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Parametric dictionary learning for modeling

EAP and ODF in diffusion MRI

Sylvain Merlet1, Emmanuel Caruyer1, Rachid Deriche1

Athena Project-Team, INRIA Sophia Antipolis - Méditerranée, France

Abstract. In this work, we propose an original and efficient approach
to exploit the ability of Compressed Sensing (CS) to recover Diffusion
MRI (dMRI) signals from a limited number of samples while efficiently
recovering important diffusion features such as the Ensemble Average
Propagator (EAP) and the Orientation Distribution Function (ODF).
Some attempts to sparsely represent the diffusion signal have already
been performed. However and contrarly to what has been presented in
CS dMRI, in this work we propose and advocate the use of a well adapted
learned dictionary and show that it leads to a sparser signal estima-
tion as well as to an efficient reconstruction of very important diffusion
features. We first propose to learn and design a sparse and paramet-
ric dictionary from a set of training diffusion data. Then, we propose a
framework to analytically estimate in closed form two important diffu-
sion features : the EAP and the ODF. Various experiments on synthetic,
phantom and human brain data have been carried out and promising
results with reduced number of atoms have been obtained on diffusion
signal reconstruction, thus illustrating the added value of our method
over state-of-the-art SHORE and SPF based approaches.

1 Introduction

Diffusion MRI (dMRI) modality is known to assess the integrity of brain anatom-
ical connectivity and to be very useful for examining and quantifying white mat-
ter microstructure and organization not available with other imaging modalities.
However, dMRI data acquisition is also well known to be significantly time-
consuming, in particular when Diffusion Spectrum Imaging (DSI) or High An-
gular Resolution Diffusion Imaging (HARDI) is to be used in a clinical setting.
Accelerated acquisitions, relying on a smaller number of sampling points, are
thus more than welcome. Compressed Sensing (CS) [3] is a recent technique
to accurately reconstruct sparse signals from few measurements. In this work,
we present a CS based method for accelerating the reconstruction of the EAP
and the ODF, by significantly reducing the number of measurements. Some ap-
proaches have been recently proposed in order to build dictionaries that enable
sparse representations (For a summary see [1]). However, these works lead to
non-parametric dictionaries, which do not enable to obtain continuous repre-
sentations of the diffusion signal neither allow to get closed form for diffusion
features such as EAP and ODF. For instance, in [9] and in [10], the authors



nicely proposed a dictionary for a sparse modeling in dMRI. However, their dic-
tionary is just postulated to be the Spherical Ridgelets in [9] and the Spherical
Wavelets in [10] i.e the dictionary is not learnt from a training phase as ours. In
addition, their dictionary is used only for modelling diffusion signal in [9] and
only the ODF in [10] i.e not the EAP and the ODF.

In this work, we propose to learn a parametric dictionary based on a frame-
work especially designed for dMRI. This framework enables a continuous mod-
eling of the diffusion signal and leads to analytical and closed form formulas to
estimate two important diffusion features : the EAP, which represents the full
3D displacement probability function of water molecules at every voxel and the
ODF, which characterizes the relative likelihood of water diffusion along any
given angular direction. The article is structured as follows : we start by intro-
ducing the dMRI framework together with the proposed basis, then we focus on
the parametric dictionary learning algorithm and finally we conclude with an
experimental part illustrating the added-value of our approach with promising
results showing how our approach allows to accurately estimate the diffusion
signal with much less atoms (almost the half) than using state-of-the-art bases
such as SHORE [8, 4] and SPF [2].

2 dMRI framework for recovery of EAP and ODF

In this section, we introduce the dMRI framework to model the diffusion signal
and its important features: the EAP and the ODF. Due to a lack of space, we
omit all the details and refer the interested reader to our research report, to be
included in the final version of this article.

2.1 Basis for diffusion signal estimation :

Inspired by the basis proposed in the state-of-the-art diffusion signal estimation
i.e the SHORE [8, 4], the SPF [2], we propose to express the diffusion signal as
a truncated linear combination of 3D functions Ψnlm where each basis function
can be decomposed in a radial part and an angular part represented by a the
symmetric and real spherical harmonics (SH) Y (u) [5].
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with cnlm = 〈E,Ψnlm〉 are the transform coefficients, N the radial order, L the
angular order , q the norm of the effective gradient, u a unitary vector. We
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where χaj
is the normalization factor in the l2-norm sense, aj ∈ R

n+1 a vector of
polynomial parameters associated with the scaled parameter ζj , and Yj = Y m

ℓ

the spherical harmonic of order ℓ and degree m with ℓ, m the index related to
j. aj and ζj are the parameters we want to learn for each 3D function Ψj .

It’s worthwhile to note that our basis Ψj in Eq. 2 simplifies to the SHORE
basis [8, 4] by setting aj as the generalized Laguerre polynomial coefficients of
degree n and l.

