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Robustness of stochastic discrete-time switched linestesys with
application to control with shared resources

L. Greco, A. Chaillet and E. Panteley

Abstract— Motivated by control applications relying on  of the most promising avenues to accurately compute the
shared resources (such as computation time or bandwidth), & response time distribution and deadline miss probatlsilitie
analyze the stability and robustness of discrete-time swhed  gitfarent tasks. This direction is also followed by a series
linear systems driven by a stochastic process. The class of
systems we study encompasses Markov Chain and independent of papersl[9], [7], [10] of Lemmon and co-workers, where
and identically distributed switching processes. For thes sys- they consider performance of NCSs and embedded systems
tems, we recall existing definitions of stability and robustess, in a Firm RT systems framework and introduce a stochastic
by relying on the input-to-state (ISS) property. We show tha,  model to describe the task dropout process based on MCs.

for the class of systems under concernj-moment stability is ; ;
equivalent o its ISS counterpart and that they both imply All the previous models belong to the class of Stochastic

almost sure ISS. Several sufficient conditions are providedo Jump SYStemS (SJS), namely switching systems .dnven by a
guarantee these properties. All the concepts are illustrad by ~ Stochastic process. Commonly adopted stochastic pracesse
the anytime control of a mechanical system. are MCs and independent and identically distributed (j.i.d
processes. Recently (cf. e.g. [11], [12], [13], [14]) theedhe

) ] _ o for a more general model has also emerged. As custom-
The increasing demand of control functionalities in mOdary in control domain, finding conditions for ensuring the

ern embedded systems (e.g. in the automotive domain [Ijapbility is the first concern for SJSs too. There exists a
calls for an increasingly heavy utilization of hardware reyide gamut of stability definitions for stochastic systems
sources. On the other hand, the need for keepmg und@@e for instance [15], [16], [17], [18]), whose comparison
control both hardware costs and system complexity clearl¢ ysually a problematic task. Since our interest is mainly
asks for an intense resource sharing. The same trend G@oted to stochastic jump linear systems (SJLS) we will
be recognized in networked control systems (NCS), whetgfer to the widely adopted stability definitions in [19]0]2
economical concerns and ease of maintenance are forumL [22], [23], [24]. However, these definitions do not
the adoption of a unique Ethernet-like network for the wholgypiicitly take into account a prominent problem in control
industrial plant, progressively eliminating specific setsnor ensuring robustness of the stability property with respect
fieldbuses [2]. The price to pay for resource sharing is gerturbations or model inaccuracies. Traditional extemsi
reduced predictability of the timing behavior: an appieat  of the deterministic input-to-state stability (ISS) apgzh
receives a different ava|l.ab|llty of resources and sufimet [25] to stochastic systems mainly focus on continuos-time
varying delays depending on the ‘“interference” sufferedysiems with a stochastic input (see for instance [26],,[27]
from other applications. This aspect becomes partlcularms])_ Recently an important first step towards stochaSis |
apparent when the shared resource is the computation tifg continuous-time SJS has appeared in [29], even if the

provided by an embedded platform to many concurrent taskgeneral framework there considered prevents from obiginin
Traditional hard real-time approaches, based on worst Caggnt results.

