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75775 Paris Cedex 16, France.
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Abstract

The Bogoliubov-Dirac-Fock (BDF) model allows to describe relativistic elec-
trons interacting with the Dirac sea. It can be seen as a mean-field approximation
of Quantum Electro-dynamics (QED) where photons are neglected.

This paper treats the case of an electron together with the Dirac sea in the
absence of any external field. Such a system is described by its one-body density
matrix, an infinite rank, self-adjoint operator which is a compact pertubation of
the negative spectral projector of the free Dirac operator.

The parameters of the model are the coupling constant o > 0 and the ultraviolet
cut-off A > 0: we consider the subspace of squared integrable functions made of
the functions whose Fourier transform vanishes outside the ball B(0, A). We prove
the existence of minimizers of the BDF-energy under the charge constraint of one
electron and no external field provided that «, A~ and alog(A) are sufficiently
small. The interpretation is the following: in this regime the electron creates a
polarization in the Dirac vacuum which allows it to bind.

We then study the non-relativistic limit of such a system in which the speed of
light tends to infinity (or equivalently « tends to zero) with alog(A) fixed: after
rescaling the electronic solution tends to the Choquard-Pekar ground state.
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1 Introduction

The relativistic quantum theory of electrons is based on the free Dirac operator
D° = —ihca - V 4+ mc?B. Here 8 and oy, are the C* x C* matrices:

L Idz 0 _ 0 Tj
ﬁ"(o —1d2>’o"“’<ak 0)’
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1=\ 10) 27\ o) 27 \0 1)

The free Dirac operator D° acts on 4-spinors, that is on § = L> (R3, C4) which
is the Hilbert space of one relativistic electron. It is self-adjoint with domain
H'(R? C*) and form domain H'/?(R3, C*). Moreover (D°)? = m?c* — h2c2A.
We write:

P2 =1— P = X( oo 0)(D). (1)
It is well known that its spectrum is o(D°) = (—oc0, —mc?] U [mc?, +00) leading
to difficulties in relativistic quantum mechanics. This operator was introduced by
Dirac to describe the energy of a free particle with spin % (e.g. an electron). To
explain why electrons with negative energies are not observed, Dirac postulated
that all the negative energy states are already occupied by virtual electrons, the
so-called Dirac sea. By the Pauli principle, a real electron cannot have a negative
energy.

We study an approximation of no-photon Quantum Electrodynamics (QED)
allowing to describe the behavior of relativistic electrons in an external field inter-
acting with the virtual electrons of the Dirac sea via the electrostatic potential in
a mean-field type theory. This so-called Bogoliubov-Dirac-Fock (BDF) model was
introduced by Chaix and Iracane [3] and then studied by Bach et al. in [I], by
Hainzl et al. in [II}, [7 [8, 10, O] and by Lewin et al. in [5]. In particular in those
last papers, the authors are interested in the existence of ground states for this
variational model.

Let us sketch how the BDF model is derived from full QED. We use relativistic
units i = ¢ = 1 and set the bare particle mass equal to 1 and « = €?/(47). When
photons are neglected, the (formal) Hamiltonian H? of QED acts on the Fock space
F of $ [18]:

e — / U (2) DOV (2)d — / o (x)p(x)dz + gﬂ %dwdy. (2)

Here ¥(z) is the second-quantized field operator, ¢ is the external field and p(z)
is the density operator:

pla) = > {0 (@)o U(@)s — U(a)o ¥ (2)o ). ®)



In the presence of an external density v, the corresponding external field is
¢ = av * i‘ This Hamiltonian is not bounded from below and it is not possible
to solve the corresponding minimization problems.

The BDF variational model is obtained from this Hamiltonian by making several
approximations.

The first one consists in restricting the energy to special states in F, the so-
called Bogoliubov-Dirac-Fock (BDF) states. They are states Qp which are fully
described by their one-body density matrix P:

P(x,y)or = (Qp|¥7 ()0 ¥ (y)-|Qp) 7. (4)

For instance the vacuum state o (no electron and no positron) in F is a BDF
state with one-body density matrix P°.

One must consider them as an infinite Slater determinant fi; A fa A --- where
(fi)i>1 is an orthonormal basis of the range Ran(P) of P. We will write P instead
of Qp for a BDF state: the QED energy can be written in terms of P.

