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Abstract–This paper presents the principle and the energy potential of an original 

electromechanical generator that uses human body natural motions during walking, in order to 

create an autonomous generator. This in vivo and noninvasive system is intended to be used in 

intelligent knee prosthesis. As the combined human, mechanical, and electrical phenomena are 

very significant, a mechanical and an electrical study are then carried to evaluate the recoverable 

power. Copyright © 2012 Praise Worthy Prize S.r.l. - All rights reserved. 
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Nomenclature 

UHMWPE  = UltraHigh Molecular Weight 

PolyEthylene; 

TKA   = Total Knee Arthroplasty; 

FFT   = Fast Fourier Transform; 

F    = Effort; 

E    = Energy; 

L    = Lagrangian; 

D    = Dissipation potential; 

P    = Power; 

    = Generator flux; 

T    = Torque; 

f    = Frequency; 

k    = average stiffness; 

lg    = Rest length; 

l    = Average deformation (%) 

R    = Rotor radius; 

M    = Rotor mass; 

m    = Mass point; 

    = Viscous damping coefficient; 

g    = Gravity acceleration; 

θ    = Position. 

I. Introduction 

Each year, 250 thousand peoples in the USA undergo 

total knee implant orthopedic replacement operations [1]. 

Currently, total or partial orthopedic implant replacement 

does not replace the knee articulation but only the 

function: for the internal ligament, a substitution is used 

and for the total knee prosthesis, the articulation is 

replaced by a connection pivot. 

The prosthesis operating conditions change over time: 

wear due to friction, the patient body mass changes, and 

morpho-functional variations such as the prosthesis 

deformation by the patient gait and his activities (sports, 

work injuries, falls, etc.). In vivo modifications can produce 

discomfort but can also cause dislocation of the prosthesis. 
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Fig. 1. Total Knee Arthroplasty. 

 

Implant failure requires revision surgery that is generally 

more complex and traumatic than first-time knee 

replacement. Such surgery accounts for over 8% of all 

total knee replacement operations [2-4]. If there is no 

osteolysis (bone degradation) or implant component 

dislocation, only the polyethylene material UHMWPE, as 

shown in Fig. 1, requires replacement. However, the most 

frequent cause of failure is due to a dislocation, in which 

case a new TKA must be carried out. Tibial and femoral 

bones are further reduced and a new, larger TKA is 

necessary. Bone-graft transplantation is then carried out, 

leading to a prolonged hospitalization. The impact of this 

operation is a diminution of knee motion and patient 

greater suffering. An early diagnosis is necessary if these 

extreme surgical revisions are to be avoided. 



 

 

At present, in orthopedics in vivo microsystems do not 

go beyond measuring [5-10]. However the real challenge is 

to use in-vivo microsystems to make real-time corrections 

to internal dysfunctions [11]. In view of the hard constraints 

to which the prosthesis is subject, auto-adaptive systems 

would be necessary. They would allow the prosthesis to be 

time-adaptive to the patient morphotype, to correct faults 

such as implant replacement none optimization, or to 

rebalance the ligaments stress to restore the knee function. 

In [12] are listed experimental studies on knee ligaments, 

each one compared to a spring. From these studies are 

deduced the average stiffness k, the rest length lg, the 

average deformation l (%) and the average deformation 

energy (Table 1). The power is deduced for a walking 

frequency of 1-Hz which is considered to be the average 

human walking frequency [13]. The power for simple or 

usual deformation is close to 10% of the maximum power 

which is between 0.5-W and 1-W (Fig. 2) [14-15]. The 

ideal solution for these systems is to be autonomous. Over 

the past few years, autonomy of portable electronic systems 

has aroused many questions in the medical field. The 

implanted orthopedic device needs electric energy to power 

itself. But very few or no independent industrial systems 

currently operate. The power supply problem is always 

solved by batteries or an external supply. 

An internal generator would avoid a cumbersome 

external device, such as the induction coils fixed on the 

patient leg. [7], [15-17]. Thus, to secure a necessary and 

useful power source to the electromechanical device, the 

generator should be able to produce sufficient power. As 

shown by Fig. 2, human body displacements represent an 

interesting renewable energy resource. This is why the old 

idea of human energy harvesting has been considered in 

our case as it was done by some researchers [16-20]. 

