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Model-Based Inversion of Dynamic
Range Compression

Stanislaw Gorlow, Graduate Student Member, IEEE and Joshua D. Reiss, Member, IEEE

Abstract—In this work it is shown how a dynamic nonlinear
time-variant operator, such as a dynamic range compressor, can
be inverted using an explicit signal model. By knowing the model
parameters that were used for compression one is able to recover
the original uncompressed signal from a “broadcast” signal with
high numerical accuracy and very low computational complexity.
A compressor-decompressor scheme is worked out and described
in detail. The approach is evaluated on real-world audio material
with great success.

Index Terms—Dynamic range compression, inversion, model-
based, reverse audio engineering.

I. INTRODUCTION

SOUND or audio engineering is an established discipline
employed in many areas that are part of our everyday

life without us taking notice of it. But not many know how
the audio was produced. If we take sound recording and
reproduction or broadcasting as an example, we may imagine
that a prerecorded signal from an acoustic source is altered by
an audio engineer in such a way that it corresponds to certain
criteria when played back. The number of these criteria may
be large and usually depends on the context. In general, the
said alteration of the input signal is a sequence of numerous
forward transformations, the reversibility of which is of little
or no interest. But what if one wished to do exactly this, that
is to reverse the transformation chain, and what is more, in a
systematic and repeatable manner?

The research objective of reverse audio engineering is
twofold: to identify the transformation parameters given the
input and the output signals, as in [1], and to regain the input
signal that goes with the output signal given the transforma-
tion parameters. In both cases, an explicit signal model is
mandatory. The latter case might seem trivial, but only if
the applied transformation is linear and orthogonal and as
such perfectly invertible. Yet the forward transform is often
neither linear nor invertible. This is the case for dynamic
range compression (DRC), which is commonly described by
a dynamic nonlinear time-variant system. The classical linear
time-invariant (LTI) system theory does not apply here, so a
tailored solution to the problem at hand must be found instead.
At this point, we also like to highlight the fact that neither
Volterra nor Wiener model approaches [2]–[4] offer a solution,
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and neither do describing functions [5], [6]. These are useful
tools when identifying a time-invariant or a slowly varying
nonlinear system or analyzing the limit cycle behavior of a
feedback system with a static nonlinearity.

A method to invert dynamics compression is described
in [7], but it requires an instantaneous gain value to be
transmitted for each sample of the compressed signal. To
provide a means to control the data rate, the gain signal is
subsampled and also entropy coded. This approach is highly
inefficient as it does not rely on a gain model and is extremely
generic.

On the other hand, transmitting the uncompressed signal in
conjunction with a few typical compression parameters like
threshold, ratio, attack, and release would require a much
smaller capacity and yield the best possible signal quality with
regard to any thinkable measure. A more realistic scenario
is when the uncompressed signal is not available on the
consumer side. This is usually the case for studio music
recordings and broadcast material where the listener is offered
a signal that is meant to sound “good” to everyone. However,
the loudness war [8] has resulted in over-compressed audio
material. Over-compression makes a song lose its artistic
features like excitingness or liveliness and desensitizes the
ear thanks to a louder volume. There is a need to restore the
original signal’s dynamic range and to experience audio free
of compression.

In addition to the normalization of the program’s loudness
level, the Dolby solution [9], [10] also includes dynamic range
expansion. The expansion parameters that help reproduce the
original program’s dynamic range are tuned on the broadcaster
side and transmitted as metadata together with the broadcast
signal. This is a very convenient solution for broadcasters, not
least because the metadata is quite compact. Dynamic range
expansion is yet another forward transformation rather than a
true inversion.

Evidently, none of the previous approaches satisfy the
reverse engineering objective of this work. The goal of the
present work, hence, is to invert dynamic range compression,
which is a vital element not only in broadcasting but also
in mastering. The paper is organized as follows. Section II
provides a brief introduction to dynamic range compression
and presents the compressor model upon which our consid-
erations are based. The data model, the formulation of the
problem, and the pursued approach are described next in
Section III. The inversion is discussed in detail in Section
IV. Section V illustrates how an integral step of the inversion
procedure, namely the search for the zero-crossing of a non-
linear function, can be solved in an iterative manner by means
of linearization. Some other compressor features are discussed
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in Section VI. The complete algorithm is given in the form of
pseudocode in Section VII and its performance is evaluated for
different compressor settings in Section VIII. Conclusions are
drawn in Section IX, where some directions for future work
are mentioned.