In [I0], Hainzl et al. study the corresponding minimization problem of HC in the
space 9% of functions in L?([—L/2, L/2)®, C*) (with periodic boundary conditions)
whose Fourier transform vanishes outside the ball B(0, A); the constant A > 0 is the
so-called ultraviolet cut-off. This space has finite dimension and the corresponding
Hamiltonian HY is well-defined.

It is then shown that, for each L > 0 and 0 < o < 4/, there exists a minimizer
Pr =~ + % among BDF states (with energy Er(0)) and that in the thermody-
namic limit . — 400, I'z, tends in some sense to a self-adjoint, translation-invariant
operator I'g of Ha:

Ha:={f €9, suppf C B(0,A)}. (%)
Moreover I'g satisfies the following self-consistent equations:
ry — _sign(DO)
6
DO :DO_aFO(xyy). ( )
|z -yl

The operator P2 =Ty + % is the orthogonal projection X (—oc,0) (D°) and we write
Py =1 — P2 The operator D° has been previously introduced in but in
another context.

We will now take P° as reference state. For a one-body density matrix P, the
formal difference between the QED energies £Qpp (P — %) and SgED (PO — %) gives
the following function of Q := P — P2:

or(Q) = T D(PLQPY + PLQPY)} ~ o [ éla)pale)de + 5 [Dipa.a) ~ Ex(Q],
D(pq, pq) := jj £ \%) PR\Y) ﬁz)in W) dxdy, Ex[Q] := ff 7|C|21(71:_7yy)||2 dxdy.

yl

The function Egpp is the BDF energy we will deal with in this paper.

Notation 1. Throughout this paper we write P2QP?, = Q¢ ' where e, e’ e {+/-}.
For an operator @ with integral kernel Q(z,y), we define Rq by its integral kernel:
Rg(w,y) = LE8. There holds: [|Q||Ex = Ex[Q] = Tr(R5Q). We write C the

lz—y
Hilbert space of densities with finite Coulomb energy:

Cim{ce SR, ol =t [ SO ak < 400}, ™)

The squared norm ||¢||Z coincides with  [[ ¢*(2)¢(y) “izjl;‘ whenever this last
R3xR3

integral converges.



A justification to study the BDF energy — stated in [I0] — is the following.
In the presence of an external charge density v such that D(v,v) < +oo and
that 7 continuous is in B(0,A), one can consider the corresponding minimization
problem of H? in $%. There also exists a minimizer with energy Fr(¢) and in the
thermodynamic limit:

LEI}FIOO(EL(CM — Er(0) = QienéAgEDF(Q)’
where Qp := {Q € G2(Hr), —P2 <Q <PL,QTT,Q™ ™ € G1(Ha)}

Notation 2. We recall that for each 1 < p < 400, 6,($Ha) is the subspace of
compact operators A € B($a) with Tr|A|” < 4+o00. The case p = 1 gives trace-class
operators and p = 2 gives Hilbert-Schmidt operators. We recall @) is Hilbert-
Schmidt if and only if its integral kernel is in L? (HA X HA).
Instead of minimizing over all states in Qa, we may minimize over sector charge
9a(g9), g e R:
(g) ={Qe QT (@ +Q ) =g} (8)
The number ¢ is interpreted as the number of electrons (if ¢ € N*) or the number

of positrons (if ¢ € Z\N). In the presence of an external field v, the energy function
is then defined as

Bgpr(q) == inf {E5pr(Q), Q € Qa(a)}. (9)

In [9], Hainzl et al. have shown that for any go € R, the problem Fgpr(qo) admits
a minimizer as soon as there hold binding inequalities:

¥ ¢ € R\{0}, Etpr(q) < Ebpr(go — q) + Egpr(q). (10)

A more difficult task is to check these inequalities hold for some go. In [9], by this
method it is proved that for any v € L* (R37 R4+)NC and any integer M such that
0 < M < [v+1, the problem Egpr(M) admits a minimizer (a so-called ground
state) close to the limit & — 0 with A = Ag > 0 kept fized.