Recovering a modest part would allow the generation of 

useful energy to create adaptive and self-supplied 

orthopedic prostheses. 

In the orthopedic domain, few systems have been 

studied. Only one in-vivo system has been proposed [21-

22]. Mechanical energy was used to compress a 

piezoelectric ceramic element within knee prosthesis to 

produce electrical power. Therefore, this paper proposes a 

power recovery concept based on a flyweight located in 

the hollow prosthesis shaft [23]. The flyweight motion is 

generated by the knee displacement. 
 

Table 1. Maximum useful power for each ligament. 
 

Ligament 

Stiffness 

k 

(N/mm) 

lg 

(mm) 

l 

(%) 

Power 

(W) 

Anterior Cruciate Ligament 

(ACL) 

80 30 24 2.9 

Posterior Cruciate Ligament 

(PCL) 

80 40 20 3.2 

Medial Collateral Ligament 

(MCL) 

73 60 14 3 

Lateral Collateral Ligament 

(LCL) 

40 50 11 1.1 

 
 

Fig. 2. Typical gait stages [14-15]. 

 

The balance wheel makes rotational motions that are 

transmitted to an electromagnetic generator, which 

recovers part of the mechanical energy. In the following, 

it will be presented the design of a direct-drive generator 

with an advanced static converter aimed to increase the 

recovered output. 

II. Operating Principle 

II.1. Mechanical System 

Figure 3, illustrates the closed system which is moved 

by the knee through excitation forces. A mechanical 

pendulum system is inserted inside the hollow prosthesis 

shaft. The pendulum motion drives then electromagnetic 

generator rotor. This generator is electrically coupled to a 

load by a static converter. 

II.2. Human Walk: A Natural Motion 

As shown by Fig. 4, the x and y components of Fig. 3 

correspond to the 2D knee motion with a normal walking 

speed of 5-km/h. These components are used to excite the 

system (Figs. 5 and 6). 
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Fig. 3. Energy recovery operating diagram at the knee level. 
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Fig. 4. The knee components. 
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Fig. 5. The knee longitudinal motion. 
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Fig. 6. The knee vertical motion. 

 

From these figures, it is obvious that vertical and 

longitudinal knee motions are around a frequency of 1-Hz. 

This frequency corresponds to one human step. It very 

slightly varies from a step to the next one during normal 

walking [13]. 

In this study, we are dealing with normal walking 

conditions (i.e. a walk at 5 km/h) that correspond to a 

patient regular activity. It should be noted that ascending 

stairs or running will allow the patient to recover more 

power. 

III. System Mechanical Modeling 

To estimate the recovered electrical power, there is a 

need to evaluate the system motions coupled with the knee 

and the pendulum. For that purpose, the proposed study is 

based on the mechanical model shown by Fig. 7. 

The system consists of a rotor of radius R and mass M, 

attached to a mass point m. This mass is placed at a 

distance r from the rotor rotation axis A. This rotor 

includes all the generator inertial parts without the mobile 

mass. A spiral spring of stiffness k (not represented) 

brings back the disc to an initial angle θ = 0° when the 

flyweight is in the low position (of steady balance). 

Fx and Fy are unknown efforts but they are closely related 

to x and y imposed displacements which characterize the 

knee trajectory (point A). These efforts represent 

mechanical actions generated by muscles during walking. 

In the case of a Galilean reference frame and if the 

knee trajectory is imposed (Figs. 6 and 7), then the system 

is expressed with only one parameter . 

Lagrange equations are used to characterize the system 

motion. In this case, the system total kinetic energy is 

given by 
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where M1 is part 1 mass, M2 is part 2 mass. Moreover, the 

system potential energy is given by 
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Fig. 7. Mechanical model. 



 

 

The kinetic and potential electrical energies will be 

represented by a dissipation potential D which is only -

dependant. The load torque corresponds to the energy 

transfer and the converter type. 

