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Robustness of stochastic discrete-time switched linear systems with
application to control with shared resources

L. Greco, A. Chaillet and E. Panteley

Abstract— Motivated by control applications relying on
shared resources (such as computation time or bandwidth), we
analyze the stability and robustness of discrete-time switched
linear systems driven by a stochastic process. The class of
systems we study encompasses Markov Chain and independent
and identically distributed switching processes. For these sys-
tems, we recall existing definitions of stability and robustness,
by relying on the input-to-state (ISS) property. We show that,
for the class of systems under concern,δ-moment stability is
equivalent to its ISS counterpart and that they both imply
almost sure ISS. Several sufficient conditions are providedto
guarantee these properties. All the concepts are illustrated by
the anytime control of a mechanical system.

I. I NTRODUCTION

The increasing demand of control functionalities in mod-
ern embedded systems (e.g. in the automotive domain [1])
calls for an increasingly heavy utilization of hardware re-
sources. On the other hand, the need for keeping under
control both hardware costs and system complexity clearly
asks for an intense resource sharing. The same trend can
be recognized in networked control systems (NCS), where
economical concerns and ease of maintenance are forcing
the adoption of a unique Ethernet-like network for the whole
industrial plant, progressively eliminating specific subnets or
fieldbuses [2]. The price to pay for resource sharing is a
reduced predictability of the timing behavior: an application
receives a different availability of resources and suffer time-
varying delays depending on the “interference” suffered
from other applications. This aspect becomes particularly
apparent when the shared resource is the computation time
provided by an embedded platform to many concurrent tasks.
Traditional hard real-time approaches, based on worst case
execution time (WCET) estimates, fall short of catching the
large variability in computation time required by each task.
Moreover, they suffer of an intrinsic conservativeness leading
to poor performance, hardware underexploitation, and cost
inefficiencies. A current trend in embedded system design
is to relax hard schedulability constraints and introduce
“softer” models of computation. Probabilistic modeling of
real-time (RT) systems is by now a widely accepted approach
to avoid overconservatism of deterministic (WCET-based)
models, to which an ample and growing literature [3], [4],
[5] is devoted. Within stochastic models of RT systems, the
use of Markov chains (MC) (cf. e.g. [6], [7], [8]) is one
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of the most promising avenues to accurately compute the
response time distribution and deadline miss probabilities of
different tasks. This direction is also followed by a series
of papers [9], [7], [10] of Lemmon and co-workers, where
they consider performance of NCSs and embedded systems
in a Firm RT systems framework and introduce a stochastic
model to describe the task dropout process based on MCs.

All the previous models belong to the class of Stochastic
Jump Systems (SJS), namely switching systems driven by a
stochastic process. Commonly adopted stochastic processes
are MCs and independent and identically distributed (i.i.d.)
processes. Recently (cf. e.g. [11], [12], [13], [14]) the need
for a more general model has also emerged. As custom-
ary in control domain, finding conditions for ensuring the
stability is the first concern for SJSs too. There exists a
wide gamut of stability definitions for stochastic systems
(see for instance [15], [16], [17], [18]), whose comparison
is usually a problematic task. Since our interest is mainly
devoted to stochastic jump linear systems (SJLS) we will
refer to the widely adopted stability definitions in [19], [20],
[21], [22], [23], [24]. However, these definitions do not
explicitly take into account a prominent problem in control:
ensuring robustness of the stability property with respectto
perturbations or model inaccuracies. Traditional extensions
of the deterministic input-to-state stability (ISS) approach
[25] to stochastic systems mainly focus on continuos-time
systems with a stochastic input (see for instance [26], [27],
[28]). Recently an important first step towards stochastic ISS
for continuous-time SJS has appeared in [29], even if the
general framework there considered prevents from obtaining
tight results.

The goal of the present paper is twofold. First, we provide
a formal description of a model of SJLS encompassing as
special cases switching systems driven by MCs and i.i.d.
processes. We brie�y present some concrete cases, where
such model turns out essential to catch the complex and
varying behavior of shared resource availability. Second,we
make a connection between deterministic ISS results and
the stochastic stability definitions in [19], [20], [21], [22],
[23], [24]. In particular we provide stochastic ISS definitions
and easily testable conditions for the aforementioned more
general model of discrete-time SJLSs. These definitions and
conditions enjoy the nice property to coincide with the
classical definitions and conditions in [19], [20], [21], [22],
[23], [24], when they are specialized to SJLSs driven by MCs
or i.i.d. processes and the disturbance is considered to be
zero. We finally show the effectiveness of our robust stability
conditions on an interesting SJLS taken from anytime control



literature.

