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Reverse Audio Engineering:
Model-Based Inversion of Dynamic Range

Compression
Stanislaw Gorlow, Graduate Student Member, IEEE and Joshua D. Reiss, Member, IEEE

Abstract—Reverse audio engineering so far has been quite an
understudied research topic, which is attested by the irrefutable
fact that existing literature on that particular subject is scarce.
In the present work it is shown how a dynamic nonlinear time-
variant operator, such as a digital compressor, can be inverted
in a mathematical sense using an explicit data model. Knowing
the model parameters which were used during compression, one
is competent to recover the original (uncompressed) signal from
the broadcast signal with high numerical accuracy and also low
computational complexity. A complete compressor-decompressor
scheme is worked out and described in detail, and the proposed
approach is further tested on synthetic signals for some typical
compressor settings with considerable success.

Index Terms—Dynamic range compression, model-based in-
version, reverse audio engineering.

I. INTRODUCTION

SOUND or audio engineering is an established discipline
employed in many areas that are part of our everyday life

without us taking notice of it. Most of us watch television or
listen to the radio and even more use the Web as the number
one source for music and entertainment. But not many know
how the audio was produced. If we take sound recording and
reproduction or broadcasting as an example, we may imagine
that a prerecorded signal from an acoustic source is altered by
an audio engineer in such a way that it corresponds to certain
criteria when played back. The number of these criteria may
be large and usually depends on the context. In general, the
said alteration of the input signal is a sequence of numerous
forward transformations, the reversibility of which is of little
or no interest. But what if one wished to do exactly this, that
is to reverse the transformation chain, and what is more, in a
systematic and repeatable manner? Literature on that issue is
few and far between. More research that deals with the topic
of reverse audio engineering (RAE) is therefore needed.

The research objective of RAE can be twofold: to identify
the transformation parameters given the input and the output
signals, as in [1], or else to regain the input signal that goes
with the output signal given the transformation parameters. In
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both cases, an explicit signal model is mandatory. The latter
case might seem trivial, but only if the applied transformation
is linear and orthogonal and as such perfectly invertible. Yet
enough times the forward transform is neither linear nor has
it an inverse. This is the case for dynamic range compression
(DRC) which is commonly described by a dynamic nonlinear
time-variant system. The classical linear time-invariant (LTI)
system theory at large does not apply here, so that a tailored
solution to the problem at hand must be found instead.

Although a minimum amount of side information to invert
dynamics compression is promised by the title, the solution in
[2] requires an instantaneous gain value to be transmitted for
each sample of the compressed signal. To provide a means to
control the data rate, the gain signal is subsampled and also
entropy coded. Not relying on a gain model and thus being
extremely generic, this approach is highly inefficient, simply
because transmitting the uncompressed signal in conjunction
with some few typical compression parameters like threshold,
ratio, attack, and release requires a much smaller capacity on
the one hand and yields the best possible signal quality with
regard to any thinkable measure on the other hand.

Nonetheless, the more realistic scenario is without a doubt
when the uncompressed signal is not available on consumer
side. This is usually the case for studio music recordings and
broadcast material. There, the listener is offered a signal that
is meant to sound “good” to everyone. The loudness war [3]
however had an adverse effect: Most of, if not all, latter-day
audio material is over-compressed. Over-compression makes
a song lose its artistic features like excitingness or liveliness
and desensitizes the ear thanks to a louder volume. There are
imaginably quite a few good reasons why somebody would
appreciate the option to restore the original signal’s dynamic
range and to experience audio free of compression.

In addition to the normalization of the program’s loudness
level, the Dolby solution [4], [5] includes also dynamic range
expansion. The expansion parameters that help reproduce the
the original program’s dynamic range are tuned on broadcaster
side and transmitted as metadata together with the broadcast
signal. This is a very convenient solution for broadcasters not
least because the metadata is quite compact. Dynamic range
expansion is yet another forward transformation rather than a
true inversion.