execution time (WCET) estimates, fall short of catching the The goal of the present paper is twofold. First, we provide
large variability in computation time required by each tasky formal description of a model of SILS encompassing as
Moreover, they suffer of an intrinsic conservativenesslil®®  special cases switching systems driven by MCs and i.i.d.
to poor performance, hardware underexploitation, and Cosfocesses. We brig present some concrete cases, where
inefficiencies. A current trend in embedded system desigf,ch model turns out essential to catch the complex and
is to relax hard schedulability constraints and introducgarying behavior of shared resource availability. Secove,
“softer” models of computation. Probabilistic modeling ofmake a connection between deterministic ISS results and
real-time (RT) systems is by now a widely accepted approaghe stochastic stability definitions in [19], [20], [21], 2R
to avoid overc_onservatlsm of determ!mstl_c (WCET-based[)23L [24]. In particular we provide stochastic ISS defiits
models, to which an ample and growing literature [3], [4]gnd easily testable conditions for the aforementioned more
[5] is devoted. Within stochastic models of RT systems, thgeneral model of discrete-time SILSs. These definitions and
use of Markov chains (MC) (cf. e.g. [6], [7], [8]) is one congitions enjoy the nice property to coincide with the
This work has received funding from the European Union SiévErame- classical definitions and COﬂdltl_OnS in [19], [20]*_ [21]2]2
work Program [FP7/2007-2013] under grant agreement 25H8ON2  [23], [24], when they are specialized to SIJLSs driven by MCs
Network of excellence. . o , or i.i.d. processes and the disturbance is considered to be
Authors are with: L2S - Supélec, 3 rue Joliot-Curie, 9119258r Yvette, . . .
France. E-mails:| gr eco@ eee. org, chail | et @eee. org, 2€r0. We finally s_how thg effectiveness of our robqst stybili
el ena. pantel ey@ss. supel ec. fr. conditions on an interesting SJLS taken from anytime céntro
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literature. cases both FSH-MCs (if, = J, and L is chosen as the
identity matrix) and independent and identically disttéwl

Il BASIC DEFINITIONS AND MOTIVATIONS (i.i.d.) processes. Moreover, if the FSH-MG&(-)} is also

A. System studied in this paper irreducible and aperiodic (FSHIA-MC), then there exists a
In this note we focus on the following stochastic jumpunique invariant probability distribution (i.p.dz), such that
linear system (SJLS) limg 00 7o (k) = 7, for any 7,(0). Namely, {o(-)} is an

ergodic process with a unique ergodic class (see [30, Sectio
(k +1) = Apyz(k) + Blz, k)d(k), @) 249]] andp[31, Section 8.4])(.q In th?s case the(prociﬁ,*@s-)}

wherek € Zsg, ©(0) = zg € R, A4; e R, i€ J, £ inheArits the grgodic property ofo(-)} and a unique i.p.d.

{1,...,N}, N € Zso andd : Z>o, — R” is a deterministic, T, = 7oL exists for that process.

locally bounded function. We assume tttz, k) € RP*™

is a time-varying vector field for whichthere exist$ > 0  B. Motivating examples

such that . : ,
The stochastic model (3)-(4) describes a wide range of

|B(z, k)| < bVk € Z>o, Vo € R". (2) different systems. It is especially relevant in modeling a

limited resource shared among competing users. The MC
{o(-)} can represent the quantized amount of resource, in
the finite setJ,, available at each instamt € Z>(, while

the procesg ()} represent the index of the user using the

is the probability measure. In order to fully describe th Esourcbe gjl.thatflnstahnt. W'th Stlr‘]d}.a.r: mterriretam?r@kf) IIS
process{y(-)}, let us introduce a discrete-time finite-state € ptrﬁ ability o eact l;sekr, n dethml g;@;{ho extc usnf/eLy
homogeneous Markov Chain (FSH-MGj(+) } taking values use the resource at me an € (i,j)-th entry o

in the set.J, 2 {1,...,M}, M > N and defined on the represents the probabll!ty of tbeth_ user to need an amount
probability space(,, F,,P,). Due to the finite cardinality of resource e.qual to theth value_ n the set,. ) )

of the setsJ, and.J,, the probability distributions associ- __EXample 1:In [11] a system fitting the previous descrip-
ated to the processdss(-)} and {o(-)} can be compactly tion is presented. There the shared resource is the com-

represented at each stdp € Z-, by the row vectors putation time offered by a multitasking embedded unit for
mo(k) € SM-1 and m,(k) € SN-1 \where §N-1 2 the execution of a periodic control task. In order to cope
g [¥2) 1 -

B NI<N 1. _ 4y with the Cuctuations in the available computation time, the
j_s = (5.17 .3 8N) 6_ [0, 1] | Zi:_l Sz_ - 1} 1S the(]y ] 1) control task is designed according to the anytime paradigm.
imensional canonical stochastic simpléx (and similagly f

a ; ! Namely, it is made up of a finite set of subroutinEs,
M). The joint process{o(-), ()}, taking values in the ; o ; *"qjaranteeing increasing performance but requiring
setJ, x J,, is defined on the probability spa¢&, 7, P),