II. BASIC DEFINITIONS AND MOTIVATIONS

A. System studied in this paper

In this note we focus on the following stochastic jump
linear system (SJLS)

x(k + 1) = Aϕ(k)x(k) +B(x, k)d(k), (1)

wherek ∈ Z≥0, x(0) = x0 ∈ R
n, Ai ∈ Rn×n, i ∈ Jϕ �

{1, . . . , N}, N ∈ Z>0 andd : Z≥0 → R
p is a deterministic,

locally bounded function. We assume thatB(x, k) ∈ Rp×n

is a time-varying vector field for which1 there exists̄b > 0
such that

�B(x, k)� ≤ b̄ ∀k ∈ Z≥0, ∀x ∈ R
n. (2)

The stochastic process{ϕ(·)}, governing the index switch-
ing, takes values in the setJϕ and is defined on the
probability space(Ωϕ,Fϕ,Pϕ) whereΩϕ is the space of
elementary events,Fϕ is the associatedσ-algebra andPϕ
is the probability measure. In order to fully describe the
process{ϕ(·)}, let us introduce a discrete-time finite-state
homogeneous Markov Chain (FSH-MC){σ(·)} taking values
in the setJσ � {1, . . . ,M}, M ≥ N and defined on the
probability space(Ωσ,Fσ,Pσ). Due to the finite cardinality
of the setsJσ and Jϕ, the probability distributions associ-
ated to the processes{ϕ(·)} and {σ(·)} can be compactly
represented at each stepk ∈ Z≥0 by the row vectors
πσ(k) ∈ SM−1 and πϕ(k) ∈ SN−1, where SN−1 ��
s = (s1, . . . , sN) ∈ [0, 1]N |

�N
i=1 si = 1

�
is the(N−1)-

dimensional canonical stochastic simplex (and similarly for
M ). The joint process{σ(·), ϕ(·)}, taking values in the
set Jσ × Jϕ, is defined on the probability space(Ω,F ,P),
whereΩ � Ωσ × Ωϕ, F is theσ-algebra generated by the
measurable rectanglesA × B with A ∈ Fσ and B ∈ Fϕ
andP is a probability measure guaranteeingP{A × B} =
Pσ{A}Pϕ{B} (see [30] page 231). Let us also denote with
E {·} the associated expectation operator.

A complete description of the FSH-MC{σ(·)} is given in
terms of its transition probability matrixP = (pli)l,i=1,...,M ,
with pli � P{σ(k + 1) = i | σ(k) = l}, and its initial
probability distributionπσ(0) = πσ0. We consider a process
{ϕ(·)} whose probability distributionπϕ ∈ SN−1 is linearly
related to the probability distributionπσ ∈ SM−1 of {σ(·)}
by means of a row stochastic matrixL = (ℓlj) l=1,...M

j=1,...N
, with

ℓlj � P{ϕ(k) = j | σ(k) = l}. Therefore, the probability
distribution of the joint process{σ(·), ϕ(·)} evolves accord-
ing to the following dynamics

πσ(k + 1) = πσ(k)P (3)

πϕ(k) = πσ(k)L. (4)

The equations (3)-(4) can be regarded as the description of
a discrete-time LTI system without control, whereπσ is
the state vector andπϕ is the output. It is worth noting
that the present stochastic model encompasses as special

1An interesting case is obtained forB(x, k) = Bϕ(k).

cases both FSH-MCs (ifJϕ = Jσ and L is chosen as the
identity matrix) and independent and identically distributed
(i.i.d.) processes. Moreover, if the FSH-MC{σ(·)} is also
irreducible and aperiodic (FSHIA-MC), then there exists a
unique invariant probability distribution (i.p.d.)πσ such that
limk→∞ πσ(k) = πσ for any πσ(0). Namely,{σ(·)} is an
ergodic process with a unique ergodic class (see [30, Section
24] and [31, Section 8.4]). In this case the process{ϕ(·)}
inherits the ergodic property of{σ(·)} and a unique i.p.d.
πϕ � πσL exists for that process.

B. Motivating examples

The stochastic model (3)-(4) describes a wide range of
different systems. It is especially relevant in modeling a
limited resource shared among competing users. The MC
{σ(·)} can represent the quantized amount of resource, in
the finite setJσ, available at each instantk ∈ Z≥0, while
the process{ϕ(·)} represent the index of the user using the
resource in that instant. With such an interpretationπϕ(k) is
the probability of each user, in the finite setJϕ, to exclusively
use the resource at timek and the (i, j)-th entry of L
represents the probability of thej-th user to need an amount
of resource equal to thei-th value in the setJσ.

