertree, this is an isomorphism of
species.
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• The fourth relation is obtained by pointing the vertices in the pointed edge
and breaking it: we obtain a non-empty forest of rooted edge-decorated
hypertrees. The set of roots is a Se-structure and induces this structure on
the set of trees: we obtain a Se-structure in which all elements are rooted
edge-decorated hypertrees. As this operation is reversible and does not
depend on the labels of the hollow hypertree, this is an isomorphism of
species.

• The last equation is obtained by decorating around the vertices of the two
parts of the last equality of Proposition 1.29. �

Corollary 4.7. Using the equations (4.3) and (4.4) of Proposition 4.6, we obtain:

Hh
Se,Sv

= S ′
e ◦
(
X +X × (S ′

v − 1) ◦ tHh
Se,Sv

)
,(4.7)

tHBr
Se,Sv

= X +X × (S ′
v − 1) ◦ tS ′

e ◦ tH
Br
Se,Sv

.(4.8)

4.3. Friendly cases of Bi-decorated hypertrees and link with the hyper-

tree poset. In the article [Oge], we link the character of the action of the symmet-
ric group on Whitney homology of the hypertree poset with the symmetric function
HAL defined by F. Chapoton in his article [Cha07]. We now give a combinatorial
interpretation of HAL in terms of bi-decorated hypertrees.

In this section, in order to keep the notations of [Cha07], we will use the expo-
nents a,p and pa in the same way as the letters e,r and re, to denote respectively
edge-pointed, rooted and rooted edge-pointed.

As this series has been inspired by the one for cyclic hypertrees, we first study
the link between bi-decorated hypertrees and this series.

4.3.1. Cyclic hypertrees. In the article [Cha07], cyclic hypertrees are defined as
hypertrees with, for every vertex v, a cyclic order on the edges containing v. The
associated species is denoted by HAC. This definition corresponds to the one of
bi-decorated hypertrees obtained by taking the species Comm−X for Se and the
cycle species Cycle for Sv.

As for usual hypertrees, we consider rooted cyclic hypertrees, edge-pointed cyclic
hypertrees and edge-pointed rooted cyclic hypertrees and respectively write HACp,
HACa and HACpa for the associated species. Considering the definitions, HACa

and He
Comm−X,Cycle, and also HACpa and Hre

Comm−X,Cycle are isomorphic because
in these definitions, pointing and decoration commute. Let us compare the relations
to find once more a link between the different types of hypertrees.

On the one hand, the species defined by F. Chapoton satisfy the following rela-
tions:

HACpa = t−1X × (Assoc ◦tYC) ,

with YC defined by:

YC = Comm ◦ (X + tHACpa) ,

HACa = (Comm−X) ◦ (X + tHACpa) ,

HACp = t−1X Cycle ◦tYC,

HAC = HACa +HACp −HACpa .
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Whereas, on the other hand, the bi-decorated hypertrees satisfy:

tHAr
Comm−X,Cycle = X +X ×

(
Cycle ◦tHh

Comm−X,Cycle

)
,

tHBr
Comm−X,Cycle = X +X ×

(
Assoc ◦tHh

Comm−X,Cycle

)
,

Hh
Comm−X,Cycle = Comm ◦tHBr

Comm−X,Cycle,

He
Comm−X,Cycle = (Comm−X) ◦ tHBr

Comm−X,Cycle,

Hre
Comm−X,Cycle = Hh

Comm−X,Cycle × tHBr
Comm−X,Cycle,

HComm−X,Cycle = HAr
Comm−X,Cycle +He

Comm−X,Cycle −Hre
Comm−X,Cycle.

Comparing these equations, we obtain the following relations:

HACa = He
Comm−X,Cycle,

X + tHACpa = tHBr
Comm−X,Cycle,

YC = Hh
Comm−X,Cycle,

HACpa = Hre
Comm−X,Cycle,

HACp = t−1X +HAr
Comm−X,Cycle.

Let us now study the case of the HAL series.