II. DYNAMIC RANGE COMPRESSION

Dynamic range compression or simply “compression” is
a sound processing technique that attenuates loud sounds
and/or amplifies quiet sounds, which in consequence leads to
a reduction of an audio signal’s dynamic range. The latter
is defined as the difference between the loudest and quietest
sound measured in decibel. In the following, we will use
the word “compression” having “downward” compression in
mind, though the discussed approach is likewise applicable to
“upward” compression. Downward compressing means atten-
uating sounds above a certain threshold while leaving sounds
below the threshold unchanged. A sound engineer might use a
compressor to reduce the dynamic range of source material for
purposes of aesthetics, intelligibility, recording or broadcast
limitations.

Fig. 1 illustrates the basic compressor model from [11,
ch. 2] amended by a switchable RMS/peak detector in the side
chain making it compatible with the compressor/limiter model
from [12, p. 106]. We will hereafter restrict our considerations
to this basic model, as the purpose of the present work is to
demonstrate a general approach rather than a solution to a
specific problem. First, the input signal is split and a copy
is sent to the side chain. The detector then calculates the
magnitude or level of the sidechain signal using the root
mean square (RMS) or peak as a measure for how loud a
sound is [12, p. 107]. The detector’s temporal behavior is
controlled by the attack and release parameters. The sound
level is compared with the threshold level and, for the case
it exceeds the threshold, a scale factor is calculated which
corresponds to the ratio of input level to output level. The
knee parameter determines how quick the compression ratio is
reached. At the end of the side chain, the scale factor is fed to a
smoothing filter that yields the gain. The response of the filter
is controlled by another set of attack and release parameters.
Finally, the gain control applies the smoothed gain to the input
signal and adds a fixed amount of makeup gain to bring the
output signal to a desired level. Such a broadband compressor
operates on the input signal’s full bandwidth, treating all
frequencies from zero through the highest frequency equally.
A detailed overview of all sidechain controls of a basic gain
computer is given in [11, ch. 3], e.g.

III. DATA MODEL, PROBLEM FORMULATION, AND
PROPOSED SOLUTION

A. Data Model and Problem Formulation

The employed data model is based on the compressor from
Fig. 1. The following simplifications are additionally made: the
knee parameter (“hard” knee) and the makeup gain (fixed at 0
dB) are ignored. The compressor is defined as a single-input
single-output (SISO) system, that is both the input and the

output are single-channel signals. What follows is a description
of each block by means of a dedicated function.

The RMS/peak detector as well as the gain computer build
upon a first-order (one-pole) lowpass filter. The sound level or
envelope v(n) of the input signal x(n) is obtained by

x̃(n) = β|x(n)|p + β̄x̃(n− 1)

v(n) =
p
√
x̃(n)

with p ∈ {1, 2}, (1)

where p = 2 represents an RMS detector, and p = 1 a peak
detector. The non-zero smoothing factor β, 0 < β 6 1, β̄ =
1 − β, may take on different values, βatt or βrel, depending
on whether the detector is in the attack or release phase. The
condition for the level detector to enter the attack phase and
to choose βatt over βrel is

|x(n)| > v(n− 1). (2)

A formula that converts a time constant τ into a smoothing
factor is given in [12, p. 109], so e.g.

β = 1− exp [−2.2/(fs · τv)],

where fs is the sampling frequency. The static nonlinearity
in the gain computer is usually modeled in the logarithmic
domain as a continuous piecewise linear function:

F (n) =

{
−S · [V (n)− L] if V (n) > L

0 otherwise
, (3)

where S is the slope, V (n) = 20 log10 v(n), and L is the
threshold in decibel. The slope is further derived from the
desired compression ratio R according to

S = 1− 1

R
. (4)