Example 1: In [11] a system fitting the previous descrip-
tion is presented. There the shared resource is the com-
putation time offered by a multitasking embedded unit for
the execution of a periodic control task. In order to cope
with the�uctuations in the available computation time, the
control task is designed according to the anytime paradigm.
Namely, it is made up of a finite set of subroutinesΓj ,
j ∈ Jϕ, guaranteeing increasing performance but requiring
increasing computation time. Due to the lack of deterministic
information on the computation time availability in each
period, the subroutines are forced to execute sequentially,
i.e. the computation ofΓi cannot start until the computation
of Γi−1 has terminated. The ensuing closed-loop system is
described by the SJLS (1), (3)-(4). In this setting the FSHIA-
MC {σ(·)} describes the amount of available computation
time and the process{ϕ(·)} the highest index of a schedu-
lable controller, i.e. the subroutine whose execution time
is the largest among those shorter than the available time.
The execution timeT j required to compute sequentially the
subroutines fromΓ1 to Γj is modeled as a discrete time
i.i.d. process taking values in the setJσ and the cumulative
distributions of all theT j , j ∈ Jϕ, are used to derive the
matrix L in (4). Thus the(i, j)-th entry of L represents
the probability of executing all subroutines until thej-th
one if an amounti of computation time is available. As
a consequence ifϕ(k) = j then in thek-th period all
controllersΓi, i ≤ j, but no controllerΓk, k > i, can be
executed.

The model (3)-(4) is open to a dual interpretation. Still
in the case of a shared resource among different users, the
MC {σ(·)} can represent the index of the user exploiting the
resource at anyk ∈ Z≥0, while the process{ϕ(·)} represents
the amount of resource used at timek.



Example 2: In Section IV of [12] this model is used
to describe the overall computation time used by a set of
concurrent periodic tasks. For sake of simplicity, let us focus
on a single task only. Such a task is assumed to have a finite
number of working modes. In each periodk the task can be in
one ofM possible modes defined by the setJσ. The change
in time of the modes is assumed to be ruled by a FSHIA-
MC {σ(·)}. According to each mode, the task can require
a certain amount of computation time assuming values in
the finite setJϕ and described by an i.i.d. process. In this
case, the(i, j)-th entry ofL represents the probability of the
task to require a computation timej during the modei. In
the cited paper this model is used to provide a stochastic
description of the computation time left available by higher
priority tasks to the execution of a lower priority control task.

The model is�exible enough to also encompass embedded
control systems affected by variable computation delays (see
for instance [13], [14]) and networked systems. In the latter
case the MC{σ(·)} can describe changes in network load
conditions and{ϕ(·)} the transmission delay experienced by
a measurement or a control packet.

C. Stability and Robustness Definitions

Classical stochastic stability definitions such as those in
[19], [20], [21] can be adapted to fit the SJLS system (1)
driven by the stochastic process{σ(·), ϕ(·)}. We denote with
x(k, d) the stochastic process solutionx(k, x0, d(k), ω), ω ∈
Ω of the difference equation (1) with initial conditionx(0) =
x0 ∈ R

n and input signald : Z≥0 → R
p.

Definition 3: Given a constantδ ∈ R>0 and the set
Φ �

�
(πσ0, πϕ0) ∈ SN+M−2 | πϕ0 = πσ0L, πσ0 ∈ SM−1

�
,

the system (1) withd = 0 and driven by the stochastic
process{σ(·), ϕ(·)} with dynamics (3)-(4) is said to be
globally:

1) δ-moment globally asymptotically stable (δ-GAS)if for
any x0 ∈ R

n and any initial distribution(πσ0, πϕ0) ∈
Φ of {σ(·), ϕ(·)}

lim
k→∞

E

�
�x(k, 0)�δ

�
= 0 ;

2) δ-moment globally exponentially stable (δ-GES) if
there exist constantsa, b ∈ R>0 such that for any
x0 ∈ R

n and any initial distribution(πσ0, πϕ0) ∈ Φ of
{σ(·), ϕ(·)}

E

�
�x(k, 0)�δ

�
≤ a �x0�

δ e−bk

for all k ∈ Z≥0;
3) almost surely(with probability one)globally stable

(as-GS)if for any x0 ∈ R
n and any initial distribution

(πσ0, πϕ0) ∈ Φ of {σ(·), ϕ(·)}

P

�
lim
k→∞

�x(k, 0)� = 0

�
= 1.