4.3.2. The hypertree poset. The series HAL, HALp, HALa and HALpa defined in
[Cha07] satisfy the following relations:

tHALpa = p1 × ΣAssoc ◦tComm ◦ (p1 + (−t)HALpa) ,

tHALp = p1 × ΣLie ◦tComm ◦ (p1 + (−t)HALpa) ,

HALa = (Comm−p1) ◦ (p1 + (−t)HALpa) ,

HAL = HALa +HALp −HALpa .

We link these series with the cycle index series of bi-decorated hypertrees ob-
tained by taking the species Comm−X for Se and the species ΣLie for Sv.

For this choice of decorations, the cycle index series of bi-decorated hypertrees
satisfy:

tHAr
Comm−X,ΣLie = X +X × ΣLie ◦tComm ◦tHBr

Comm−X,ΣLie,

tHBr
Comm−X,ΣLie = X +X × (−ΣAssoc) ◦ tComm ◦tHBr

Comm−X,ΣLie,

He
Comm−X,ΣLie = (Comm−X) ◦ tHBr

Comm−X,ΣLie,

Hre
Comm−X,ΣLie =

(
Comm ◦tHBr

Comm−X,ΣLie

)
× tHBr

Comm−X,ΣLie,

HComm−X,ΣLie = HAr
Comm−X,ΣLie +He

Comm−X,ΣLie −Hre
Comm−X,ΣLie.

Comparing these equations, we obtain the following relations:

p1 + (−t)HALpa = tHBr
Comm−X,ΣLie,

HALa = He
Comm−X,ΣLie,

HALpa = Hre
Comm−X,ΣLie,

HALp = t−1p1 +HAr
Comm−X,ΣLie,

HAL = t−1p1 +HComm−X,ΣLie.

Therefore, the character of the action of the symmetric group on the Whitney
homology of the hypertree poset is the same as the character of the action of the
symmetric group on the set of hypertrees whose vertices have their neighbourhood
decorated by ΣLie.
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5. Reminder on cycle index series

Let F be a species. We can associate a formal power series to it: its cycle index
series. The reader can consult the book [BLL98] for a reference on this subject.
This formal power series is a symmetric function defined as follows:

Definition 5.1. The cycle index series of a species F is the formal power series
in an infinite number of variables (p1, p2, p3, . . .) defined by:

ZF (p1, p2, p3, . . .) =
∑

n≥0

1

n!


 ∑

σ∈Sn

#F σ
∏

i≥1

pσi

i


 ,

where F σ stands for the set of F -structures fixed under the action of σ and where
σi is the number of cycles of length i in the decomposition of σ into disjoint cycles.

For instance, the cycle index series of the species X of singletons is p1.
We can define the following operations on cycle index series.

Definition 5.2. The operations + and × on cycle index series are the same as on
formal series.

For f = f (p1, p2, . . .) and g = g (p1, p2, . . .), plethystic substitution f ◦ g is
defined by:

f◦g (p1, p2, . . .) = f (g (p1, p2, p3, . . .) , g (p2, p4, p6, . . .) , . . . , g (pk, p2k, p3k, . . .) , . . .) .

It is left-linear.

These operations satisfy:

Proposition 5.3. Let F and G be two species. Their cycle index series satisfy:

ZF+G = ZF + ZG, ZF×G = ZF × ZG,

ZF◦G = ZF ◦ ZG, ZF ′ = ∂ZF

∂p1
.

Moreover, we define the following operation:

Definition 5.4. The suspension Σt of a cycle index series f (p1, p2, p3, . . .) is defined
by:

Σtf = −
1

t
f
(
−tp1,−t2p2,−t3p3, . . .

)
.

By convention, we will write Σ for the suspension in t = 1.

The suspension satisfies:

Proposition 5.5. Let f and g be two cycle index series. They satisfy:

• Σ (f ◦ g) = Σf ◦ Σg,
• Σ (f × g) = −Σf × Σg,
• −Σf = f ◦ (−p1).
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