Equation (3) is equivalently expressed in the linear domain as

f(n) =

{
κv−S(n) if v(n) > l

1 otherwise
, (5)

where l = 10L/20, κ = lS , and f is the linear scale factor
before filtering. The smoothed gain g is then calculated as the
exponentially-weighted moving average,

g(n) = γf(n) + γ̄g(n− 1) with γ ∈ {γatt, γrel}, (6)

where the decision for the gain computer to choose the attack
smoothing factor γatt instead of γrel is subject to

f(n) < g(n− 1). (7)

The output signal is finally obtained by multiplying the above
gain with the input signal:

y(n) = g(n) · x(n). (8)

Due to the fact that the gain g is strictly positive, 0 < g 6 1,
it follows that

sgn(y) = sgn(x), (9)

where sgn is the signum or sign function. In consequence, it
is convenient to factorize the input signal as a product of the
sign and the modulus according to

x(n) = sgn(x) · |x(n)| (10)
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Fig. 1. Basic broadband compressor model (feed forward).

The problem at hand is formulated in the following manner:
Given the compressed signal y(n) and the model parameters

θ =
[
L R p βatt βrel γatt γrel

]
,

recover the modulus of the original signal |x(n)| from |y(n)|
based on θ. For a more intuitive use, the smoothing factors β
and γ may be replaced by the time constants τv and τg . The
meaning of each parameter is listed below.
L The threshold in dB
R The compression ratio dBin : dBout
p The detector type (RMS or peak)
τv,att The attack time of the envelope filter in ms
τv,rel The release time of the envelope filter in ms
τg,att The attack time of the gain filter in ms
τg,rel The release time of the gain filter in ms

B. Proposed Solution

The output of the side chain, that is the gain of |x(n)|, given
θ, x̃(n− 1), and g(n− 1), may be written as

g(n) = G[|x(n)| | θ, x̃(n− 1), g(n− 1)]. (11)

In (11), G denotes a nonlinear dynamic operator that maps
the modulus of the input signal |x(n)| onto a sequence of
instantaneous gain values g(n) according to the compressor
model represented by θ. Using (11), (8) can be solved for
|x(n)| yielding

|x(n)| = G−1[g(n) | θ, x̃(n− 1), g(n− 1)] · |y(n)|

subject to invertibility of G. In order to solve the above equa-
tion one requires the knowledge of g(n), which is unavailable.

However, since g is a function of |x|, we can express |y| as a
function of one independent variable |x|, and in that manner
we obtain an equation with a single unknown:

|y(n)| = H[|x(n)| | θ, x̃(n− 1), g(n− 1)], (12)

where H represents the entire compressor. If H is invertible,
i.e. bijective for all n, |x(n)| can be obtained from |y(n)| by

|x(n)| =

{
H−1[|y(n)| | θ, . . . ] if v(n) > l

|y(n)| otherwise
. (13)

And yet, since v(n) is unknown, the condition for applying
decompression must be predicted from y(n), x̃(n − 1), and
g(n − 1), and therefore needs the condition for toggling
between the attack and release phases. Depending on the
quality of the prediction, the recovered modulus |z(n)| may
differ somewhat at transition points from the original modulus
|x(n)|, so that in the end

x(n) ≈ sgn(y) · |z(n)| = z(n). (14)

In the next section it is shown how such an inverse compressor
or decompressor is derived.

IV. INVERSION OF DYNAMIC RANGE COMPRESSION

A. Characteristic Function
For simplicity, we choose the instantaneous envelope value

v(n) instead of |x(n)| as the independent variable in (12). The
relation between the two items is given by (1). From (6) and
(8), when v(n) > l,

|y(n)| = [γf(n) + γ̄g(n− 1)] · |x(n)| (15)
(5)
=
[
γκv−S(n) + γ̄g(n− 1)

]
· |x(n)|. (16)



4

From (1),

|y(n)| =
[
γκv−S(n) + γ̄g(n− 1)

]
· p

√[
vp(n)− β̄x̃(n− 1)

]
/β,

(17)

or equivalently (note that β 6= 0 by definition)

β|y(n)|p =
[
γκv−S(n) + γ̄g(n− 1)

]p
·
[
vp(n)− β̄x̃(n− 1)

]
.