In this paper we show there exists a minimizer for E]%DF(I)7 provided a, A™*
and alog(A) are sufficiently small. It is remarkable that the system of one electron
in the Dirac sea can bind in the absence of any external field: this answers an
open question stated in [10] (page 19). The presence of the electron induces the
polarization of the Dirac sea: it is locally repelled in the neighbourhood of the par-
ticle. This fact is illustrated by the inequality E3pp(1) < m(a) where m(a) is the
infimum of the BDF energy among configurations where the Dirac sea, represented
by PY, is not polarized:

m() = _inf  Ehor(|6)(¢]) = info(/D"|).

We are then interested in the non-relativistic limit o — 0 with alog(A) kept
fixed to a small value (it may not be 0). The wave function 1 of the real electron
has a specific behaviour. There exists ¢(a, A) > 0 with ¢ = O(a"?log(A)™!) such
that up to translation and up to scaling by ¢ > 0, the upper spinor of the wave
function 1) tends to a minimizer of the Choquard-Pekar energy Ecp [13]:

Fop = inf {eCP<¢> =/ |v¢|2dx—D<|¢|2,|¢|2>} <0 ()

peH' (R?):[|oll L 2=1

More precisely the Choquard-Pekar energy Ecp of ¥(x) := 03/21/)(050) tends to Ecp.
The link with a model of polaron is natural: the Dirac sea is a polarizable system
and like a lattice of ions reacts to the presence of an electron. The smallness of
alog(A) corresponds to a small charge renormalisation. As explained in [8 part
4], the physical coupling constant aphys is different from its "bare" value or. More
precisely in the reduced BDF model, where the exchange term is neglected, a



minimizer of Egpr with v > 0 radial (interpreted for instance as f v = Z protons)
and D(v,v) small enough has radial density p, [5], the potential induced by v at

infinity is not aZﬁ as it should be but rather (v — p-) * ‘—1‘(50) s aphysZ‘Tl‘
x| — o0

where

Qpnye = a7, Zy = and BY(0) = % log(A)+0(1).  (12)

1
1+ aB}(0)
The quantity B, (0)° is the value at & = 0 of the function defined in Notation
below and Z3 is the charge renormalization constant. If we assume the charge
renormalization in the full model to be a perturbation of ([I2)), fixing 0 < alog(A) =
Lo < 1 corresponds to considering 0 < 1 — Z3 < 1.

In this paper we have chosen the model of [I0] with P as reference state instead
of that of |7, [§] with P as reference state, but all the results proved here are also
true in this last model with the same proofs.

The paper is organized as follows: in the next section we properly state the
variational problem Efpp(1) and state the main theorems. Subsections[BIand
are devoted to introduce the Banach spaces and the inequalities used throughout
the paper. Theorem [ gives an upper bound of E3pr(1) which is the BDF energy
of a test function I'. This test function is defined by adapting the fixed point
scheme in [7]: the method is explained in Subsection and the needed estimates
in Appendices[B.2land [B:3] Then Proposition [states that the binding inequalities
at level 1 are true for E3pr, as a consequence there exists a minimizer for E%DF(l).
Theorem [ gives a lower bound of E]%DF(l) by computing the BDF energy of a
minimizer. The two theorems and the proposition are proved in Section [l At last
we look at the nonrelativistic limit in Theorem [Bl Appendix[Alis devoted to prove
estimates linked to the use of the operator D°.

2 Description of the model and main results

We start with some definitions and notations. Our convention for the Fourier
transform . is:

~

1 3 4 o 1 —ix-p
vf € DN LR,CY, F0) = s /f(x)e dz.
In Fourier space D takes the following form
D(p) = e opr (19 + 90 (P8, wn = 1 (13)

where go, g1 : [0, A) = Ry are real and smooth functions satisfying
z < gi(x) < xgo(z). (14)

It is possible to improve estimations of in the regime L := alog(A) = O(1):
we get estimates of the derivatives of go, g1 by using their self-consistent equation
(¢f Appendix A). We write m(a) for the bottom of o (|D|):

m(a) := go(0) = min(c(|D°])). (15)

We introduce the following notations concerning the Dirac operator:
Notation 3. We write E (p) := \/90(p)2 + g1(»)® = [D°(p)| and

E(p) == /1+[p? = [D°(p)|.

We write go (respectively g1) for both functions
gx i €[0,A] = gu(z) € R and g, : p € B(0,A) = g.(|p]) € R". The (go)’s are
in C> while g1 € C*(B(0,A)) (¢f Appendix [A]).