" X increasing computation time. Due to the lack of determimist
where) = €, x €, 7 Is the o-algebra generated by the jrormation on the computation time availability in each
measurable rectangle$ x B with A € F, and B € F,  naring, the subroutines are forced to execute sequentially
andP is a probability measure guaranteeiRgA x B} = o the computation of; cannot start until the computation
P,{A}P,{B} (see [30] page 231). Let us also denote Withys 1. pas terminated. The ensuing closed-loop system is
E{-} the associated expectation operator. —  gagerined by the SILS (1), (3)-(4). In this setting the FSHIA

A complete description of the FSH-M@ ()} is givenin 1o« ()} describes the amount of available computation
terms of its transition probability matrik = (pii);i—1,...m+  time and the procesgp(-)} the highest index of a schedu-
with p; £ P{o(k+1) = i | o(k) = I}, and its initial |aple controller, i.e. the subroutine whose execution time
probability distributionr,(0) = 0. We consider a process js the largest among those shorter than the available time.
{«o(-)} whose probability distributionr, € S¥~" is linearly  The execution tim&” required to compute sequentially the
related to the probability distribution, € S*~* of {¢(-)}  subroutines fromr; to T; is modeled as a discrete time
by means of a row stochastic mattx= (£;;)i11...ar, With . d. process taking values in the sét and the cumulative
t; = P{p(k) = j | o(k) = I}. Therefore, the probability distributions of all theT’, j € J,, are used to derive the
distribution of the joint procesés(-), ¢(-)} evolves accord- matrix L in (4). Thus the(i, j)-th entry of L represents
ing to the following dynamics the probability of executing all subroutines until theth

one if an amount; of computation time is available. As
o (k + 1) = 7o (k) P B a consequence (k) = j then in the k-th period all
(k) = 7o (k)L. (4) controllersT;, i < 4, but no controllerT'y, k& > 4, can be
e(-}fecuted.

The stochastic procegs(-)}, governing the index switch-
ing, takes values in the sef, and is defined on the
probability space(Q,, F,,P,) where (), is the space of
elementary eventsf,, is the associated-algebra andP,,

The equations (3)-(4) can be regarded as the description ) _ _ .

a discrete-time LTI system without control, whetg is The model (3)-(4) is open to a dual interpretation. Still

the state vector and, is the output. It is worth noting in the case of a shared resource among different users, the
" .

that the present stochastic model encompasses as speld& {7(-)} can represent the index of the user exploiting the
resource at ang € Zx, while the proces$y(-) } represents
LAn interesting case is obtained f&(z, k) = By (k). the amount of resource used at tirhe



Example 2:In Section IV of [12] this model is used definitions, which hold in general for the following nonlare
to describe the overall computation time used by a set sfstem ¢(k, d) is defined accordingly):
concurrent periodic tasks. For sake of simplicity, let usufo
on a single task only. Such a task is assumed to have a finite ok +1) = fow) (k, 2(k), d(k)), ®)
number of working modes. In each peribthe task can be in where f; : Z~, x R” x R’ — R" are continuous functions
one of M possible modes defined by the sgt The change satisfying f;(k, 0,0) = 0, for eachi € J,.
in time of the modes is assumed to be ruled by a FSHIA- Definition 4: Given a constanty € R, and the set
MC {o()}. According to each mode, the task can require £ {(r,q, mu0) € SN*M=2 | 19 = mo0L, 7,0 € SM1},
a certain amount of computation time assuming values ime system (5) driven by the stochastic procgsé ), o(-)}
the finite setJ, and described by an i.i.d. process. In thisyith dynamics (3)-(4) is said to be:
case, thei, j)-th entry of L represents the probability of the 1) §-moment input-to-state stabl@-(SS) if there exist
task to require a computation tinjeduring the mode. In functions 3 € KL andy € K. such that for any
the cited paper this model is used to provide a stochastic @ € R", any initial distribution (.0, 7,0) € ® of
description of the computation time left available by highe {o(-), (")} and any locally bounded : Z, — R?
priority tasks to the execution of a lower priority contrask. -

