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ABSTRACT

This paper proposes a new definition of Watermarking Secu-
rity which is more in line with the cryptographic viewpoint.
To this end, we derive the effective key length of a watermark-
ing system from the probability of guessing a key equivalent
to the original key. The effective key length is then computed
for two zero-bit watermarking schemes based on normalized
correlation by estimating the region of equivalent keys. We
show that the security of these schemes is related to the dis-
tribution of the watermarked contents inside the detection re-
gion and is not antagonist with robustness. We conclude the
paper by showing that the key length of the system used for
the BOWS-2 international contest was indeed equal to 128
bits.

Index Terms— Watermarking, security, key length

1. MOTIVATIONS

Security in watermarking is usually enabled by a secret key
k shared by the embedding and the detection algorithms: the
secret key can grant security, defined by T. Kalker as “the
inability by unauthorized users to have access to the raw wa-
termarking channel” [13], since the adversary cannot have
access to the watermarking channel without knowing k. This
definition is very close to the definition of a secure encryp-
tion scheme which grants the inability by unauthorized users
to have access to the clear message. However, contrary to
symmetric cryptography, a secret key may not be unique in
watermarking, i.e. the access to the watermarking channel is
sometimes possible when the adversary uses an approxima-
tion of k. As an illustration, if we take the example of binary
Quantization Index Modulation [7], the dither component d
represents the secret key: to be able to decode the watermark,
the adversary doesn’t need to know exactly d, but only an
approximation d̂ ∈ [d − ∆/4, d + ∆/4]. By drawing a ran-
dom key the adversary has one out of two chances to pick
a close enough key enabling the decoding of the watermark
(see Fig. 1).

∗This work was partly founded by the French National Research Agency
program referenced ANR-10-CORD-019 under the Estampille project.
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Fig. 1. Non-unicity of decoding keys for binary Quantization
Index Modulation [7]: key k′ decodes content y watermarked
with the key k.

If this distinction between cryptography and watermark-
ing is important, the evaluation of the security is also different
so far between the two domains. In symmetric cryptography,
the key-length defines the security of the algorithm when fac-
ing a brute force attack, but in watermarking the security was
typically measured using the entropy h(k) or the equivoca-
tion h(k|ONo) w.r.t. a set of No observations ONo [9, 6]. As
firstly outlined in [10], the assessment of security in water-
marking is not straightforward and not related to the length of
the seed of the random generator generating the watermark.
This is mainly due the fact that the watermarking scheme has
to deal with robustness beside security. Additionally, the mea-
sures given by entropy and equivocation take only into ac-
count parameters coming from the embedding scheme (k and
ONo ) and completely ignores the decoding part which is yet
fundamental in order to define the access to the raw water-
marking channel.

The typical setup of a brute force attack in watermarking
is depicted in Fig. (2) and will be used in thereafter in the pa-
per: the adversary challenges a watermarking detector using
a key derived from a set of possible observations ONo , in or-
der to have access to the true detector output at least 1− ε of
the times. We denote by P the probability of success. The
effective key length ` = − log2 P defines the average max-
imum number of keys 2` that needs to be tested during the
brute force attack.

This paper proposes the effective key length as a new
measure of security in watermarking. The definition of this
measure is given in section II and section III gives estima-
tion of the key length for two popular zero-bit watermarking
schemes.
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Fig. 2. An example of a brute force attack in Watermarking

2. DEFINITION OF THE EFFECTIVE KEY LENGTH

In [2], the effective key length is defined for multi-bit water-
marking schemes whereas this paper proposes a translation
for zero-bit watermarking. Given a key k ∈ K, a host vector
x ∈ X (here X = RNv ) and a watermarked vector y, we first
define by D(k) ⊂ X the detection region for the key k by:

D(k) , {y ∈ X : d(y,k) = 1}, (1)

where d(.) is the detection function: d(y,k) = 1 if the
watermark is detected and d(y,k) = 0 if not. We consider
the embedding function e(.) such that y = e(x,k), and the
embedding region, i.e. the set of all the watermarked contents
as:

E(k) , {y ∈ X : x ∈ X s.t. y = e(x,k)}. (2)

Because of the robustness constraint, the embedding re-
gion (or a large proportion of it) is included in the detection
region. This implies that there might be several detection re-
gions (and associated keys) that can the watermark. We can
consequently define in the set K, the subset Keq of equivalent
keys associated with a reliability 1 − ε, as the subset of keys
that enables to detect the watermark with a probability 1− ε:

Keq(k, ε) = {k′ ∈ K : P [d(e(X,k),k′) = 0] ≤ ε}, (3)

where X denotes the random variable representing a host con-
tent1. Fig. 3 proposes an illustration of embedding and detec-
tion regions together with the set of equivalent keys.