The definitions ofδ-GAS and as-GS actually concern con-
vergence properties of the system (1), but for stochastic linear
systems convergence and stability properties are equivalent
(see for instance the equivalence betweenδ-GAS andδ-GES
in [22], [23], [24]). We provide the following robust stability

definitions, which hold in general for the following nonlinear
system (x(k, d) is defined accordingly):

x(k + 1) = fϕ(k)(k, x(k), d(k)), (5)

wherefi : Z≥0 × Rn × Rp → R
n are continuous functions

satisfyingfi(k, 0, 0) = 0, for eachi ∈ Jϕ.
Definition 4: Given a constantδ ∈ R>0 and the set

Φ �
�
(πσ0, πϕ0) ∈ SN+M−2 | πϕ0 = πσ0L, πσ0 ∈ SM−1

�
,

the system (5) driven by the stochastic process{σ(·), ϕ(·)}
with dynamics (3)-(4) is said to be:

1) δ-moment input-to-state stable (δ-ISS) if there exist
functions β ∈ KL and γ ∈ K∞ such that for any
x0 ∈ R

n, any initial distribution(πσ0, πϕ0) ∈ Φ of
{σ(·), ϕ(·)} and any locally boundedd : Z≥0 → R

p

E

�
�x(k, d)�δ

�
≤ β(�x0� , k) + γ(�d�∞)

for all k ∈ Z≥0;
2) δ-moment exponentially input-to-state stable (δ-EISS)

if there exist constantsa, b ∈ R>0 and a function
γ ∈ K∞ such that for anyx0 ∈ R

n, any initial
distribution (πσ0, πϕ0) ∈ Φ of {σ(·), ϕ(·)} and any
locally boundedd : Z≥0 → R

p

E

�
�x(k, d)�δ

�
≤ a �x0�

δ e−bk + γ(�d�∞)

for all k ∈ Z≥0;
3) almost surely(with probability one)input-to-state sta-

ble (as-ISS)if there exist functionsβ ∈ KL and
γ ∈ K∞ such that for anyx0 ∈ R

n, any initial
distribution (πσ0, πϕ0) ∈ Φ of {σ(·), ϕ(·)} and any
locally boundedd : Z≥0 → R

p

P {�x(k, d)� ≤ β(�x0� , k) + γ(�d�∞)} = 1

for all k ∈ Z≥0.
Remark 5:Due to the special structure ofΦ, which im-

poses a linear relation betweenπϕ0 andπσ0, in the following
we will slightly abuse the notation and refer to the probability
measureP(πσ0,πϕ0){·}, induced by any initial distribution
(πσ0, πϕ0) ∈ Φ, asPπσ0{·}.

As pointed out in [23], the definitions 3 are stronger than
the weak stability definitions in [15], as they require to be
independent from the initial distribution. Definitions 4 inherit
the same property. It is also worth noting that ourδ-ISS
definition is close to the ISS inL1 estimate at switching
instants introduced for continuous time switching systemsin
[29].

III. M AIN RESULTS

In this section we focus on the SJLS (1) in order to provide
easily computable criteria for robust stability.

A. δ-ISS and2-ISS

Asymptotic second moment stability (2-GAS) and ex-
ponential second moment stability (2-GES), for systems
without input and driven by a Markov chain, have been
shown to be equivalent and to imply the almost sure stability
(as-GS) ([22], [23], [24]). Similar properties hold forδ-GAS



and δ-GES (see for instance [32]). In this section we prove
similar equivalences for our system.

Theorem 6:For the system (1) driven by the stochastic
process{σ(·), ϕ(·)}, whose distributions are described by the
evolutions (3) and (4),δ-GAS, δ-GES,δ-ISS andδ-EISS are
equivalent.

Proof: We will prove the following chain of implica-
tions: δ-GAS ⇒ δ-GES ⇒ δ-EISS ⇒ δ-ISS ⇒ δ-GAS.
The latter two implications are easily verified, thus we need
to prove only the first two:δ-GAS ⇒ δ-GES ⇒ δ-EISS.
For anyk ∈ Z≥0 and anyx0 ∈ Rn we can write

x(k, d) = Aϕ(k−1) · · ·Aϕ(0)x0 +B(k − 1)d(k − 1)

+Aϕ(k−2)B(k − 2)d(k − 2) + · · ·

+Aϕ(k−2) · · ·Aϕ(0)B(0)d(0). (6)

Notice that the constant̄b in (2) can be assumed greater than
1 without loss of generality. Therefore, we get

�x(k, d)�δ ≤
��Aϕ(k−1) · · ·Aϕ(0)

��δ �x0�
δ

+ b̄δ �d�δ∞

	
1 +

��Aϕ(k−2)
��δ + · · ·

+
��Aϕ(k−2) · · ·Aϕ(0)

��δ



.

Hence, recalling thatd is deterministic, we have

E

�
�x(k, d)�δ

�
≤ E

���Aϕ(k−1) · · ·Aϕ(0)
��δ
�
�x0�

δ

+ b̄δ �d�δ∞

	
1 + E

���Aϕ(k−2)
��δ
�
+ · · ·

(7)

+ E
���Aϕ(k−2) · · ·Aϕ(0)

��δ
�


.