Evidently, none of the previous approaches satisfy the RAE
objective as it was formulated earlier. The goal of the present
work, hence, is to invert dynamic range compression, which is
a vital element not only in broadcasting but also in mastering.
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The remaining part of the paper looks as follows: Section II
provides a brief introduction to the basics of dynamic range
compression and presents the compressor model upon which
my considerations are based. The data model, the formulation
of the problem, and the pursued approach are described next
in Section III. The inversion is discussed in detail in Section
IV. Section V illustrates how an integral step of the inversion
procedure, namely the search for the zero-crossing of a non-
linear function, can be solved in an iterative manner by means
of linearization. The complete algorithm is given in the form
of pseudocode in Section VI and its performance is evaluated
for different compressor settings in Section VII. Conclusions
are drawn in Section VIII and some thinkable directions for
future work are also mentioned.

II. DYNAMIC RANGE COMPRESSION

Dynamic range compression or simply “compression” is
a sound processing technique that attenuates loud sounds
and/or amplifies quiet sounds, which in consequence leads
to a reduction of an audio signal’s dynamic range1. In what
follows, I will use the word “compression” having “down-
ward” compression in mind.2 Downward compression means
attenuating sounds above a certain threshold while leaving
sounds below the threshold unchanged. Using digital signal
processing, compression is applied in the form of an algorithm
which often emulates an equivalent analog technology. Such
an algorithm is called a “compressor”. A sound engineer might
use a compressor to reduce the dynamic range of source
material for purposes of aesthetics, intelligibility, recording or
broadcast limitations. Fig. 1 illustrates the basic compressor
model from [6, ch. 2] which is moreover compatible with the
compressor/limiter model in [7, ch. 4]. I will hereafter restrict
my considerations to this basic model, as the purpose of the
present work is to demonstrate a general approach rather than
a solution to a specific problem—although a solution for the
model under consideration is also offered.

The broadband compressor in Fig. 1 operates in the fol-
lowing manner: First, the input signal is split and a copy is
sent to the side chain. The sidechain signal, alias “key” or
“trigger”, is therefore deemed to be always equal to the input
signal. The detector then calculates the magnitude or level of
the sidechain signal using the root mean square (RMS) or
peak as a measure for how loud a sound is [7, ch. 4]. The
sound level is then compared with the threshold level, and in
case it exceeds the threshold a scale factor is calculated which
corresponds to the ratio. The knee parameter determines how
quick the compression ratio is reached. At the end of the side
chain, the scale factor is fed to a smoothing filter that yields
the gain. The response of the filter is controlled by the attack
and release parameters. Finally, the gain control applies the
smoothed gain to the input signal and adds a fixed amount
of makeup gain to bring the output signal to a desired level.
Such a broadband compressor operates on the input signal’s
full bandwidth, treating all frequencies from zero through the

1In audio, dynamic range is the difference between the loudest and quietest
sound measured in decibel.

2The discussed approach is likewise applicable to upward compression.

highest frequency equally. A detailed overview of all sidechain
controls of a basic gain computer is given in [6, ch. 3].

At this point, I would like to highlight the fact that neither
Volterra nor Wiener model approaches [8] are applicable to
the compressor model from Fig. 1, and neither are describing
functions [9], [10]. These are useful tools when identifying a
time-invariant nonlinear system or analyzing the limit cycle
behavior of a feedback system with a static nonlinearity. Yet
none of the italicized criteria apply to the referenced model.

III. DATA MODEL, PROBLEM FORMULATION, AND
PROPOSED SOLUTION

A. Data Model

The used data model is based upon the compressor from
Fig. 1. The following simplifications are additionally made: the
knee parameter is ignored (“hard” knee) and so is the makeup
gain (fixed at 0 dB). The compressor is further deemed to be
a single-input single-output (SISO) system, that is both the
input and the output are mono. What follows is a description
of each block by means of a dedicated function.