2.2 On EAP and ODF recovery : Closed formulas

Using the basis function we proposed in the previous section, it is possible to
derive important and analytical closed formulas for the two diffusion features :
the EAP and the ODF.

EAP feature : The EAP, denoted P (Rr), is the inverse Fourier transform
of the normalized diffusion signal, denoted E(qu). From eq. 1, we can derive the
following expression for the EAP :

P (aj, ζj , Rr) =
J
X

j=0

cj
2π(−1)

l
2

q

χaj
R

Yj(r)
n
X

i=0

aj(i)

ζ

l
2
+i

j

(2πR)
l+ 1

2 Γ ( 3
2

+ l + i)

2
l+ 3

2 ( 1
2ζj

)
3
2
+l+i

Γ (l + 3
2
)

1F1(
3

2
+ l + i; l +

3

2
; −2ζjπ

2
R

2
),

(3)

where 1F1 is the confluent hypergeometric function and Γ the Gamma function.
ODF feature : The ODF is given by Υ (r) =

R

∞
0

P (R · r)R2dR . We can show
that the following closed form can be derived for the ODF :
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3 Dictionnary learning

Here, we introduce a parametric dictionary learning method that enables a sparse
representation of any diffusion signal from continuous functions. We started by
considering the K-SVD [1] algorithm as a model for our own method. However,
the K-SVD technique designs non-parametric dictionaries, which presents some
shortcomings among which : 1) a non-parametric method does not enable to
compute a continuous version of our signal (not suitable for interpolation, nei-
ther data extrapolation) , 2) we could not get closed form for diffusion features,
which would be very appreciated for EAP and ODF estimations, and 3) the K-
SVD is acquisition-dependant. Although the K-SVD method appears powerful
in designing sparse dictionary, these drawbacks push towards a better design via
parametric dictionary learning. This algorithm consists in a sparse coding step



and a dictionary update step, where the polynomial and scale parameters aj, ζj

are estimated using a non linear approach, the Levenberg-Marquardt algorithm
(LMA). The section 3.1 presents our dictionary learning algorithm and the sec-
tion 3.2 describes the method we use to reconstruct any diffusion signal using
the dictionary previously learned.

3.1 Dictionary learning algorithm

Notation : Suppose the training set consists in M observations {si}
M
i=1 (i.e. M

voxels). For each observation si we have ms samples in the q-space, i.e. s1..M ∈
Rms . We represent {si}

M
i=1 in matrix form S ∈ Rms×M where si is the ith

column. The algorithm searches for the dictionary D ∈ Rms×J , that enables
the sparsest representation for every column of S. The dictionary consists in J
atoms {dj}

J
j=1 with dj ∈ Rms a column of D. dj corresponds to the 3D function

Ψj in eq. 2. Here, we do not try to directly estimate dj but the polynomial and
scale parameters aj and ζj , that characterize the atom dj . For each observation
si, we define a coefficient vector ci ∈ Rnc , which forms the ith column of the
coefficient matrix C ∈ Rnc×M .

Given a training data set S, we search for the dictionary D that gives the
sparsest representation of this set. The overall problem is to find the dictionary
D and the vectors ci in C by solving :

arg min
ci,D

{‖S − DC‖2
2} subject to ∀i‖ci‖1 ≤ ǫ (5)

with ǫ ∈ R. The method to solve Eq. 5 is described in the following and a
summary of the algorithm is given in alg. 1. This algorithm iteratively alternates
between sparse signal estimations (i.e. C) and updates of the dictionary (i.e. D)
so to better fit the training data set (i.e. S).

In the first step, the estimation of the column vector ci is performed sepa-
rately for each signal si, i.e for each column of S. Sparse estimation is achieved
through a fast iterative thresholding shrinkage algorithm (FISTA) [6].

In the second step, we update the dictionary D. For this purpose, we compute
an absolute averaged coefficient vector, ĉ = 1/M

∑
i |ci|, and find the atoms

associated with the non zeros values of ĉ. It gives a rough idea of which atoms
are used for modeling the signal and enables to discard some unnecessary atoms,
which enforces sparsity. Then, in this set of atoms, we update one atom at a
time, while fixing all the others. This process is repeated for all the non-zero
coefficients in ĉ. The in-update atom is denoted dk. To update this atom, we
begin by decomposing the error term in eq. 5 as in [1], i.e.
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where cr
j is the jth row of C. We could use the LMA in order to fit the atom dk

to the error matrix Ek. However, because we take into account all the coefficients



Algorithm 1 Semi-parametric dictionary learning
1. Initialize the dictionary by fixing the polynomial and scale parameters aj, ζj .