(18)

Moreover, (18) has a unique solution if G and also H are
invertible. Moving the expression on the left-hand side over
to the right-hand side, we may define

ζp(v) ,
[
γκv−S(n) + γ̄g(n− 1)

]p
·
[
vp(n)− β̄x̃(n− 1)

]
− β|y(n)|p,

(19)

which shall be termed the characteristic function. The root
or zero-crossing of ζp(v) hence represents the sought-after
envelope value v(n). Once v(n) is found (see Section V),
the current values of x̃, |x|, and g are updated as per

x̃(n) = vp(n)

|x(n)| = p

√[
x̃(n)− β̄x̃(n− 1)

]
/β

g(n) = |y(n)|/|x(n)|

(20)

and the decompressed sample is then calculated as

x(n) = sgn(y) · |x(n)|. (21)

B. Attack-Release Phase Toggle

1) Envelope Smoothing: In case a peak detector is in use,
β takes on two different values. The condition for the attack
phase is then given by (2) and is equivalent to

|x(n)|p > x̃(n− 1). (22)

Assuming that the past value of x̃ is known at time n, what is
needed to be done is to express the unknown |x| in terms of
|y| such that the above equation still holds true. If γ is rather
small, γ 6 0.1� 1, or equivalently if τg is sufficiently large,
τg > 0.5 ms at 44.1-kHz sampling, the term γf(n) in (15) is
negligible, so it approximates (15) as

|y(n)| ≈ g(n− 1) · |x(n)|. (23)

Solving (23) for |x(n)| and plugging the result into (22), we
obtain [

|y(n)|
g(n− 1)

]p
> x̃(n− 1). (24)

If (24) holds true, the detector is assumed to be in the attack
phase.

2) Gain Smoothing: Just like the peak detector, the gain
smoothing filter may be in either the attack or release phase.
The necessary condition for the attack phase in (7) may also
be formulated as

v(n) >

[
κ

g(n− 1)

]1/S

with v(n) > l. (25)

But since the current envelope value is unknown, we need to
substitute v(n) in the above inequality by something that is
known. With this in mind, (15) is rewritten as

|y(n)| =
[
γ

f(n)

g(n− 1)
+ γ̄

]
g(n− 1) · |x(n)|

=

[
1− γ

(
1− f(n)

g(n− 1)

)]
g(n− 1) · |x(n)|. (26)

Provided that f(n) < g(n − 1), and due to the fact that 0 <
γ 6 1, the expression in square brackets in (26) is smaller
than one, and thus during attack

|y(n)| < g(n− 1) · |x(n)|. (27)

Substituting |x(n)| by p

√[
vp(n)− β̄x̃(n− 1)

]
/β using (20),

and solving (27) for v(n) results in

v(n) >
p

√
β

[
|y(n)|
g(n− 1)

]p
+ β̄x̃(n− 1). (28)

If v(n) in (25) is substituted by the expression on the right-
hand side of (28), (25) still holds true, so the following
sufficient condition is used to predict the attack phase of the
gain filter:

p

√
β

[
|y(n)|
g(n− 1)

]p
+ β̄x̃(n− 1)

>

[
κ

g(n− 1)

]1/S

.

(29)

Note that the values of all variables are known whenever (29)
is evaluated.

C. Envelope Predictor

An instantaneous estimate of the envelope value v(n) is
required not only to predict when compression is active,
formally v(n) > l according to (5), but also to initialize the
iterative search algorithm in Section V. Resorting once more to
(15) it can be noted that in the opposite case where v(n) 6 l,
f(n) = 1, and so

|x(n)| = |y(n)|
γ + γ̄g(n− 1)

. (30)

The sound level of the input signal at time n is therefore

v(n) =
p

√
β

[
|y(n)|

γ + γ̄g(n− 1)

]p
+ β̄x̃(n− 1), (31)

which must be greater than the threshold for compression to
set in, whereas β and γ are selected based on (24) and (29),
respectively.