The RMS/peak detector builds upon a first-order (one-pole)
lowpass filter given by the recurrence relation

v(n) = αu(n) + ᾱv(n− 1), (1)

where α is a non-zero smoothing factor, 0 < α 6 1, and ᾱ ,
1−α. u and v represent the input and the output, respectively,
and n is the discrete-time index. Using (1) the sound level or
envelope e(n) is obtained by

x̂(n) = β|x(n)|p + β̄x̂(n− 1)

e(n) =
p
√
x̂(n)

with p ∈ {1, 2}. (2)

If p = 2 one speaks of an RMS detector or else of a peak
detector if p = 1. The smoothing factor β may further take on
different values, depending on whether the detector is in attack
or release phase. A formula that converts a time constant into
a corresponding smoothing factor can be found in [7, ch. 4].
The static nonlinearity in the gain computer is usually modeled
in the logarithmic domain as a continuous piecewise linear
function:

F (n) =

{
−SLP · [E(n)− THR] if E(n) > THR,
0 otherwise,

(3)

where SLP is the slope, E(n) = 20 log10 e(n), and THR is
the threshold in decibel. The slope is further derived from the
desired compression ratio RAT according to [7, ch. 4]:

SLP = 1− 1

RAT
. (4)

Note that with a compression ratio of 1 : 1 the slope in the
second piece of (3) is zero, and so is F . Also, compression
sets in only when the envelope exceeds the threshold. Equation
(3) can be equivalently expressed in the linear domain as

f(n) =

{
Ke−SLP(n) if e(n) > thr,
1 otherwise,

(5)
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Fig. 1. Basic broadband compressor model (feed forward)

where K = 10SLPTHR/20, thr = 10THR/20, and f is the scale
factor before filtering. The smoothed gain g is then calculated
as the exponentially-weighted moving average as in (1),

g(n) = γf(n) + γ̄g(n− 1). (6)

The output signal is finally obtained by multiplying the above
gain with the input signal

y(n) = g(n) · x(n). (7)

B. Problem Formulation

Due to the fact that the gain g is strictly positive, 0 < g 6 1,
it follows that

|y(n)| = g(n) · |x(n)| (8)

and further

sgn(y) = sgn(x), (9)

where sgn is the signum or sign function. In consequence, it
is convenient to factorize the input signal as a product of the
sign and the modulus according to

x(n) = sgn(x) · |x(n)| (10)

with sgn(x) being known due to (9). The problem to be solved
can hence be formulated as follows: Given the compressed
signal y(n) and the model parameters θ, recover the modulus
of the original signal |x(n)| from |y(n)| based on θ using the
one-sample history of x̂ and g, that is x̂(n− 1) and g(n− 1),
respectively.

C. Proposed Solution

The output of the side chain, that is the gain of |x(n)|, given
θ, x̂(n− 1), and g(n− 1), may be written as

g(n) = G[|x(n)| | θ, x̂(n− 1), g(n− 1)]. (11)

In (11), G denotes a nonlinear dynamic operator that maps
the modulus of the input signal |x(n)| onto a sequence of
instantaneous gain values g(n) according to the compressor
model represented by θ. The compressor shall be completely
described by the input parameters listed below.

TYP The detector type (corresponds to p)
ATT1 The attack time of the envelope filter in ms
REL1 The release time of the envelope filter in ms
THR The threshold in dB
RAT The compression ratio (input : output)
ATT2 The attack time of the gain filter in ms
REL2 The release time of the gain filter in ms

Using (11), (8) can be solved for |x(n)| yielding

|x(n)| = G−1[g(n) | θ, x̂(n− 1), g(n− 1)] · |y(n)| (12)

subject to invertibility of G. In order to solve the above equa-
tion one requires the knowledge of g(n), which is unavailable.
However, since g is a function of |x|, we can express |y| in
(8) as a function of one independent variable |x|, and in that
manner we obtain an equation with a single unknown:

|y(n)| = H[|x(n)| | θ, x̂(n− 1), g(n− 1)], (13)

where H represents the entire compressor. If H is invertible,
i.e. bijective for all n, |x(n)| can be obtained from |y(n)| by

|x(n)| = H−1[|y(n)| | θ, x̂(n− 1), g(n− 1)], (14)
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or more explicitly:

|x(n)| =

{
H−1[|y(n)| | θ . . . ] if e(n) > thr,
|y(n)| otherwise.

(15)

And yet, since e(n) is unknown, the condition for applying
decompression must be predicted from y(n), x̂(n − 1), and
g(n − 1), and so needs the condition for toggling between
the attack and release phases. Depending on the quality of
the prediction, the recovered modulus may differ somewhat at
transition points from the original modulus, so that in the end

x(n) ≈ sgn(y) ·H−1[|y(n)| | θ, x̂(n− 1), g(n− 1)]. (16)

In the next section it is shown how such an inverse compressor
or decompressor is derived.