The model is_exible enough to also encompass embedded E {||x(k:, d)||5} < B(l|lzoll s k) +~(lld]l )
control systems affected by variable computation delags (s
for instance [13], [14]) and networked systems. In the tatte ~ forall k€ Z>o;
case the MC{o(-)} can describe changes in network load 2) 6-moment exponentially input-to-state stableH|SS)

conditions and(+)} the transmission delay experienced by ~if there exist constants,b < R, and a function
a measurement or a control packet. 7 € K« such that for anyzo € R", any initial
. o distribution (7,0, m,0) € ® of {o(-),¢(-)} and any
C. Stability and Robustness Definitions locally bounded! : Z~q — RP
Classical stochastic stability definitions such as those in s 5 b
[19], [20], [21] can be adapted to fit the SILS system (1) E{Hl’(k?ad)ﬂ } < allzol|” ™™ +(lld]l )

driven by the stochastic procegs(-), ¢(-)}. We denote with
x(k, d) the stochastic process solutiotk, zo, d(k),w), w €
Q of the difference equation (1) with initial conditiar{0) =
zo € R™ and input signatl : Z>o — R?.

Definition 3: Given a constantd € R., and the set
oL {(Wgo,mpo) € SNTM=2| 7 o = mo0L, To0 € SMfl},
the system (1) withd = 0 and driven by the stochastic
process{o(-),¢(-)} with dynamics (3)-(4) is said to be P{l|lz(k,d)|| < B([lzoll . k) +~v(||d]| )} =1
globally:

1) §-moment globally asymptotically stableGAS)if for

any zo € R™ and any initial distribution(r,q, 70) €

for all k € Z>q;

3) almost surely(with probability one)input-to-state sta-
ble (as-ISS)if there exist functionsg € KL and
v € K4 such that for anyzg € R"™, any initial
distribution (7,0, m,0) € ® of {o(-),(-)} and any
locally boundedd : Z>y — R?

for all k € Zxg.
Remark 5:Due to the special structure d@f, which im-
poses a linear relation betweep, andr,q, in the following

© of {o(-), v(")} we will slightly abuse the notation and refer to the prokibil
lim E{|\x(k,0)|\5} —0: measureP .~ ){-}, induced by any initial distribution

(7m0, Tp0) € ®, asPr_{-}.

2) 6-moment globally exponentially stablé-GES) if As pointed out in [23], the definitions 3 are stronger than
there exist constanta,b € R.( such that for any the weak stability definitions in [15], as they require to be
xo € R™ and any initial distributior(7, 7,0) € ® of  independent from the initial distribution. Definitions arit
{(), (")} the same property. It is also worth noting that @utSS

5 5 bk definition is close to the ISS i, estimate at switching
E {Ha:(k, o)l } < afjzol"e instants introduced for continuous time switching systéms

for all k € Z>o; [29].
3) almost surely(with probability one)globally stable I1l. M AIN RESULTS
(as-GS)if for any =y € R™ and any initial distribution

(0, ) € ® Of (), ()} In this section we focus on the SJLS (1) in order to provide

easily computable criteria for robust stability.

P iklggo |z(k,0)|| = O} =1 A. 6-ISS and2-ISS

The definitions ob-GAS and as-GS actually concern con- Asymptotic second moment stability2-GAS) and ex-
vergence properties of the system (1), but for stochas#é@ti ponential second moment stabilit-GES), for systems
systems convergence and stability properties are equivalevithout input and driven by a Markov chain, have been
(see for instance the equivalence betw&gbAS andj-GES shown to be equivalent and to imply the almost sure stability
in [22], [23], [24]). We provide the following robust staityl  (as-GS) ([22], [23], [24]). Similar properties hold f6rGAS



and J-GES (see for instance [32]). In this section we proveuch that the same sequence can be generated starting from
similar equivalences for our system. any instants € Z~y. Hence, we have
Theorem 6:For the system (1) driven by the stochastic