D. Error Analysis

Consider |x(n)| being estimated from |y(n)| according to

|x̂(n)| = |y(n)|
g(n− 1)

. (32)
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The normalized error is then

ê(n) =
|x̂(n)| − |x(n)|
|y(n)|

(33)

=

[
|y(n)|
g(n− 1)

− |y(n)|
g(n)

]
/|y(n)|

=
g(n)− g(n− 1)

g(n) · g(n− 1)
. (34)

As g(n), g(n− 1) > 0, ê(n) < 0 during attack and ê(n) > 0
during release, respectively. The instantaneous gain g(n) can
also be expressed as

g(n) = γ

N∑
m=0

γ̄mf(n−m), (35)

where N is the runtime in samples. Using (35) in (34), the
magnitude of the error is given by

|ê(n)| =

∣∣∣∑N
m=0 γ̄

m[f(n−m)− f(n−m− 1)]
∣∣∣

γ
∑N
i,j=0 γ̄

i+jf(n− i)f(n− j − 1)
(36)

6

∑N
m=0 γ̄

m|f(n−m)− f(n−m− 1)|
γ
∑N
i,j=0 γ̄

i+jf(n− i)f(n− j − 1)
. (37)

For γ = 1, (36) becomes

|ê(n)|γ=1 =
|f(n)− f(n− 1)|
f(n) · f(n− 1)

, (38)

whereas for γ → 0, (37) converges to infinity:

|ê(n)|γ→0 6
1

γ

∑N
m=0

>0 during compression︷ ︸︸ ︷
|f(n−m)− f(n−m− 1)|∑N

i,j=0 f(n− i)f(n− j − 1)

→∞. (39)

So, the error is smaller for large γ or short τg . The smallest
possible error is for γ = 1, which then again depends on the
current and the previous value of f . The error accumulates if
γ < 1 with N . The difference between consecutive f -values is
signal dependent. The signal envelope v(n) fluctuates less and
is thus smoother for smaller β or longer τv . f(n) is also more
stable when the compression ratio R is low. For R = 1, f(n)
is perfectly constant. The threshold L has a negative impact
on error propagation. The lower L the more the error depends
on N , since more samples are compressed with different f -
values. The RMS detector stabilizes the envelope more than
the peak detector, which also reduces the error. Furthermore,
since usually τatt < τrel, the error due to β is smaller during
release whereas the error due to γ is smaller during attack.
Finally, the error is expected to be larger at transition points
between quiet to loud signal passages.

The above error may cause a decision in favor of a wrong
smoothing factor β in (24), like βatt instead of βrel e.g. The
decision error from (24) then propagates to (29). Given that
βatt > βrel, the error due to (32) is accentuated by (24) with
the consequence that (29) is less reliable than (24). The total
error in (29) thus scales with |βatt − βrel|. In regard to (31),
reliability of the envelope’s estimate is subject to validity of
(24) and (29). A better estimate is obtained when the sound

level detector and the gain filter are both in either the attack
or release phase. Here too, the estimation error increases with
|βatt − βrel| and also with |γatt − γrel|.

V. NUMERICAL SOLUTION OF THE CHARACTERISTIC
FUNCTION

v

ζp(vi)

Δi

0

vi vi + 1

ζp(vi+ Δi)

vi+ Δi

ζp(v)

zero-crossing

or root

Fig. 2. Graphical illustration for the iterative search for the zero-crossing.

An approximate solution to the characteristic function can
be found, e.g., by means of linearization. The estimate from
(31) may moreover serve as a starting point for an iterative
search of an optimum:

vinit =
p

√
β

[
|y(n)|

γ + γ̄g(n− 1)

]p
+ β̄x̃(n− 1).

The criterion for optimality is further chosen as the deviation
of the characteristic function from zero, initialized to

∆init = |ζp(vinit)|. (40)

Thereupon, (19) may be approximated at a given point using
the equation of a straight line, ζ = m · v + c, where m
is the slope and c is the ζ-intercept. The zero-crossing is
characterized by the equation

ζp(vi + ∆i)− ζp(vi)
∆i

· v + ζp(vi) = 0, (41)

as shown in Fig. 2. The new estimate of the optimal v is found
as

vi+1 = vi −
∆i · ζp(vi)

ζp(vi + ∆i)− ζp(vi)
. (42)

If vi+1 is less optimal than vi, the iteration is stopped and vi
is the final estimate. The iteration is also stopped if ∆i+1 is
smaller than some ε. In the latter case, vi+1 has the optimal
value with respect to the chosen criterion. Otherwise, vi is
set to vi+1 and ∆i is set to ∆i+1 after every step and the
procedure is repeated until vi+1 has converged to a more
optimal value. The proposed method is a special form of the
secant method with a single initial value vinit.