IV. INVERSION OF DYNAMIC RANGE COMPRESSION

A. Characteristic Function

For reason of a somewhat simpler calculus, let us choose
the instantaneous envelope value e(n) instead of |x(n)| as
the independent variable in (13); the relation between the two
items is given by (2). We start out from (8):

|y(n)| = g(n) · |x(n)|
(6)
= [γf(n) + γ̄g(n− 1)] · |x(n)| (17)
(5)
=
[
γKe−SLP(n) + γ̄g(n− 1)

]
· |x(n)|. (18)

At this point we solve (2) for |x(n)| in terms of e(n) and plug
the result in into (18), which yields

|y(n)| =
[
γKe−SLP(n) + γ̄g(n− 1)

]
× p

√[
ep(n)− β̄x̂(n− 1)

]
/β,

(19)

or equivalently (note that β 6= 0 by definition)

β|y(n)|p =
[
γKe−SLP(n) + γ̄g(n− 1)

]p
×
[
ep(n)− β̄x̂(n− 1)

]
.

(20)

Moreover, (20) has a unique solution if G and also H are
invertible. Moving the expression on the left-hand side over
to the right-hand side, we may define

zp(e) ,
[
γKe−SLP(n) + γ̄g(n− 1)

]p
×
[
ep(n)− β̄x̂(n− 1)

]
− β|y(n)|p,

(21)

which shall be termed the characteristic function. The zero-
crossing of zp(e) hence represents the sought-after envelope
value e(n). Once e(n) is found (see Section V), the current
values of x̂, |x|, and g are updated as per

x̂(n) = ep(n)

|x(n)| = p

√[
x̂(n)− β̄x̂(n− 1)

]
/β

g(n) = |y(n)|/|x(n)|

(22)

and the decompressed sample is then calculated as

x(n) = sgn(y) · |x(n)|. (23)

B. Attack-Release Phase Toggle

1) Envelope Smoothing: When a peak detector is in use,
β takes on two different values. The condition for the attack
phase is |x(n)| > e(n− 1) [7, ch. 4], or equivalently

|x(n)|p
!
> x̂(n− 1). (24)

Assuming that the past value of x̂ is known at time n, what
we need to do is to express the unknown |x| in terms of |y|,
such that the above equation still holds true. So let us recall
(17) which says that

|y(n)| = [γf(n) + γ̄g(n− 1)] · |x(n)|. (25)

If γ is very small—which is the usual case for the gain filter
(γ ∼ 0.001� 1), the term γf(n) in (25) is negligible, so that
in good approximation

|y(n)| ≈ g(n− 1) · |x(n)|. (26)

Solving (26) for |x(n)| and plugging the result in into (24),
we finally obtain [

|y(n)|
g(n− 1)

]p
> x̂(n− 1), (27)

or equivalently

|y(n)| > p
√
x̂(n− 1) · g(n− 1). (28)

If (28) is true, the detector is assumed to be in attack phase,
or in release phase otherwise.

2) Gain Smoothing: Just like the peak detector, the gain
smoothing filter may be in either attack or release phase. The
condition for the attack phase is now f(n) < g(n − 1) [7,
ch. 4], or also

e(n)
!
>

[
K

g(n− 1)

]1/SLP
. (29)

But since the current envelope value is unknown, we need to
substitute e(n) in the above inequality by something that we
know. With this in mind we rewrite (17) as

|y(n)| = [γf(n) + γ̄g(n− 1)] · |x(n)|

=

[
γ

f(n)

g(n− 1)
+ γ̄

]
g(n− 1) · |x(n)|

=

[
1− γ

(
1− f(n)

g(n− 1)

)]
g(n− 1) · |x(n)|. (30)

Provided that f(n) < g(n − 1), and due to the fact that 0 <
γ 6 1, the expression in square brackets in (30) is smaller
than one, and thus during attack

|y(n)| < g(n− 1) · |x(n)|. (31)

Substituting |x(n)| by p

√[
ep(n)− β̄x̂(n− 1)

]
/β using (22),

and solving (31) for e(n) results in

e(n) >
p

√
β

[
|y(n)|
g(n− 1)

]p
+ β̄x̂(n− 1). (32)

If e(n) in (29) is substituted by the expression on the right-
hand side of (32), (29) still holds true, so that the following
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sufficient condition is used to predict the attack phase of the
gain filter:

p

√
β

[
|y(n)|
g(n− 1)

]p
+ β̄x̂(n− 1)

>

[
K

g(n− 1)

]1/SLP
.