In order to derive the expression of the effective key
length, we first compute the average probability that a ran-
dom key K′ belongs to the equivalent regionKeq(K, ε) given
the set of observations ONo :

P (ε,No) = EK[EONo [EK′ [K′ ∈ K(d)
eq (K, ε)|ONo ]]], (4)

1Note that we focus here our attention on equivalent keys k′ that can
detect a watermark embedded using k, but similar definitions can be derived
for equivalent keys k′ that can embed a watermark detected using k.
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Fig. 3. Illustrations of the detection region D(k) and 3 em-
bedding regions E(k), E(k′) and E(k′′) respectively asso-
ciated to three keys k, k′ and k′′. In this example, k′ ∈
Keq(k, ε = 0) but k′′ /∈ Keq(k, 0). The equivalent region
Keq(k, 0) and the key space K are also represented in this toy
example but usually these 2 regions live in a different space
than E(k) and D(k).

and the effective key length is:

`(ε,No) , − log2 P (ε,No) bits. (5)

This definition is very close to the definition of the min
entropy H∞(K) or the Shannon entropy H(K) for equiprob-
able keys in cryptography [5], with the particularity that for
watermarking we consider the possibility of having a plurality
of equivalent keys.

3. APPLICATION ON ZERO-BIT WATERMARKING

To illustrate how it is practically possible to compute an esti-
mation of the key length, we analyze two similar zero-bit em-
bedding methods proposed by Comesaña et al. [8] and Furon
and Bas [11]. Both schemes use the normalized correlation as
a detection function and the detection function is given by:

d(y,k) = 1, if |<y,k>|
|y|.|k| ≥ cosα,

d(y,k) = 0 else.
(6)

The angle α is computed according to the probability of
false-alarm pfa = P[d(X,k) = 1)]. The decoding region for
these two schemes is a double hyper-cone of axis k and angle
α. Without lost of generality, we set |k| = 1 and the set of
all possible keys K is consequently represented by an unitary
hypersphere of dimension Nv .

The two embeddings consist in moving the host vector x
into the closest cone by pushing it by a distance D. Using
information theoretic arguments [8] propose the OBPA em-
bedding (for Orthogonal to the Boundary and Parallel to the
Axis) which first pushes x in a direction orthogonal to the



cone boundary, and then moves afterwards the content paral-
lel to the cone axis. This is proven to maximize the robust-
ness regarding the AWGN channel. The embedding proposed
in [11] called BA embedding (for Broken Arrows, the name of
the watermarking system), uses worst case attack arguments
to first push x in a direction orthogonal to the cone boundary
and continue in a direction orthogonal to the boundary. If the
cone axis is reached however, it goes parallel to the axis. Rep-
resented in a plan P = (O,k, e2) with e2 a vector such that
x = x1k+x2e2 and y = y1k+ y2e2, we can illustrate using
Fig. 4 the geometrical representations of these two embedding
strategies in P . Note that the main difference between these
two embeddings is the fact that for a given distortion D, the
watermarked contents will be closer to the cone axis using the
BA embedding than using the OBPA embedding.
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Fig. 4. Embeddings proposed by Comesaña et al. (OBPA)
and Furon and Bas (BA).

3.1. No observation (No = 0)

Contrary to watermarking schemes proposed in [2], it is not
possible to derive a literal expression of (8) and we want here
to infer an approximation of the equivalent region Keq(k, ε)
from a set of watermarked contents. Our goal is consequently
to compute the maximum possible deviation k′ of the secret
key k, such that at least a ratio (1 − ε) of the watermarked
contents is included into the hyper-cone of axis k′ and an-
gle α. Let us denote by θ the angle between k′ and k. The
equivalent region Keq(k, ε) is consequently the union of two
spherical caps which is the intersection of the double hyper-
cone of axis k and solid angle θ and the unitary Nv-D hyper-
sphere. P (ε, 0) corresponds to the ratio between the surface
of one spherical cap of solid angle θ and the surface of half
the sphere (see eq. (8) of [12]).