VI. GENERAL REMARKS

A. Stereo Linking

When dealing with stereo signals, one might want to apply
the same amount of gain reduction to both channels to prevent
image shifting. This is achieved through stereo linking. One
way is to calculate the required amount of gain reduction for
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each channel independently and then apply the larger amount
to both channels. The question which arises in this context
is which of the two channels was the gain derived from.
To give an answer resolving the dilemma of ambiguity, one
solution would be to signal which of the channels carries the
applied gain. One could then decompress the marked sample
and use its gain for the other channel. Although very simple
to implement, this approach provokes an additional data rate
of 44.1 kbps at 44.1-kHz sampling. A rate-efficient alternative
that comes with a higher computational cost is realized in the
following way. First, one decompresses both the left and the
right channel independently and in so doing one obtains two
estimates zl(n) and zr(n), where subscript l shall denote the
left channel and subscript r the right channel, respectively. In
a second step, one calculates the compressed values of zl(n)
and zr(n) and selects the channel for which H[z(n)] = y(n)
holds true. In a final step, one updates the remaining variables
using the gain of the selected channel.

B. Lookahead

A compressor with a look-ahead function, i.e. with a delay
in the main signal path as in [12, p. 106], uses past input
samples as weighted output samples. Now that some future
input samples are required to invert the process—which are
unavailable, the inversion is rendered impossible. g(n) and
x(n) must thus be in sync for the approach to be applied.

C. Clipping and Limiting

Another point worth mentioning is that “hard” clipping and
“brick-wall” limiting are special cases of compression with
the attack time set to zero and the compression ratio set to
∞ : 1. The static nonlinearity F in that particular case is a
one-to-many mapping, which by definition is noninvertible.

VII. THE ALGORITHM

The complete algorithm is divided into three parts, each
of them given as pseudocode below. Algorithm 1 outlines
the compressor that corresponds to the model from Sections
II–III. Algorithm 2 illustrates the decompressor described in
Section IV, and the iterative search from Section V is finally
summarized in Algorithm 3. The parameter fs represents the
sampling frequency in kHz.

VIII. PERFORMANCE EVALUATION

A. Performance Metrics

To evaluate the inverse approach, the following quantities
are measured: the root-mean-square error (RMSE),

RMSE =

√√√√ 1

N

N∑
n=1

[z(n)− x(n)]
2, (43)

given in decibel relative to full scale (dBFS), the perceptual
similarity between the original and decompressed signal, and
the execution time of the decompressor relative to real time
(RT). Furthermore, we present the percentage of compressed
samples, the mean number of iterations until convergence per

Algorithm 1 The compressor
function COMP(xn,θ, fs)

x̃n ← 0
gn ← 1
for n← 1, N do

if |xn|p > x̃n then
β ← 1− exp [−2.2/(fs · τv,att)]

else
β ← 1− exp [−2.2/(fs · τv,rel)]

end if
x̃n ← β|xn|p + β̄x̃n
vn ← p

√
x̃n

if vn > l then
fn ← κv−Sn

else
fn ← 1

end if
if fn < gn then

γ ← 1− exp [−2.2/(fs · τg,att)]
else

γ ← 1− exp [−2.2/(fs · τg,rel)]
end if
gn ← γfn + γ̄gn
yn ← gnxn

end for
return yn

end function

compressed sample, the error rate of the attack-release toggle
for the gain smoothing filter, and finally the error rate of the
envelope predictor. The perceptual similarity is assessed by
PEMO-Q [13], [14] with PSMt as metric. The simulations are
run in MATLAB on an Intel Core i5-520M CPU.