procesgo(-), ¢(-)}, whose distributions are described by the g {HAzp(qusfl) . 'AW(S)Hé} <e Vs>0, Vg> Q.
evolutions (3) and (4)-GAS, 6-GES,-ISS andi-EISS are (9)
equivalent. . , . We can also define a constane R~ such that we have
Proof: We will prove the following chain of implica-
tions: -GAS = §-GES = §-EISS = 6-ISS = §-GAS. 5
The latter two implications are easily verified, thus we neeffoo {HAéD(thsfl) e Ags)| } < ¢, Vhys € Zso, h € (0,Q).

to prove only the first twos-GAS = §-GES = §-EISS. " . , . (1_(_)),
For anyk € Z>, and anyz, € R" we can write Inequalities (9) and (10) are given in terms of arbitraryighi
= distributions, hence they hold in particular fag, = p;,

z(k,d) = Ag—1) - Ap)To + B(k — 1)d(k — 1) i € J, with p; i-th row of the matrix P in (3). As
+ Aoy B(k — 2)d(k —2) + - - LI;I] thhe proof O'ft TheoreT 2.3.1 in [19] tz;nd using: ?gain
e homogeneity proper ),9()}, the expectation
Ay - Aoy BO)A(0). ©) geneity property ofo(-), ¢()} P
) Eroo [ Aot Ao | } foranyk = rQ +h, h,r ¢
Notice that the constartin (2) can be assumed greater tharZ , h < @, can be sliced’in- pieces of length and one
1 without loss of generality. Therefore, we get piece of lengthh. Therefore, we have from (9) and (10)

ke, d)® < Aoy Ao’ lzoll®
le(k, DI < [ Apge-1) - Apo)[|” llzol Era {1 Aptn) - Apo |} S em = ae 1)

5 % (14 A |+
n ||Aw(k72)"'Ago(0)||6)- with ¢ 2 ™% andb 2 —& loge. This proves the first
implication: §-GAS = 0-GES.
Hence, recalling that is deterministic, we have Applying similar arguments we also have
E{la(k,d)|°} <EL|Apuer) - Ao’ g
{Hx( d)| } _§{H 6w(k 1) ol }|3§0| 1+E{||A¢(k72)||6}+"'+E{||Aap(k:72)"'Aap(O)||6}
+ b lldll (1+E{||A¢<k*2>|| } T <14+eQ+Qe+Q*+ - +(Q+h—1)e"

) <1 h—1 =
+E{HAW(FQ)---A@(O)H‘SD. strel@shs );E

Let us write any initial distributionr,o € S™~! asm,o = <1+4c@@+h-1)> ¢
(T60,1,- - -, T0,0m) and recall the corresponding distribution i=0

Te0 = TeoL. We can then write 14 c(Q@+h—1) (12)
E'n'c,o {HAAp(kfl)AQD(O)Hé} e
Z Z » v N By inequalites (7), (11) and (12) we have that
= T60,i0Pigir * " " Pig_oin_ 5 5 _pk .
oo e TobiePn it E{latk )’} < allwol’ e + y(ldll.) with the

Li i |14 A @) ClassKx function y(z) = b° (1 + %) z° for all

e z > 0, which proves the second implicatiofkGES = §-
with E,_, {-} denoting the expectation value with respect t€|SS. m
the probability measure, {-} (see Remark 5). According e are now ready to provide sufficient conditions for the
to Definition 3-1 and recalling (6) witkd = 0, we have that 5_g|sg (hence also fo5-GAS, §-GES ands-ISS) of the
lim E A A A 0 system (1). But, before we introduce a Lyapunov character-
a0 {H o1 A0 } - ization for thed-EISS of the nonlinear system (5).