Let us write any initial distributionπσ0 ∈ SM−1 asπσ0 �
(πσ0,1, . . . , πσ0,M ) and recall the corresponding distribution
πϕ0 = πσ0L. We can then write

Eπσ0

���Aϕ(k−1) · · ·Aϕ(0)
��δ
�

=
�

i0,...,ik−1

�

j0,...,jk−1

πσ0,i0pi0i1 · · · pik−2ik−1×

× ℓi0j0 · · · ℓik−1jk−1
��Ajk−1 · · ·Aj0

��δ , (8)

with Eπσ0 {·} denoting the expectation value with respect to
the probability measurePπσ0{·} (see Remark 5). According
to Definition 3-1 and recalling (6) withd = 0, we have that

lim
k→∞

Eπσ0

���Aϕ(k−1) · · ·Aϕ(0)
��δ
�
= 0.

We can argue by the previous limit and the compactness of
SM−1 that, for anyε ∈ (0, 1), there existsQ = Q(ε) ∈ Z>0
such that, for every initial distributionπσ0 ∈ SM−1,

Eπσ0

���Aϕ(q−1) · · ·Aϕ(0)
��δ
�
≤ ε, ∀q ≥ Q.

The previous inequality is satisfied by any sequence
ϕ(0), . . . , ϕ(q−1) generated by any initial distributionπσ0 ∈
SM−1. Due to the homogeneity property of the composite
process{σ(·), ϕ(·)}, there exist suitable initial distributions

such that the same sequence can be generated starting from
any instants ∈ Z>0. Hence, we have

Eπσ0

���Aϕ(q+s−1) · · ·Aϕ(s)
��δ
�
≤ ε, ∀s ≥ 0, ∀q ≥ Q.

(9)
We can also define a constantc ∈ R>0 such that we have

Eπσ0

���Aϕ(h+s−1) · · ·Aϕ(s)
��δ
�
≤ c, ∀h, s ∈ Z>0, h ∈ (0, Q).

(10)
Inequalities (9) and (10) are given in terms of arbitrary initial
distributions, hence they hold in particular forπσ0 = pi,
i ∈ Jσ with pi i-th row of the matrix P in (3). As
in the proof of Theorem 2.3.1 in [19] and using again
the homogeneity property of{σ(·), ϕ(·)}, the expectation
Eπσ0

���Aϕ(k−1) · · ·Aϕ(0)
��δ
�

for any k = rQ + h, h, r ∈

Z>0, h < Q, can be sliced inr pieces of lengthQ and one
piece of lengthh. Therefore, we have from (9) and (10)

Eπσ0

���Aϕ(k−1) · · ·Aϕ(0)
��δ
�
≤ cεr = ae−bk, (11)

with a � cε−
h
Q and b � − 1

Q
log ε. This proves the first

implication: δ-GAS ⇒ δ-GES.
Applying similar arguments we also have

1 + E
���Aϕ(k−2)

��δ
�
+ · · ·+ E

���Aϕ(k−2) · · ·Aϕ(0)
��δ
�

≤ 1 + cQ+Qε+Qε2 + · · ·+ (Q+ h− 1) εr

≤ 1 + c (Q+ h− 1)
r�

i=0

εi

≤ 1 + c (Q+ h− 1)
∞�

i=0

εi

= 1 +
c (Q+ h− 1)

1− ε
. (12)

By inequalities (7), (11) and (12) we have that
E

�
�x(k, d)�δ

�
≤ a �x0�

δ e−bk + γ(�d�∞) with the

classK∞ function γ(z) � b̄δ
	
1 + c(Q+h−1)

1−z



zδ for all

z ≥ 0, which proves the second implication:δ-GES ⇒ δ-
EISS.

We are now ready to provide sufficient conditions for the
δ-EISS (hence also forδ-GAS, δ-GES andδ-ISS) of the
system (1). But, before we introduce a Lyapunov character-
ization for theδ-EISS of the nonlinear system (5).

Lemma 7:The system (5) isδ-EISS if there exist func-
tions Vi : Rn → R≥0, constantsαi, ᾱi, α ∈ R>0, i ∈ Jϕ,
and a functionχ ∈ K∞ such that for allx ∈ Rn and all
d ∈ Rp

i) αi �x�
δ ≤ Vi(x) ≤ ᾱi �x�

δ for all i ∈ Jϕ;

ii) E
�
Vϕ(k+1)(fϕ(k)(k, x, d))− Vϕ(k)(x)

�
≤ −α �x�

δ
+

χ(�d�).