In [24], it is shown that it is advantageous to consider 

the Laplace force is equivalent to a viscous friction, i.e.; 

both the converter and the load behave like a resistance 

that could be adapted to achieve optimal operation. 

Therefore, if the converter-load system behaves like a 

resistance, the electrical power could be expressed as 
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( )e

d
P t

R dt

  
  

 
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where 
d

d


 


. 

Moreover, the mechanical power could be simply 

expressed using the torque T. 

 

( )m ech

d
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
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Neglecting the electrical losses, will lead to a practical 

expression of the mechanical power: 
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where 
2

R


  . 

The control mode will therefore consist in optimizing 

the recovery coefficient or the viscous damping 

coefficient  of the in order to maximize the average 

recovered power. 

For a given excitation, there is an optimal value. For 

 low value, the motion amplitude is very significant but 

the recovered energy is very poor whereas for an infinite 

value of , the pendulum system is slowed down to such 

an extent that motions and recovered energy are very 

weak. 

The dissipation D is defined as the half of the 

dissipated power. Therefore, if a resistive load is imposed, 

D could be expressed by 
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Using the Lagrangian L() = Ek – Ep, one can derive 

the system dynamics 
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leading to the following motion equation. 
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This equation allows the computation of  and 

therefore the estimation of the average power to be 

recovered. 

It should be recalled that x and y are imposed. If they 

have been considered as unknown parameters, the system 

would have been characterized by three parameters: x, y 

and . In this case, the following two additional equations 

should have been used. 
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The above equations are not used as the muscle generated 

efforts Fx and Fy are unknown. 

IV. Potential of an Electromechanical 

Resonant Generator 

IV.1. The Spring 

The spring is used to achieve the system resonance 

allowing then the maximum power recovery. For that 

purpose, the system is supposed to work as a simple 

pendulum without inertia (M = 0) and without energy 

recovering ( = 0). In this case, the following equation is 

obtained. 
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To operate at resonance, the system frequency f0 must be 

synchronized with the knee frequency fknee, i.e. 1-Hz. 

Thus, the spring has to be removed (k = 0) as the system 

will obviously not be able to operate at resonance with 

this synchronization condition. 

IV.2. System Behavior without Excitation (No Knee 

Motion) 

For a given system frequency, the recovered power 

continuously increases with the walking frequency [23]. 

However, this power will always remain below than that 

recovered with a walking frequency synchronized system. 

Without excitation (no knee motion) and without 

spring, the following equation is obtained for an unloaded 

system. 
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The system theoretical frequency in the case of small 

oscillations is given by 
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For a system synchronized with the 1-Hz walking 

frequency, the following condition must be fulfilled. This 

is true only for small variations of  as the system is 

nonlinear. 
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In order to understand how the system behaves in the 

above case, the device geometrical parameters will 

determined so as to obtain 1-Hz. The objective in this case 

is that real oscillation frequencies should be synchronized 

with the walking frequency to recover maximum power. 

For each theoretical frequency f0, the mobile mass is 

moved to its initial angle and then it is released. 

Furthermore, the system real oscillation frequency is 

determined using a Fast Fourier Transform (FFT) of (t). 

The theoretical frequency is calculated using the 

following equation. 
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The obtained curves for each theoretical frequency are 

summarized by Fig. 8. When analyzing the obtained 

results, the main derived conclusion is that the bigger the 

difference between the theoretical frequency and the knee 

frequency is, the more it is difficult to synchronize the two 

frequencies on a given angle . 

IV.3. System Behavior with Simple Excitations 

With simple excitations such as symmetrical or 

asymmetrical sinusoidal ones, the model validity can be 

checked. In this case, to recover the maximum power, the 

following results are derived: 

– The system frequency must be synchronized with the 

excitation frequency. 

– Angle  must be near 90°, thus the need for position 

control. 

– The term mr must be as large as possible. 

IV.4. System Behavior with Walking Excitation 

Figure 9 illustrates the knee 2D motion and therefore 

the system excitation waveform for a walking speed of 5 

km/h. Table 2 summarizes simulation results for three 

cases selected among the several carried out ones. In this 

table, Paverage is the maximum average recovered power. 