We can argue by the previous limit and the compactness of -8mma 7:The system (5) i9-EISS if there exist func-

SM=1 that, for any € (0, 1), there exist®) = Q(c) € Z~, UONS Vi : R" — R>o, constantsy;, a;,a € R, 7 € Jo,
such that, for every initial distribution,o € M1, and a functiony € K., such that for allz € R™ and all

d e RP
5
Envo {1 4pa1) Ao’} < Va2 Q. i) ai llzll® < Vi(x) < a ||z for all i € J,;

.. 5
The previous inequality is satisfied by any sequence!) E Vot (fow) (ks @, ) = Vo (2)} < —aflall” +
©(0),...,9(¢g—1) generated by any initial distributian,, € x(ldf)-
SM=1 Due to the homogeneity property of the composite ~ Proof: Let us pick a1 £ minjc; a; and ap =
process{o(-), ¢(-)}, there exist suitable initial distributions max;c s, ;. Applying the expectation to both members of

X Eiojo B



inequality ii) we have with z(k + 1) given by (1). This can be shown as follows

E {V 0 @k +1)) = Vo (2(k)) | o(k) =1, 2(k) =z}

E{E {Votern) (fom (B, 2, d)) = Vi (@)} } < ;
— € ol }+E{X(Ildl\)} £+ D Foera(k +1)
E{Votrrn(z(k+1,d(k+ 1))} < — (2(K)T Ry (K ))g |a(k)l,x(k)x}
1— 2 ) BV (w(k, d(k E{x(ld(®)[)} . 5 s
( a2> Ve @k, dk))} + E (xRN} E{(x AL Rty Ap ) Ia(k)l}( T Ryz)
By recursively solving the previous relation, we have N M
[Z P{o(k+1)=j,0k)=h]|ok)=1} x
E {Votw el )} < '€ (Voo o)} e 5
X (xTAzRJAhx)ﬂ — (2" Riz)?

+Z FIE {x(ld())}
7=0 N M 5 s
= [Z Zpljglh z AhR Ahl') 2] - (xTRlx) 2

with p £ (1— C%) < 1. Whereby, recalling thatl is a h=ta=

inistic inpu < —dg o]
deterministic input, S a3 )

where we used inequality (13) and, recalling (3),
P{o(k+1) =j,0(k) = h|o(k) =1}

=P{o(k+1)=j[@(k)=h,a(k) =1} P{p(k) =h|o(k) =1}
=Plo(k+1)=jlo(k) =1} P{p(k) = h|ao(k) =1}

5 ) 5 1
e {Jlah, D)} < cxp ool + T x(ldl)

Definition 4-2 is satisfied with

= piilin.
=2, 5:_10g(1_£) :
(0731 (65) -
10 = 225()

The previous lemma provides sufficient conditions for the
0-EISS of system (1), but they are not very easy to verify.
Nonetheless, such a lemma leads to simple LMI conditions if
?ls specialized t@-EISS (just lety = 2). It is worth noting
that if L is the identity matrix, these conditions become those
for the second moment stability [22], [33], [34].

Theorem 9:The system (1) driven by the stochastic
procesqo(-), »(-)}, whose distributions are described by the
evolutions (3) and (4), i®-EISS if there existM matrices

Lemma 8:The system (1) driven by the stochastic proces
{o(-),¢(-)}, whose distributions are described by the evo
lutions (3) and (4), is§-EISS if there existM matrices
R, = RT > 0 andas € Rsg such that for allz € R”
and for alll € J,

N M s s R, = R} > 0 such that

Zzpljglh X AhR Ahl‘) 2 —(JJTRIZL‘) 2 S —0~43 HJI||5, ! ! ~

h=1j=1 N

(13) > nALR AL - R <0, Ve, (15)
where we recall thap; = P{o(k + 1) =i | o(k) = I} and h=1
by £ P{o(k) =3 | o(k) =1}. with
Proof: In the light of Theorem 6 we can simply /

prove that the system 5GES. Let us define the following R 2 ZpURj, Vi e J,. (16)

candidate Lyapunov function¥;(z) = (xTRlx)% , 1€
Js. They satisfy condition i) of Lemma 7 withy; =
minjey, Amin(R;) and as = maxjc s, Amax(R;). In order B. Almost Sure ISS
to prove the thesis, we need to verify condition ii) of the sam In this section we will exploit Lemma 8 to find sufficient
Lemma considering = 0. We will show that the following conditions for as-ISS of system (1). As a first step we prove
conditions hold: for any € J, and anyz € R" the following theorem.