(33)

Rearranging (33) for |y(n)| finally yields

|y(n)| > p

√√√√ 1

β

{[
K

g(n− 1)

]p/SLP
− β̄x̂(n− 1)

}
× g(n− 1).

(34)

Note that the values of all variables are known whenever (34)
is evaluated.

C. Envelope Predictor

An instantaneous estimate of the envelope value e(n) is
required not only to predict the period when compression is
active, formally e(n) > thr, but also to initialize the iterative
search algorithm in Section V. We resort once more to (17) and
note that in the opposite case where e(n) 6 thr, f(n) = 1,
and so

|x(n)| = |y(n)|
γ + γ̄g(n− 1)

. (35)

The sound level of the input signal at time n is therefore

e(n) =
p

√
β

[
|y(n)|

γ + γ̄g(n− 1)

]p
+ β̄x̂(n− 1). (36)

Using the expression from (36) we can formally state that the
condition

p

√
β

[
|y(n)|

γ + γ̄g(n− 1)

]p
+ β̄x̂(n− 1) > thr (37)

must be fulfilled for compression to set in, or analogously

|y(n)| > p

√
1

β

[
thrp − β̄x̂(n− 1)

]
· [γ + γ̄g(n− 1)] (38)

with β and γ selected based on (28) and (34), respectively.

D. Stereo Linking

When dealing with stereo signals, one might want to apply
the same amount of gain reduction to both channels to prevent
image shifting. This is achieved through stereo linking. One
way is to calculate the required amount of gain reduction for
each channel independently and then apply the larger amount
to both channels. The question which arises in this context is
which of the two channels was the gain derived from. To give
an answer resolving the dilemma of ambiguity, one thinkable
solution would be to signal which of the channels carries the
applied gain. One could then decompress the marked sample
and use its gain for the other channel. Although very simple
to implement, this approach provokes an additional data rate
of 22 kbps at 44.1-kHz sampling. A rate-efficient alternative
that comes with a higher computational cost is realized in the
following way: First, one decompresses both the left and the

right channel independently and in so doing one obtains two
estimates x̃l(n) and x̃r(n), where subscript l shall denote the
left channel and subscript r the right channel, respectively. In
a second step, one calculates the compressed values of ỹl(n)
and ỹr(n) which correspond to the estimates and selects the
channel for which ỹ(n) = y(n) holds true. In a final step, one
updates the remaining variables using the proper gain.

E. General Remarks

A compressor with a look-ahead function, i.e. with a delay
unit in the main signal path as in [7, ch. 4], uses past input
samples to calculate the output sample. For a causal system,
however, all input samples are zero for negative time. Now
that future samples are required to invert the process, which
are all zero in the beginning, the inversion renders impossible.
g(n) and x(n) must thus be in sync for the above approach
to be applied.

Another point worth mentioning is that “hard” clipping and
“brick-wall” limiting are special cases of compression with at
least the attack time set to zero and the compression ratio set
to ∞ : 1. The static nonlinearity F , in that particular case, is
a one-to-many mapping, which by definition is non-invertible.

V. NUMERICAL SOLUTION OF THE CHARACTERISTIC
FUNCTION

An approximate solution to the characteristic function can
be found, e.g., by means of linearization. In that respect, we
may approximate (21) at a given point using the equation of
a straight line, z = m · e + c, where m is the slope and c is
the z-intercept. The estimate from (36) may moreover serve
as a starting point for an iterative search of an optimum:

einit =
p

√
β

[
|y(n)|

γ + γ̄g(n− 1)

]p
+ β̄x̂(n− 1). (39)

The criterion for optimality is further chosen as the deviation
of the characteristic function from zero initialized to

∆init = |zp(einit)|. (40)

The slope and the z-intercept of the linear approximation at
iteration i are then calculated as

mi =
zp(ei + ∆i)− zp(ei)