Proof: Let us pick α1 � mini∈Jϕαi and α2 �

maxi∈Jϕ ᾱi. Applying the expectation to both members of



inequality ii) we have

E
�
E
�
Vϕ(k+1)(fϕ(k)(k, x, d))− Vϕ(k)(x)

��
≤

− αE
�
�x�δ

�
+ E {χ(�d�)}

E
�
Vϕ(k+1)(x(k + 1, d(k + 1)))

�
≤

�
1−

α

α2



E
�
Vϕ(k)(x(k, d(k)))

�
+ E {χ(�d(k)�)} .

By recursively solving the previous relation, we have

E
�
Vϕ(k)(x(k, d(k)))

�
≤ ρkE

�
Vϕ(0)(x0)

�

+
k�

j=0

ρk−jE {χ(�d(j)�)}

with ρ �
	
1− α

α2



< 1. Whereby, recalling thatd is a

deterministic input,

α1E
�
�x(k, d)�δ

�
≤ α2ρ

k �x0�
δ +

1

1− ρ
χ(�d�∞).

Definition 4-2 is satisfied with

α =
α2
α1

, β = − log

�
1−

α

α2




γ(·) =
α2
α1α

χ(·).

Lemma 8:The system (1) driven by the stochastic process
{σ(·), ϕ(·)}, whose distributions are described by the evo-
lutions (3) and (4), isδ-EISS if there existM matrices
Rl = RTl > 0 and α̃3 ∈ R>0 such that for allx ∈ R

n

and for all l ∈ Jσ




N�

h=1

M�

j=1

pljℓlh
�
xTAThRjAhx

� δ
2



−
�
xTRlx

� δ
2 ≤ −α̃3 �x�

δ ,

(13)
where we recall thatpli � P{σ(k + 1) = i | σ(k) = l} and
ℓlj � P{ϕ(k) = j | σ(k) = l}.

Proof: In the light of Theorem 6 we can simply
prove that the system isδ-GES. Let us define the following

candidate Lyapunov functionsVl(x) �
�
xTRlx

� δ
2 , l ∈

Jσ. They satisfy condition i) of Lemma 7 withα1 =
minj∈Jσ λmin(Rj) andα2 = maxj∈Jσ λmax(Rj). In order
to prove the thesis, we need to verify condition ii) of the same
Lemma consideringd ≡ 0. We will show that the following
conditions hold: for anyl ∈ Jσ and anyx ∈ Rn

E
�
Vσ(k+1)(x(k + 1))− Vσ(k)(x(k)) | σ(k) = l, x(k) = x

�

≤ −α̃3 �x�
δ (14)

with x(k + 1) given by (1). This can be shown as follows

E
�
Vσ(k+1)(x(k + 1))− Vσ(k)(x(k)) | σ(k) = l, x(k) = x

�

= E

��
x(k + 1)TRσ(k+1)x(k + 1)

� δ
2

−
�
x(k)TRσ(k)x(k)

� δ
2 | σ(k) = l, x(k) = x

�

= E

�	
xTATϕ(k)Rσ(k+1)Aϕ(k)x


 δ
2

| σ(k) = l

�
−
�
xTRlx

� δ
2

=




N�

h=1

M�

j=1

P{σ(k + 1) = j, ϕ(k) = h | σ(k) = l} ×

×
�
xTAThRjAhx

� δ
2

�
−
�
xTRlx

� δ
2

=




N�

h=1

M�

j=1

pljℓlh
�
xTAThRjAhx

� δ
2



−
�
xTRlx

� δ
2

≤ −α̃3 �x�
δ ,

where we used inequality (13) and, recalling (3),

P {σ(k + 1) = j, ϕ(k) = h | σ(k) = l}

= P {σ(k + 1) = j | ϕ(k) = h, σ(k) = l}P {ϕ(k) = h | σ(k) = l}

= P {σ(k + 1) = j | σ(k) = l}P {ϕ(k) = h | σ(k) = l}

= pljℓlh.

The previous lemma provides sufficient conditions for the
δ-EISS of system (1), but they are not very easy to verify.
Nonetheless, such a lemma leads to simple LMI conditions if
it is specialized to2-EISS (just letδ = 2). It is worth noting
that ifL is the identity matrix, these conditions become those
for the second moment stability [22], [33], [34].

Theorem 9:The system (1) driven by the stochastic
process{σ(·), ϕ(·)}, whose distributions are described by the
evolutions (3) and (4), is2-EISS if there existM matrices
Rl = RTl > 0 such that

N�

h=1

ℓlhA
T
h R̃lAh −Rl < 0, ∀l ∈ Jσ (15)

with

R̃l �
M�

j=1

pljRj , ∀l ∈ Jσ. (16)

B. Almost Sure ISS

In this section we will exploit Lemma 8 to find sufficient
conditions for as-ISS of system (1). As a first step we prove
the following theorem.