Theorem 10:For the system (1) driven by the stochastic
E{V, 2k +1)) =V, (k) | o(k) = 1, (k) = « procesgo(-), ¢(-)}, whose distributions are described by the

{ fk+1)(5( ) (k) [ o(k) *) } evolutions (3) and (4), any property amotgsAS, 6-GES,

< —ag |l (14)  5-1SS ands-EISS implies as-ISS.



Proof: It is well known (see for instance [32], [20]) o g

that 6-GAS = as-GS, hence we can assume that . M
. _ A
k-]i{rolo |z(k,d)] =0 almost surely (a.s.). \\eg.m
This property, together with (6), implies that, for aaye - -
(0,1), there exists) = Q(e) € Z-o such that for every
q > Q and every initial distributionr,, € SM-1, %,
HAtp(qfl) - AW(O) H <e a.s. Fig. 1. Model of a Translational Oscillator/Rotational Aator (TORA)

system ([36]).
The previous inequality is satisfied by almost any sequence
©(0),...,p(¢g—1) generated by any initial distributian,, €
SM=1Due to the homogeneity property of the composite As remarked in Section Ill, if{o(-)} is a FSHIA-MC,
process{o(-), ¢(-)}, there exist suitable initial distributions thus an ergodic process with a unique ergodic class and a
such that the same sequence can be generated starting framque i.p.d7,, the proces$y(-)} inherits the same ergodic
any instants € Z-o. Or, equivalently, almost all sequencesproperty and it has a unique i.p#@, = 7, L. Therefore, for
of lengthq > @ of product of dynamic matrices satisfy suchergodic processes we have the following condition (see also

inequality. Hence, we have [20], [35]).
-1 Corollary 12: The system (1) driven by the stochastic er-
H All<e as. Vijed,. godic procesgo(+), ¢(-)}, whose distributions are described
5 ’ by the evolutions (3) and (4) and whose i.p.d. is given by
! (T, Tp) With Ty £ [Fp,,... Tpy] = 7oL, is as-ISS if

Moreover, there exists € R, such that, for anys € Z~o  there exists an induced matrix noffr| such that
with h < @, we have

M —
h—1 H |A;]|7% < 1.
[[A4,| <c as. vijeJ, =1
§=0

IV. CASE STUDY
Using again the homogeneity property £F(-), o(:)}, we

can write for anyk = rQ + h, h,r € Zwg, h < Q In this section we illustrate the robustness properties

guaranteed by the-EISS conditions in Theorem 9. To this
||A¢(k71)---z4¢(o)|| < e’ =ae M, (17) aim, we consider a tracking problem for the benchmark

) . A . o ~_ mechanical system in Figure 1.
with a £ ce~ @ andn = —Clg loge. Proceeding in a similar

way as for the proof of Theorem 6, we obtain the inequalityn. Plant and control description

=k, d)]| < B(k.’ lzoll) + 7(ﬂd||°°27glm05t surely, with the The Translational Oscillator/Rotational Actuator (TORA)
class K.L funit'fm ﬁ(k’gM:_la:e s and the classoo o tom in Figure 1 (see [36] for further details) can be
function~y(s) = b(1+ “5=—")s. = described as follows
Exploiting the previous theorem and Lemma 8 and pro- ..
ceeding as in Theorem 2.1 in [35], we can provide sufficienﬁﬂ 1 [ m+M  —mL Cosﬂ { .2u.+ d
conditions for the as-ISS of our system. In casds the Lic] ~A() [=mLlcost I+mL” | |mL6®sin6 — k.
identity matrix, such conditions turn to those provided in y=0+n
[35] for as-GS.
Corollary 11 The system (1) driven by the stochastic whereA(0) = (I +mL?)(m + M) —m?*L?cos® 0 > 0, M
procesg o (-), ¢(-)}, whose distributions are described by thés the mass of the translational oscnlatm and I are the
evolutions (3) and (4), is as-ISS if there exist matrices mass and the inertia of the rotatl(_)nal actuator located at a
R = RT > 0 such that one of the following conditions is distanceL from the center of rotation is the stiffness of
verified the springg is the angle of the actuator,. is the horizontal
displacement of the oscillatot, is the control torqued is
the torque disturbance andis the measurement noise. The
N T AT R;Ap pigbun previous parameters are assumed to take the following value
] HH ( :L.TRlx ) <1l VI€Js  throughout this sectionn = 1 kg, M = 5 kg, L = 0.1 m,
I =0.01 kg m? andk = 20 N/m. After linearization about
the origin and sampled-time discretization with sampling