∆i

ci = zp(ei)

(41)

with ei as reference point. Quite evidently, the zero-crossing
is characterized by the equation

zi =
zp(ei + ∆i)− zp(ei)

∆i
· e+ zp(ei)

!
= 0, (42)

as is shown in Fig. 2. The new and hopefully better estimate
of the optimal e is hence found using (42) as

ei+1 = ei −
∆i · zp(ei)

zp(ei + ∆i)− zp(ei)
. (43)

If ei+1 is less optimal than ei, the iteration is stopped and ei
is the final estimate. The iteration is also stopped, if ∆i+1 is
smaller than some ε. In the latter case, ei+1 has the optimal
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Fig. 2. Graphical illustration for the iterative search of the zero-crossing

Algorithm 1 The compressor
function COMP(xn,θ, fs)

x̂n ← 0
gn ← 1
for n← 1, N do

if |xn|p > x̂n then
β ← 1− exp(−2.2/ATT1/fs)

else
β ← 1− exp(−2.2/REL1/fs)

end if
x̂n ← β|xn|p + β̄x̂n
en ← p

√
x̂n

if en > thr then
fn ← Ke−SLP

n

else
fn ← 1

end if
if fn < gn then

γ ← 1− exp(−2.2/ATT2/fs)
else

γ ← 1− exp(−2.2/REL2/fs)
end if
gn ← γfn + γ̄gn
yn ← gnxn

end for
return yn

end function

value with respect to the chosen criteria. Otherwise, ei is set
to ei+1 and ∆i is set to ∆i+1 after every iteration step and
the procedure is repeated until ei+1 has converged to a more
optimal value.

VI. THE ALGORITHM

The complete algorithm is divided into three parts each of
them given as pseudocode further below. Algorithm 1 outlines
the compressor that corresponds to the model from Sections
II–III. Algorithm 2 illustrates the decompressor described in
Section IV, and the iterative search from Section V is finally
summarized in Algorithm 3.

Algorithm 2 The decompressor
function DECOMP(yn,θ, ε, fs)

x̂n ← 0
gn ← 1
for n← 1, N do

if |yn| > p
√
x̂n · gn then

β ← 1− exp(−2.2/ATT1/fs)
else

β ← 1− exp(−2.2/REL1/fs)
end if
if |yn| > p

√[
(K/gn)

p/SLP − β̄x̂n
]
/β · gn then

γ ← 1− exp(−2.2/ATT2/fs)
else

γ ← 1− exp(−2.2/REL2/fs)
end if
if |yn| > p

√(
thrp − β̄x̂n

)
/β · (γ + γ̄gn) then

en ← p
√
β[|yn|/(γ + γ̄gn)]

p
+ β̄x̂n

eo ← CHARFZERO(en, ε)

|xn| ← p

√(
epo − β̄x̂n

)
/β

x̂n ← epo
gn ← |yn|/|xn|

else
gn ← γ + γ̄gn
|xn| ← |yn|/gn
x̂n ← β|xn|p + β̄x̂n

end if
xn ← sgn(yn) · |xn|

end for
return xn

end function

Algorithm 3 The iterative search of the zero-crossing
function CHARFZERO(en, ε)

ei ← en
repeat

∆i ← |zp(ei)|
ei ← ei −∆i · zp(ei)/[zp(ei + ∆i)− zp(ei)]
if |zp(ei)| > ∆i then

return en
end if
en ← ei

until |zp(ei)| < ε
return ei

end function

VII. PERFORMANCE EVALUATION

A. Performance Metrics

For the purpose of evaluation of the inverse approach, the
following quantities were measured: the `2 error norm given
in decibel relative to full scale (dBFS) and the execution time
of the decompressor relative to realtime (RT). In addition, the
number of iterations required for the search to converge to a
satisfactory solution was also tracked. The computations were
run on an Intel Core i5-520M processor using MATLAB.
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B. Computational Results

Fig. 3 shows the inverse output signal z(n) for a synthetic
input signal x(n) using an RMS detector. The inverse signal
was derived from the output signal y(n) with high accuracy,
i.e. an error as low as −84.5 dBFS. The error values as well
as execution times and iteration numbers for white Gaussian
noise were computed on top of this for different compressor
settings, among which the threshold was fixed at −20 dBFS
and the ratio was invariably set to 4 : 1. The noise signal was
zero-mean with σ = 0.25. The ε value in the break condition
of Algorithm 3 was further set to 1 × 10−12. A summary of
compressor settings and corresponding results is provided in
Tables I–II.