2. Sparse estimation of the observations {si}M
i=1. We use the FISTA algorithm to solve for ci

associated to each observation : arg minci
{‖si − Dci‖2

2} subject to ∀i‖ci‖1 ≤ ǫ (Eq. 5bis).
3. Updating the dictionary. Compute the absolute averaged coefficients vector ĉ = 1/M

P

i |ci|.
Repeat until all the atoms of the dictionary , with non zeros value in ĉ, have been scanned :

– Let note the current atom, the kth.
– Define the group of observation that use this atom : wk = {i, 1 ≤ i ≤ M, ck(i) 6= 0}.
– Compute the error matrix Ewk

∈ Rm×card(wk).
– Apply Levenberg - Marquardt algorithm to estimate the polynomials and scale parameters

ak,1..n, ζk, which enable dk to best fit Ewk
– Update the atoms according to ak,1..n, ζk.

4. Go back to the step 2 unless the overall error does not vary anymore

and atoms, this dictionary update doesn’t enforce sparsity. Hence, we need to
reduce the number of atoms used for modeling the signal. For this purpose, we
define the group of observations that use the atom dk, i.e wk = {i, 1 ≤ i ≤
M, ci(k) 6= 0}. In other words, they are the observations whose the coefficients,
associated with the atom dk are non zeros. This forces the atom dk to fit only
a subset of observations and not the entire data set and, thus, enforces sparsity.
Then, we compute the error matrix Ewk

∈ Rms×card(wk). It corresponds to the
estimation error between the observation vector {si}i∈wk

that forms the columns
of Swk

∈ Rm×card(wk) and the signal estimated for the group of observation wk

without taking into account the kth atom, i.e S̃wk
=

∑
j 6=k djc

T
j (i), i ∈ wk.

Finally, we use a non linear approach (the LMA) to estimate the polynomials
and scale parameters ak,1..n, ζk , which enable dk to fit the error matrix Ewk

.
The method, as a whole, is given in Alg. 1.

Convergence : The sparse coding step (Eq. 5bis in Alg. 1) is well known to
be convex and FISTA allows to converge to the unique solution specific to the
current dictionary D. The dictionary update step, where aj, ζj are estimated
using the Levenberg-Marquardt algorithm (LMA), could converge to local min-
ima, depending on the initial solutions. In our experiments, a good convergence
has been reached after few iterations with the polynomials parameters initialized
as Laguerre polynomials coefficients of order n and l and a fixed ζ = 700 [4].

3.2 Reconstruction

The purpose of section 3.1 was to learn the dictionary D. Now, using the esti-
mated D, we are able to model any diffusion signal s , i.e. not in the training data
set used to learn D, by solving for c and with FISTA [6], the convex problem
arg minc{‖s − Dc‖2

2} subject to ‖c‖1 ≤ ǫ, where ǫ is a small number.

4 Results

Synthetic data from a multi-tensor model: The attenuation signal is de-
scribed, by F fibres, as E(qu) =

PF

f=1
pf exp(−4π2τq2uT Dfu) where a fibre f is



defined by a tensor matrix Df and weight pf . q denotes the norm of the effective
gradient and u is a unitary vector in Cartesian coordinate.

Firstly, we learn our dictionary with a training data composed of M = 5000
synthetic signals, evaluated on ms = 1000 q-space samples spread between
bmin = 0 and bmax = 10000 s/mm2. For each diffusion signal generated we
randomly vary the number of fibers (between 1 and 2 fibers), the fractional
anisotropy related to a fiber (between 0.75 and 0.90) and the crossing angle
between these fibers (between 30◦ and 90◦). The maximal angular and radial
order of the dictionary are respectively set to L = 8 and N = 5, which gives
270 atoms. The algorithm 1 converges in 9 iterations in about 20 minutes with
Python and a CPU at 2.8 GHz.

Secondly, we proceed to the signal reconstruction (see sec. 3.2) using our
previous learned dictionary. To evaluate the reconstruction, we compute the
normalized mean square error (NMSE =‖E − Ẽ‖2

2/‖E‖2
2) between the original

observation signal E and the estimated signal Ẽ. We consider three cases : one
fiber, two fibers crossing at 90◦ and two fibers crossing at 60◦, and generate them
using the multi-tensor model. We take 50 samples, a clinically acceptable number
of acquisitions, spread on three shells of b-values 500, 1500, 2500 s/mm2 along
a spherical uniform distribution, and add Rician noise with SNR = 10, 20, 30.
We compare our results while replacing the learned dictionary by the SPF and
SHORE bases [2, 8] in the reconstruction , because these bases are known to
sparsely represent the diffusion signal. We average the results on 1000 trials. To
perform a fair comparison, for each trial we try several regularization parameters
in the reconstruction (ǫ in sec. 3.2) and keep the lowest NMSE. The averaged
NMSEs are shown in table 1. We also add the averaged number of non zero
coefficients after reconstruction. It indicates the sparsity of the dictionary/basis
used in the reconstruction.