N M time T = 0.1 s, we obtain the following transfer function

HH)‘IH&X (A} R; ARy )Mlh <1, VieJs,  fromutod
h=1j=1

0.27266(z + 1)(22 — 1.9672 + 1)
where \m.x(H) denotes the largest eigenvalue ff G(z2) = D202 — 19602 + 1)




transition probability matrix

05 01 04 0
p_ |02 01 05 02
~ 102 02 04 0.2

0.1 02 03 04

Fig. 2. Schematical representation of the system and theénasmgontrol. and the followmg initial prObablhty distributionrso =

1
When the switches are in the= 1 (: = 2) position the controllei’; (I'2) i [17 1, 1, 1]-
and the prefilted; () are active. In the light of the modular structure chosen for the

implementation of the anytime control, the discrete-time
i.i.d. processIV, j € J, describes here the execution time
required to compute sequentially all component contrsller
from K, to K; and not all subroutines fror; to I'; as
in Example 1. The stationary probability distribution Bf

B is represented by the row vectar;, = [mpy, -, 7p ]
5 . . Nt ST M
s and the associated cumulative probability distribution by
Kri = [T Topi + Ty - ,Zgil 7). The matrix L in
2

(4) has the follbwing structure (see [kll])

RT1 — K72

5 10 15 20 25 30 35 40
Time [s]

L =

Fig. 3. Outputs of the TORA system in closed loop wifh;, ®;) and krpam-1 — kM
(T2, ®2) for a square wave reference of peri¢d s, duty cycle50% and KM
amplitudel rad.
We consider the following numerical values;: =

[1, 0, 0, 0] and7r= = [0, 0.33, 0.5, 0.17] and we get

We assume measurements to be acquired at the beginning 1 0
of each period and control inputs to be released at the end, 0.67 0.33
thus the controller is not affected by jitter but experienee L= 0.17 0.83
constant unit delay. In order to account for the unit delay, 0 1
controllers are designed for the transfer functioffz)<

instead ofG(z). C. Simulation results

We assume here that the control task is designed accordingThe closed loop SJLS with the computation platform de-
to the anytime paradigm brig illustrated in Example 1 and scribed in the previous sections satisfies the LMI condition
to have the speciahodular structurerepresented in Figure 2 of Theorem 9, thus it turns out to BeEISS. For simulation
(see [11, Sec. VII] for further information on anytime catr purposes we have considered a tracking problem with a
implementation and tracking ‘problemsg. In particular, thgquare wave reference of peridd s, duty cycle50% and
controller ' (z) = Ki(z) = 22890 s designed to amplitudel rad. We assume also that the input disturbance
ensure only stability requirement, while the second cdletro d and the measurement noiseaffecting the SILS (see the
Iy(z) = Ki(2) + Ka(z) with Ky(z) = %;6;21 to scheme in Figure 2) are independent white noises such that
enhance performance in terms of rise time and settling timé| < 0.05 N m and |n| < 0.05 rad. Figure 4 shows a
(see Figure 3 for a graphical comparison). The prefiltersimulation run for the TORA system in closed loop with
®y(z) = Fi(z) = 0.0480 and ®2(z) = Fi(2)Fa(z) = (Tq,®y), with (T, ®5) and with the anytime control (SJLS),
0.1351 are used to adapt the steady-state gain and enstheis verifying the robustness property.
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