PNC(ε, 0) = 1− Icos2 θ(1/2, (Nv − 1)/2), (7)

Where NC stands for a detection using Normalized Correla-
tion. Applying (8), the key length is given by

`NC(ε, 0) = − log2 (1− Icos2 θ(1/2, (Nv − 1)/2)) , (8)

where Ix(a, b) is the regularized incomplete beta function.
Our problem now consists in finding θ̂ such that:

θ̂ = max{θ : P(d(y,K′) = 1) = ε,ktk′ = cos θ}. (9)

This can be estimated in practice using a set of Nc water-
marked contents included in D(k):

θ̂ = max {θ : |{yi : yi ∈ D(k′)}| = [(1− ε)Nc],
and ktk′ = cos θ

}
, (10)

where 1 ≤ i ≤ Nc and [.] denotes the nearest integer function.
It is possible to perform this estimation in a 3D space in-

stead of a Nv-D space by picking a random unitary basis vec-
tor er, orthogonal to k, and computing the rotation of k in the
plane (k, er). The test y ∈ D(k′) is then performed in two
steps:

1. each content y is projected onto the orthonormal basis
(k, er, e3) where e3 is such that y = y1k + y2bier +
y3e3. Note that it is still possible to perform the test
yi ∈ D(k′) using this particular projection.

2. the coordinates of y in the basis (k′, e′r, e3), i.e. the
basis related to the cone of axis k′, are computed by
k′ = (cos θ, sin θ, 0) and e′r = (− sin θ, cos θ, 0).

A geometric illustration of the two cones in the 3D space is
illustrated on Fig. (5).
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Fig. 5. Geometry when the detection region is a hyper-cone.

The test y ∈ D(k′) is then equivalent to:

y′1√
y21 + y22 + y23

≥ cosα (11)

with y′1 = y1 cos θ+ y1 sin θ . The search of θ̂ satisfying (10)
can be done iteratively using a dichotomic search because the
number of contents satisfying (11) is a decreasing function
w.r.t. θ. Note that in order to increase the accuracy of θ̂,
we can sequentially draw several vectors er and average the
results of each estimation.

Fig. 6 shows the evolution of the key length w.r.t. the
DWR (Document to Watermark power Ratio) for the two
embeddings with Nv = 128, ε = 0.05, and pfa = 10−4. The
key lengths are computed using (8) and Monte-Carlo simu-
lations with rare event analysis [12] on 1000 watermarked



vectors. As expected the key length grows according to the
DWR and can reach sizes over 100 bits for DWR > 6dB.
Notice that the key length of the BA embedding is smaller
than the one of OBPA. This is due to the fact that, with BA,
the watermarked contents are closer to the hyper-cone axis
and consequently the size of the equivalent region is bigger
than the one of OBPA. For BA, when the embedding dis-
tortion is very important (DWR → −∞) all the contents
tend to be located on the cone axis which means that θ →
α and `NC(0, 0) → − log2 pfa. The gap between the two
key lengths decreases w.r.t. the embedding distortion because
both embedding tends to behave the same way for small dis-
tortion since the first step, moving toward the boundary, is
identical.

Note also that robustness and security are not antagonist
here: OBPA, the most robust scheme w.r.t. the AWGN chan-
nel, provides also the longest effective key length.
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Fig. 6. Key-length evolution according to the embedding dis-
tortion using the proposed approximation and Rare Event es-
timation (RE) for Nv = 128, ε = 0.05 and pfa = 10−4.

3.2. No 6= 0

In this setup ONo = Y No = (Y1, Y2, . . . , YNo) and we pro-
pose to use the principal component of the observations Y No ,
i.e. the eigenvector associated to the most important eigen-
value of the covariance matrix CY = N−1o Y No(Y No)t as a
guessing key k′. A similar strategy was previously used to
evaluate the security of Broken-Arrows during the BOWS-2
challenge [3]. If No < Nv , we can compute the Eigen de-
composition of the Gram matrix GY = (Y No)tY No instead
(see [4], sec. 12.1.4).