SNR=10 SNR=20 SNR=30
NMSE atoms number NMSE atoms number NMSE atoms number

LD
one fiber 0.019421 11.50 0.007712 16.18 0.004757 18.32

60◦- cross. fib. 0.017969 9.12 0.007079 14.04 0.004072 16.16
90◦- cross. fib. 0.015642 6.45 0.006061 9.49 0.003629 12.07

SHORE
one fiber 0.026667 16.21 0.009804 22.05 0.005246 25.90

60◦- cross. fib. 0.023187 13.31 0.009119 19.13 0.004920 24.88
90◦- cross. fib. 0.021361 12.45 0.008370 18.03 0.004569 20.64

SPF
one fiber 0.032988 19.43 0.013062 23.62 0.005901 31.53

60◦- cross. fib. 0.031719 18.79 0.012131 21.34 0.005629 28.69
90◦- cross. fib. 0.026818 14.05 0.011317 16.72 0.005273 24.19

Table 1. NMSE between the estimated signal and the ground truth signal for three
different SNR. The reconstruction is based on the Learned Dictionary (top, LD), the
SHORE basis (second line) and the SPF basis (third line)

Overall, we obtain a higher sparsity (lower number of atoms) and a higher
accuracy (lower NMSE) using the LD. Moreover, for SNR = 10 the SPF basis
is clearly not appropriate in an ℓ1 minimization reconstruction. The correspond-



ing NMSE, between the reconstruction using the learned dictionary and the
SPF/SHORE basis, gets closer while increasing the SNR. However the number
of atoms still remains higher with the SPF and SHORE bases. These results are
not surprising while taking synthetic signals as training data set. In the next
section, we prove the effectiveness of our method on a phantom data set.

Fig. 1. Left : a, d : ODF estimations. b,e : ODF maxima. c, f : EAP estimations
at radii 5 µm (red), 10 µm (green) and 15 µm (blue). Top : Our method. Bottom :
SHORE estimation. Right : ODF from a coronal slice of a human brain.

Phantom data We perform our experiments on a phantom data used in a fiber
cup contest in MICCAI 2009 [7]. The data were acquired for three different b-
values b=650/1500/2000 s/mm2, 64 orientations at each b-value, and an imaging
matrix of 64x64x3. We use two slices as training data set. The test data set is
the third slice. The angular and radial order of the dictionary are respectively
L = 8 and N = 5.

For the reconstruction we take 50 samples following an uniform spherical
law. From the estimated signals, we first present in Fig. 4 (left) : a) the ODFs
computed via Eq. 4 and d) the ODF computed via the SHORE framework [8].
However, because it is quite difficult to directly give an appreciation on these
figures, we compute the local maxima of the ODFs (see Fig. 4.b and e) (left)).
The maxima show that the ODFs, based on our method, catch significant angular
information, whereas the ODFs based on the SHORE framework do not model
the angular information as precisely.

Furthermore, we present in Fig. 4.c and f (left) the EAP computed at three
different radii 5 µm (red), 10 µm (green) and 15 µm (blue) respectively using the
closed form at Eq. 3 and the SHORE framework [8]. It adds a new dimension to
the ODF feature because both radial and angular information are caught. Again
the SHORE estimation appears more noisy than the EAP estimated with our
method. The EAP fully describes the diffusion process. However, few applications
using this feature exist because of the large number of measurements usually
required. With our method, we are able to get a continuous approximation of
the EAP and ODF with a clinically acceptable number of measurements (50
samples). It is worthwhile to note that since our method requires less atoms to
estimate than SHORE and SPF, we could also reconstruct the EAP and ODF
with much less samples while being less sensitive to noise than SHORE and SPF.



Real data We validate our method on a real data from a human brain. The
data were acquired for three different b-values b=500/1000/2000 s/mm2, 60
orientations at each b-value,and an imaging matrix of 93x116x93. We add a part
of the data set in learning process and reconstruct the signal from a coronal
slice with 50 samples following an uniform spherical law. Fig. 4 (right) shows
the ODF estimated via our closed form in eq. 4. These ODFs correctly show the
represented crossing region.

5 Conclusions

In this work, we proposed an original and efficient approach to exploit the abil-
ity of Compressed Sensing (CS) to recover dMRI signals from limited number of
samples. Our approach allows to learn a parametric dictionary characterized by
a set of polynomial and scale parameters well adapted to sparsely and continu-
ously model the diffusion signal as well as to reconstruct in closed form two of
its important features : the EAP and the ODF. We showed that our framework
outperforms the SPF and SHORE framework in both ODF and EAP estima-
tions. Other diffusion features such as the probability to return to zero, the mean
square displacement, and high order moments features can also be easily derived
from our framework.
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