B. Computational Results

Fig. 3 shows the inverse output signal z(n) for a synthetic
input signal x(n) using an RMS detector. The inverse signal
is obtained from the compressed signal y(n) with an error of
−129 dBFS. It is visually indistinguishable from the original
signal x(n). Due to the fact that the signal envelope is constant
most of the time, the error is noticeable only around transition
points—which are few. The decompressor’s performance is
further evaluated for some commercial compressor presets.
The used audio material consists of 12 items covering speech,
sung voice, music, and jingles. All items are normalized
to −16 LKFS [15]. The ε-value in the break condition of
Algorithm 3 is set to 1 · 10−12. A detailed overview of
compressor settings and performance figures is given in Tables
I–II. The presented results suggest that the decompressed
signal is perceptually indistinguishable from the original—the
PSMt-value is flawless. This was also confirmed by the authors
through informal listening tests.

As can be seen from Table II, the largest inversion error is
associated with setting E and the smallest with setting B. For
all five settings, the error is larger when an RMS detector is
in use. This is partly due to the fact that ζ2(v) has a stronger
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Fig. 3. An illustrative example using an RMS amplitude detector with τv set to 5 ms, a threshold of −20 dBFS (dashed line in the upper right corner), a
compression ratio of 4 : 1, and τg set to 1.6 ms for attack and 17 ms for release, respectively. The RMSE is −129 dBFS.

TABLE I
SELECTED COMPRESSOR SETTINGS

Parameter Description A B C D E

L (dBFS) Threshold −32.0 −19.9 −24.4 −26.3 −38.0
R (dBin : dBout) Ratio 3.0 : 1 1.8 : 1 3.2 : 1 7.3 : 1 4.9 : 1
τv,att (ms) Envelope attack

5.0 5.0 5.0 5.0 5.0
τv,rel (ms) Envelope release
τg,att (ms) Gain attack 13.0 11.0 5.8 9.0 13.1
τg,rel (ms) Gain release 435 49 112 705 257

TABLE II
PERFORMANCE FIGURES OBTAINED FOR VARIOUS AUDIO MATERIAL (12 ITEMS)

A B C D E

Peak RMS Peak RMS Peak RMS Peak RMS Peak RMS

RMSE (dBFS) −74.4 −71.2 −97.2 −93.7 −81.0 −77.8 −76.3 −69.5 −63.2 −53.8
PSMt (PEMO-Q) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Execution time (RT) 0.54 0.53 0.40 0.44 0.47 0.49 0.48 0.50 0.54 0.54

Compression rate (%) 78.7 80.8 38.5 50.7 61.8 67.3 67.6 71.8 85.2 86.4
Iterations per sample (#) 1.04 1.02 1.00 1.01 1.07 1.06 1.05 1.03 1.09 1.04
Attack-release error rate (%) 0.05 0.09 0.01 0.01 0.02 0.04 0.01 0.03 0.14 0.51
State error rate (%) 0.02 0.03 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.05
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Algorithm 2 The decompressor
function DECOMP(yn,θ, ε, fs)

x̃n ← 0
gn ← 1
for n← 1, N do

if |yn| > p
√
x̃n · gn then

β ← 1− exp [−2.2/(fs · τv,att)]
else

β ← 1− exp [−2.2/(fs · τv,rel)]
end if
if |yn| > p

√[
(κ/gn)

p/S − β̄x̃n
]
/β · gn then

γ ← 1− exp [−2.2/(fs · τg,att)]
else

γ ← 1− exp [−2.2/(fs · τg,rel)]
end if
if |yn| > p

√(
lp − β̄x̃n

)
/β · (γ + γ̄gn) then

vn ← p
√
β[|yn|/(γ + γ̄gn)]

p
+ β̄x̃n

vo ← CHARFZERO(vn, ε)

|xn| ← p

√(
vpo − β̄x̃n

)
/β

x̃n ← vpo
gn ← |yn|/|xn|

else
gn ← γ + γ̄gn
|xn| ← |yn|/gn
x̃n ← β|xn|p + β̄x̃n

end if
xn ← sgn(yn) · |xn|

end for
return xn

end function

Algorithm 3 The iterative search for the zero-crossing
function CHARFZERO(vn, ε)

vi ← vn
repeat

∆i ← |ζp(vi)|
vi ← vi −∆i · ζp(vi)/[ζp(vi + ∆i)− ζp(vi)]
if |ζp(vi)| > ∆i then

return vn
end if
vn ← vi

until |ζp(vi)| < ε
return vi

end function

curvature in comparison to ζ1(v). By defining the distance in
(40) as ∆ , p

√
|ζp(v)|, it is possible to attain a smaller error

for an RMS detector at the cost of a slightly longer runtime.
In most cases, the envelope predictor works more reliably as
compared to the toggle switch between attack and release. It
can also be observed that the choice of time constants seems
to have little impact on decompressor’s accuracy. The major
parameters that affect the decompressor’s performance are L
and R, while the threshold is evidently the predominant one:
the RMSE strongly correlates with the threshold level.