Fig. 7 presents the evolution of the key size in the same
setup than in the previous subsection (Nv = 128, ε = 0.05,
pfa = 10−4) for two embedding distortions (DWR = 5dB
and DWR = 7dB). Monte-Carlo simulation using 108 sets
of No contents where used in this experiment. We can ob-
serve the tremendous reduction of the key size for these two
schemes when watermarked contents are available to the at-
tacker. The key length of BA decreases faster than the key

length of OBPA. This is due to the fact that variance of the
contents along directions orthogonal to k is smaller for BA
than OBPA and this favors an accurate estimation of the most
principal component.
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Fig. 7. Key length evolution according to No (Nv = 128, ε =
0.05, pfa = 10−4) for DWR = 5dB and DWR = 7dB.

3.3. The practical example of the BOWS-2 contest

This subsection applies our methodology to approximate the
effective key length of the BA scheme of the BOWS-2 inter-
national contest [1]. This helps understanding if it was possi-
ble to find a key by random guess. We recall that the host vec-
tor was extracted from a 512×512 image andNv = 258, 048.
In a subspace of dimension 256, the detection region was built
as the union of 30 double-hyper-cones with orthogonal axis.
The secret key was consequently defined by the basis vectors
of the 256 dimensional subspace. By assuming that the sub-
space is public (but not its basis vectors), we can compute an
equivalent region which is larger than the real one and con-
sequently find an upper bound of PBOWS(ε, 0) and a lower
bound of `BOWS(ε, 0). PBOWS(ε, 0) is upper bounded by
the probability of drawing 30 orthogonal vectors falling each
in a different equivalent region associated to a true axis:

PBOWS(ε, 0) < Π30
i=1PNC(ε, 0, Nv = 256− i+ 1)

< PNC(ε, 0, Nv = 226)30,
(12)

with the parameter Nv = 256 − i + 1 coming from the fact
that the vector axes are orthogonal. Hence:

`BOWS(ε, 0) > 30.`NC(ε, 0, Nv = 226). (13)

In practice, we compute `NC(ε, 0, Nv = 226) using (8)
on 10, 000 images watermarked using the same embedding
setup than during the contest (PSNR = 43dB, pfa =
3.10−6). We obtain `NC(0.05, 0, Nv = 226) ≈ 35 bits and
`BOWS(0.05, 0) > 1050 bits. On the other hand, since the
pseudo random-generator used a 128 bits long seed within
the C implementation of the algorithm, this length is an im-
plicit upper bound of the true key length and we can finally



conclude that `BOWS(0.05, 0) = 128 bits. This confirms the
idea that the random exhaustive search was impossible during
the contest.

4. CONCLUSION

The paper proposes a new methodology to evaluate the secu-
rity of watermarking techniques based on the computation of
the effective key length. Contrary to previous security mea-
sures in watermarking, this parameter takes into account the
difficulty of accessing the watermarking channel. Moreover
the key length brings a close connection with the specifica-
tion of cryptographic algorithms even if for watermarking it
strongly relies on the embedding and the robustness of the
scheme. The nature and number of the observations available
to the adversary has also an important impact because it dra-
matically reduces the effective key length.

This paper also proposes the computation of the effective
key length for two zero-bit watermarking schemes based on
normalized correlation. Whereas we knew for a long time that
OBPA is more robust than BA, we show that it is also more
secure.

5. REFERENCES

[1] P. Bas and T. Furon. Bows-2. http://bows2.
ec-lille.fr, July 2007.

[2] P. Bas, T. Furon, and F. Cayre. Practical key length of
watermarking systems. In Proceedings of ICASSP, Ky-
oto, Japan, March 2012.

[3] P. Bas and A. Westfeld. Two key estimation tech-
niques for the Broken Arrows watermarking scheme. In
MM&Sec ’09: Proceedings of the 11th ACM workshop
on Multimedia and security, pages 1–8, New York, NY,
USA, 2009. ACM.

[4] C.M. Bishop. Neural networks for pattern recognition.
1995.

[5] C. Cachin. Entropy measures and unconditional secu-
rity in cryptography. Zürich, 1997.
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