As can be seen from Table II, the largest inversion error is
associated with column F, followed by column D. There, all
time constants are nonzero, which makes up a very dynamic
compression behavior. Also, if an RMS detector is in use, the
characteristic function has a stronger curvature in comparison
to the peak detector, which explains the difference between F
and D. By choosing the distance in (40) as ∆ = p

√
|zp(e)|, it

is yet possible to obtain a similar error value for F as for D,
−63 dBFS to be exact, at the expense of a somewhat longer
runtime: 0.53 RT with 1.84 iterations on average. Moreover,
comparing the columns A, B, and C, one may speculate that
the toggle lever between the attack and release phases works
more reliably for the gain smoothing filter than for the level
detector. The choice of the time constants also seems to have
an impact on decompressor’s accuracy.

Fig. 4 depicts the error surface as a function of attack and
release times for both the peak and the RMS detector. It can
be observed that the shorter is the attack time chosen for the
envelope filter, the smaller is the committed error. This is the
case not only for the peak but also the RMS detector over a
wide range of attack time values; see (a) and (c). Just about
the opposite is the case for the gain filter in (b) and (d): after
reaching a local peak, the error decreases as the attack or the
release time becomes longer. The release time seems to be of
little relevance in (a) and (c), whereas a kind of “resonance”
peaks appear in (b) for certain release time values. However,
their origin remains a mystery at this point. In (d), the error
descent is smoother and less sensitive to the attack time.

VIII. CONCLUSION

By the present work I have displayed how an inverse to a
nonlinear dynamic operator such as a digital compressor can
be derived by the help of elementary mathematics and basic
rationale. The presented approach is characterized by the fact
that it uses an explicit signal model to solve the problem. To
find the “dry” or uncompressed signal with high accuracy, it
is sufficient to know the model parameters, which may be as
few as seven in number or even less. These parameters must
be transmitted together with the “wet” or compressed signal
as side information or estimated from the compressed signal,
which might be a possible direction for future work. Another
could be to apply the approach to more sophisticated models
that include a soft knee, parallel and multiband compression,
or perform gain smoothing in the logarithmic domain.

In conclusion, I want to draw the reader’s attention to the
fact that the presented figures suggest that the decompressor
is realtime capable which can pave the way for exciting new
applications.
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Fig. 3. An illustrative example using an RMS detector with β set to 0.01, a threshold of −20 dBFS (dashed line in the upper right corner), a compression
ratio of 4 : 1, and the gain smoothing factor γ set to 0.03 for attack and 0.003 for release, respectively.

TABLE I
COMPRESSOR SETTINGS USED IN THE EXPERIMENT (THRESHOLD AND RATIO FIXED)

A B C D E F

TYP peak peak peak peak RMS RMS
ATT1 0 ms 0 ms 0.14 ms 0.14 ms 4.96 ms 4.96 ms
REL2 0 ms 0 ms 4.96 ms 4.96 ms 4.96 ms 4.96 ms
ATT1 0 ms 1.64 ms 0 ms 1.64 ms 0 ms 1.64 ms
REL2 0 ms 16.6 ms 0 ms 16.6 ms 0 ms 16.6 ms

TABLE II
RESULTS FOR WHITE GAUSSIAN NOISE UNDER DIFFERENT SETTINGS (100 RUNS)

A B C D E F

Mean inversion error (dBFS) −195 −179 −159 −62 −134 −49
Mean execution time (RT) 0.65 0.40 0.61 0.41 0.59 0.41
Mean number of iterations 4.26 1.98 2.56 1.25 2.42 1.22
Maximum number of iterations 5 2 5 2 4 2
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Fig. 4. Error surface as a function of typical attack and release times using the peak (upper row) and the RMS (lower row) detector. In the left column, the
time constants of the envelope filter are varied while the time constants of the gain filter are fixed at zero. The right column shows the reverse case.