Figs. 4–5 show the inversion error as a function of various
time constants. These are in the range of typical attack and
release times for a limiter (peak) or compressor (RMS) [12,
pp. 109–110]. It can be observed that the inversion accuracy
depends on the release time of the peak detector and not so
much on its attack time for both the envelope and the gain
filter, see Figs. 4, 5 (b). For the envelope filter, all error curves
exhibit a local dip around a release time of 0.5 s. The error
increases steeply below that bound but moderately with larger
values. In the proximity of 5 s, the error converges to −130
dBFS. With regard to the gain filter, the error behaves in a
reverse manner. The curves in Fig. 5 (b) exhibit a local peak
around 0.5 s with a value of −180 dBFS. It can further be
observed in Fig. 4 (a) that the curve for τv,rel = 1 ms has a
dip where τv,att is close to 1 ms, i.e. where |βatt − βrel| is
minimal. This is also true for Fig. 4 (c) and (d): the lowest
error is where the attack and release times are identical. As a
general rule, the error that is due to the attack-release switch
is smaller for the gain filter in Fig. 5.

Looking at Fig. 6 one can see that the error decreases with
threshold and increases with compression ratio. At a ratio
of 10 : 1 and beyond, the RMSE scales almost exclusively
with the threshold. The lower the threshold, the stronger the
error propagates between decompressed samples, which leads
to a larger RMSE value. The RMS detector further augments
the error because it stabilizes the envelope v(n) more than
the peak detector. Clearly, the threshold level has the highest
impact on the decompressor’s accuracy.

IX. CONCLUSION AND OUTLOOK

This work examines the problem of finding an inverse to a
nonlinear dynamic operator such as a digital compressor. The
proposed approach is characterized by the fact that it uses an
explicit signal model to solve the problem. To find the “dry”
or uncompressed signal with high accuracy, it is sufficient to
know the model parameters. The parameters can e.g. be sent
together with the “wet” or compressed signal in the form of
metadata as is the case with Dolby Volume and ReplayGain
[16]. A new bitstream format is not mandatory, since many
digital audio standards, like WAV or MP3, provide means to
tag the audio content with “ancillary” data. With the help of
the metadata, one can then reverse the compression applied
after mixing or before broadcast. This allows the end user to
have control over the amount of compression, which may be
preferred because the sound engineer has no control over the
playback environment or the listener’s individual taste.

When the compressor parameters are unavailable, they can
possibly be estimated from the compressed signal. This may
thus be a direction for future work. Another direction would
be to apply the approach to more sophisticated models that
include a “soft” knee, parallel and multiband compression, or
perform gain smoothing in the logarithmic domain, see [11],
[12], [17], [18] and references therein.

In conclusion, we want to draw the reader’s attention to the
fact that the presented figures suggest that the decompressor
is realtime capable which can pave the way for exciting new
applications. One such application could be the restoration of
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Fig. 4. RMSE as a function of typical attack and release times using a peak (upper row) or an RMS amplitude detector (lower row). In the left column, the
attack time of the envelope filter is varied while the release time is held constant. The right column shows the reverse case. The time constants of the gain
filter are fixed at zero. In all four cases, threshold and ratio are fixed at −32 dBFS and 4 : 1, respectively.
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Fig. 6. RMSE as a function of threshold relative to the signal’s average loudness level (left column) and compression ratio (right column) using a peak (upper
row) or an RMS amplitude detector (lower row). The time constants are: τv = 5 ms, τg,att = 20 ms, and τg,rel = 1 s.

dynamics in over-compressed audio or else the accentuation
of transient components, see [19]–[21], by an adaptively tuned
decompressor that has no prior knowledge of the compressor
parameters.
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