As case 1 is not synchronized with the walking 

frequency at 90°, mr ratio is different from power ratio for 

cases 1 and 2. 
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If cases 2 and 3 are compared, same results are 

obtained as with simple excitations. 
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Fig 9. Knee 2D motion for a walking speed of 5 km/h. 
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Fig. 8. System oscillation frequency versus the flyweight initial angular position. 



 

 

Table 2. Simulation results. 
 

Case 1 

M = 201.2-g, R = 10-mm 

m = 10-g, r = 5-mm (mr = 5×10-5) 

 = 1.9167×10-6 

f0theoretical = 1-Hz 

Paverage = 630.42-W 

max = 65° 

Case 2 

M = 50-g, R = 7-mm 

m = 3.5-g, r = 2-mm (mr = 7×10-6) 

 = 1.9167×10-6 

f0theoretical = 1.185-Hz 

Paverage = 118.42-W 

max = 103° 

Case 3 

M = 100-g, R = 13.1-mm 

m = 10-g, r = 5-mm (mr = 5×10-5) 

 = 1.3667×10-6 

f0theoretical = 1.185-Hz 

Paverage = 849.40-W 

max = 103° 

  

 

Indeed, the maximum recovered power is obtained for  

close to 90°, with the largest possible mr, and with device 

dimensions allowing synchronization with the walking 

frequency for  = 90°. In this case, flyweight position 

control at 90° is necessary using energy recovery λ. 

Furthermore, mr ratio is equal to power ratio. 
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Figures 10 and 11 respectively show the recovered 

average power versus λ and the flyweight trajectory for 

case 3. Figure 12 illustrates the recovered electrical power 

in the case 3, where the peak power is 2.5-mW and the 

average recovered power is about 849.40-W. 

IV.5. Conclusion 

The mechanical power which can be recovered from a 

system operating at a frequency close to its excitation 

depends not only on the mass m, but also on the potential 

distance r. The recovery is maximized when  reaches 90°. 
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Fig. 10. Average electrical power versus the recovery coefficient (case 3). 
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Fig. 11. Flyweight displacements (case 3). 
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Fig. 12. The recovered electrical power (case 3). 

V. On the Generator Design 

The system is subjected to a fluctuating excitation 

according to the patient walking attitude. In order to 

recover the maximum energy, different elements must be 

optimized, among them the electromagnetic generator and 

the control strategy. Furthermore, medical constraints are 

to be accounted for: biocompatibility, reliability, and 

safety. 

The schematic view of the proposed original permanent 

magnet generator topology is shown in Fig. 13. This is a 

direct-drive solution as the generator is integrated into the 

pendulum system and therefore constitutes a part of the 

flyweight mass. The proposed generator uses radial 

magnetized permanent magnets so as to exhibit a low 

detent torque [25]. 

When designing the permanent magnet generator, it 

will be necessary to take into account (13) which links 0, 

r, R, m, and M. For example, if the maximum value of r 

and m are a priori fixed, one can deduce the maximum 

power that the system is able to recover. But care should 

be taken so that M and R values are not absurd. It is 

therefore necessary to make a compromise between the 

design characteristics and the recovered power. 
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Fig. 13. Schematic view of the proposed generator. 

VI. Conclusions 

This paper has presented the principle and the energy 

potential of an original electromechanical generator that 

uses human body natural motions during walking, in order 

to create an autonomous generator. This in vivo and 

noninvasive system is intended to be used in knee 

prosthesis. In the proposed innovative but quite simple 

solution, the objective of recovering several tens of mW 

could be achieved if imposing to the load a V/I scalar 

control that is adaptive to the patient walking conditions. 

Recovering the maximum power proves relatively 

straightforward. Indeed, it is achieved when the flyweight 

reaches 90° on each side. 

In this preliminary study, purely-mechanical frictions 

have not been taken into account. Viscous frictions will 

remove a portion of the available power. However, due to 

the low speed displacements, these frictions should not 

attain very high levels. 
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