Theorem 10:For the system (1) driven by the stochastic
process{σ(·), ϕ(·)}, whose distributions are described by the
evolutions (3) and (4), any property amongδ-GAS, δ-GES,
δ-ISS andδ-EISS implies as-ISS.



Proof: It is well known (see for instance [32], [20])
that δ-GAS⇒ as-GS, hence we can assume that

lim
k→∞

�x(k, d)� = 0 almost surely (a.s.).

This property, together with (6), implies that, for anyε ∈
(0, 1), there existsQ = Q(ε) ∈ Z>0 such that for every
q ≥ Q and every initial distributionπσ0 ∈ SM−1,

��Aϕ(q−1) · · ·Aϕ(0)
�� ≤ ε a.s.

The previous inequality is satisfied by almost any sequence
ϕ(0), . . . , ϕ(q−1) generated by any initial distributionπσ0 ∈
SM−1. Due to the homogeneity property of the composite
process{σ(·), ϕ(·)}, there exist suitable initial distributions
such that the same sequence can be generated starting from
any instants ∈ Z>0. Or, equivalently, almost all sequences
of lengthq ≥ Q of product of dynamic matrices satisfy such
inequality. Hence, we have

������

q−1�

j=0

Aij

������
≤ ε a.s. ∀ij ∈ Jϕ .

Moreover, there existsc ∈ R>0 such that, for anyh ∈ Z>0
with h < Q, we have

������

h−1�

j=0

Aij

������
≤ c a.s. ∀ij ∈ Jϕ .

Using again the homogeneity property of{σ(·), ϕ(·)}, we
can write for anyk = rQ+ h, h, r ∈ Z>0, h < Q

��Aϕ(k−1) · · ·Aϕ(0)
�� ≤ cεr = ae−ηk, (17)

with a � cε−
h
Q andη � − 1

Q
log ε. Proceeding in a similar

way as for the proof of Theorem 6, we obtain the inequality
�x(k, d)� ≤ β(k, �x0�) + γ(�d�∞) almost surely, with the
classKL function β(k, s) � ae−ηks and the classK∞
function γ(s) � b̄

	
1 + c(Q+h−1)

1−ε



s.

Exploiting the previous theorem and Lemma 8 and pro-
ceeding as in Theorem 2.1 in [35], we can provide sufficient
conditions for the as-ISS of our system. In caseL is the
identity matrix, such conditions turn to those provided in
[35] for as-GS.

Corollary 11: The system (1) driven by the stochastic
process{σ(·), ϕ(·)}, whose distributions are described by the
evolutions (3) and (4), is as-ISS if there existM matrices
Rl = RTl > 0 such that one of the following conditions is
verified
•

max
�x�=1

N�

h=1

M�

j=1

�
xTAThRjAhx

xTRlx


pljℓlh
< 1, ∀l ∈ Jσ

•

N�

h=1

M�

j=1

λmax
�
AThRjAhR

−1
l

�pljℓlh
< 1, ∀l ∈ Jσ,

whereλmax(H) denotes the largest eigenvalue ofH.

θ

k

M

m

xc

L

Fig. 1. Model of a Translational Oscillator/Rotational Actuator (TORA)
system ([36]).

As remarked in Section III, if{σ(·)} is a FSHIA-MC,
thus an ergodic process with a unique ergodic class and a
unique i.p.d.πσ, the process{ϕ(·)} inherits the same ergodic
property and it has a unique i.p.d.πϕ = πσL. Therefore, for
ergodic processes we have the following condition (see also
[20], [35]).

Corollary 12: The system (1) driven by the stochastic er-
godic process{σ(·), ϕ(·)}, whose distributions are described
by the evolutions (3) and (4) and whose i.p.d. is given by
(πσ, πϕ) with πϕ � [πϕ1 , . . . , πϕM ] = πσL, is as-ISS if
there exists an induced matrix norm�·� such that

M�

j=1

�Aj�
πϕj < 1.

IV. CASE STUDY

In this section we illustrate the robustness properties
guaranteed by the2-EISS conditions in Theorem 9. To this
aim, we consider a tracking problem for the benchmark
mechanical system in Figure 1.

A. Plant and control description

The Translational Oscillator/Rotational Actuator (TORA)
system in Figure 1 (see [36] for further details) can be
described as follows
�
θ̈
ẍc

�
=

1

∆(θ)

�
m+M −mL cos θ
−mL cos θ I +mL2

� �
u+ d

mLθ̇2 sin θ − kxc

�

y = θ + n

where∆(θ) = (I +mL2)(m+M)−m2L2 cos2 θ > 0, M
is the mass of the translational oscillator,m and I are the
mass and the inertia of the rotational actuator located at a
distanceL from the center of rotation,k is the stiffness of
the spring,θ is the angle of the actuator,xc is the horizontal
displacement of the oscillator,u is the control torque,d is
the torque disturbance andn is the measurement noise. The
previous parameters are assumed to take the following values
throughout this section:m = 1 kg, M = 5 kg, L = 0.1 m,
I = 0.01 kg m2 andk = 20 N/m. After linearization about
the origin and sampled-time discretization with sampling
time T = 0.1 s, we obtain the following transfer function
from u to θ

G(z) =
0.27266(z + 1)(z2 − 1.967z + 1)

(z − 1)2(z2 − 1.964z + 1)
.
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Fig. 2. Schematical representation of the system and the anytime control.
When the switches are in thei = 1 (i = 2) position the controllerΓ1 (Γ2)
and the prefilterΦ1 (Φ2) are active.
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Fig. 3. Outputs of the TORA system in closed loop with(Γ1,Φ1) and
(Γ2,Φ2) for a square wave reference of period40 s, duty cycle50% and
amplitude1 rad.

We assume measurements to be acquired at the beginning
of each period and control inputs to be released at the end,
thus the controller is not affected by jitter but experiences a
constant unit delay. In order to account for the unit delay,
controllers are designed for the transfer functionG(z)1

z

instead ofG(z).
We assume here that the control task is designed according

to the anytime paradigm brie�y illustrated in Example 1 and
to have the specialmodular structurerepresented in Figure 2
(see [11, Sec. VII] for further information on anytime control
implementation and tracking problems). In particular, the
controller Γ1(z) = K1(z) =

3.04(z−0.97)
z+0.9 is designed to

ensure only stability requirement, while the second controller
Γ2(z) = K1(z) + K2(z) with K2(z) =

−0.021(z−2)
z−0.76 to

enhance performance in terms of rise time and settling time
(see Figure 3 for a graphical comparison). The prefilters
Φ1(z) = F1(z) = 0.0480 and Φ2(z) = F1(z)F2(z) =
0.1351 are used to adapt the steady-state gain and ensure
static requirements. According to the anytime paradigm,
controllers are implemented in Jordan state-space realization.
The two closed loop matrices for the feedback connection
of the linearized system and the two controllers have the
structure described in [11, Sec. VII].

B. Computation platform stochastic description

In this case study we have two controllers, henceJϕ �
{1, 2}, and four possible values of available computation
time labeled from1 to 4 , henceJσ � {1, . . . , 4}. We
assume the FSH-MC{σ(·)} to be described by the following

transition probability matrix

P =






0.5 0.1 0.4 0
0.2 0.1 0.5 0.2
0.2 0.2 0.4 0.2
0.1 0.2 0.3 0.4






and the following initial probability distributionπσ0 =
1
4 [1, 1, 1, 1].

In the light of the modular structure chosen for the
implementation of the anytime control, the discrete-time
i.i.d. processT j , j ∈ Jϕ describes here the execution time
required to compute sequentially all component controllers
from K1 to Kj and not all subroutines fromΓ1 to Γj as
in Example 1. The stationary probability distribution ofT j

is represented by the row vectorπT j = [πT j
1

, · · · , πT jM
]

and the associated cumulative probability distribution by
κT j = [π

T
j
1

, π
T
j
1

+ π
T
j
2

, · · · ,
�M
k=1 πT j

k
]. The matrixL in

(4) has the following structure (see [11])

L =






κT1 − κT2
...

κTM−1 − κTM
κTM






T

.

We consider the following numerical valuesπT1 =
[1, 0, 0, 0] andπT 2 = [0, 0.33, 0.5, 0.17] and we get

L =






1 0
0.67 0.33
0.17 0.83
0 1




 .

C. Simulation results

The closed loop SJLS with the computation platform de-
scribed in the previous sections satisfies the LMI conditions
of Theorem 9, thus it turns out to be2-EISS. For simulation
purposes we have considered a tracking problem with a
square wave reference of period40 s, duty cycle50% and
amplitude1 rad. We assume also that the input disturbance
d and the measurement noisen affecting the SJLS (see the
scheme in Figure 2) are independent white noises such that
|d| ≤ 0.05 N m and |n| ≤ 0.05 rad. Figure 4 shows a
simulation run for the TORA system in closed loop with
(Γ1,Φ1), with (Γ2,Φ2) and with the anytime control (SJLS),
thus verifying the robustness property.
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