At last we write

g1:p € B(0,A) = gi(|p)wp € R?

g:pe B(0,A) - (Z:((ZD € R



Notation 4. C1 > 1 denotes a constant satisfying gi1(r) < C1|r| and |go|e < Ch.

Notation 5. A recurrent function of this problem is
1 E(p)E(q) —
Ba(k) = / Ep E(g) —glp

7T2|]€|2

k E
[p=1+35|,lg=l—5|<A

)8 (1)
E(p)E(q) (E(p) + E(q)

If we replace E () by E(-) we get the function BY of [7,[5]. We define the function
ba (k) by the formula
ba(k) := Tross. (17)
In Appendix[A]lit is shown that Ba (k) = O(log(A)) and that for L < 1 there holds
Ba(0) = 2 log(A) + O(Llog(A) + 1).
We consider then the P°-trace (P is defined in the introduction):

Tro(Q) = Tr(P2QPY) + Tr(PLQPY), PY =1 —P°. (18)

As shown in[7] we know the operators @™~ = PLQP2 and QT = PLQPY are
trace-class when @ € G2($4) is a difference of two orthogonal projectors of the
form Q = P — PY. In this case:

2 2 -
RPF =@ =" -Q .
We introduce the set of PY-trace class operators:

PO

—{Qe&:(H): QT,Q 7 €&i(h)}

0
The variational set Qa (¢f introduction) is a convex set of GT’ ($H2) and its ex-
tremal points are that of the form Q = P —"P® where P is an orthogonal projector.
The density of an operator Q € Qx is pg(z) = Traa (Q(x, x)). It is mathemati-
cally well defined since @ is locally trace-class (thanks to the cut-off). The Fourier
transform of pg is:

o~ 1 N
pQ(k) = @y / Tros (Qu+ 5,u — 5))du, (19)
lut B Ju—E <A

In the absence of external field, the energy functional defined on Qx is
o
E2or(Q) = Tro(D"Q) + 5 (D(pa; pa) — Q) -

The trace part is the kinetic energy while the two others are respectively the direct
term and the exchange term. Moreover the following inequalities hold [1L [7} [10]

Tro(D°Q) = Tr(IDOI(Q++ Q7)) = Tr(ID°|Q?), (20a)

H |Q 5 y dxdy < Tr(|DO|Q ). (20b)

Inequality (20B) is due to Kato’s 1nequahty(|ﬁ5|). We assume that a < 2: in this
case E8pr is bounded from below [7].

We study the variational problem E%DF(l). To ensure the existence of a mini-
mizer for E3pp(1), it suffices to prove the following binding inequalities [9].

Proposition 1. There exist three constants «g, Lo, Ao > 0 such that
if0<a<a,0< L < Loand A > Ao, then:

Vg eR\{0,1}: E%pp(l) < Expr(l —q) + Expr(q). (21)

This Proposition comes as a corollary of the following Theorem.



Theorem 1. There exist three constants o, Lo, Ao > 0 such that
if a < o, L < Lo, A > Ao then:

(@ba (0))*m(a)
291(0)*
where Ecp is the Choquard-Pekar energy (see ().

Remark 1. For sufficiently small alog(A) we have g1(0) > ¢ > 0. More generally
all the results we need about go and g1 are proved in Appendix [A]l

Eppr(l) < m(a) + Ecp +o((aba(0))*) < m(a),  (22)

Notation 6. Throughout this paper we work in the regime
a1, A>1, alog(A) =L <eq, (23)

so whenever we write o(-) and O(+) without specifying the limit it is understood that
it holds in the regime (23)). Moreover, K denotes a constant which is independent
of a and A. The inequality a < b means that a < Kb where a and b are positive
real numbers.

To understand what happens in Theorem [I] let us see what should be a mini-
mizer of Ejpp(1). We have the following lemma (proved in Section B3] see Lemma

I8y

Lemma 1. A minimizer Q for ESpp(1) can be decomposed as Q = ~ + |1) (¢
where 7,1 satisfy the self-consistent equations:

0 _ ._ 7o -1 Q@)
{ T+PL =X(o0,0(Dq), Dg:=D +oc(pQ*| | ‘x,y‘) (24)

[) (0] = Xj0,u(DPo)-

The number 0 < p < m(a) can be chosen such that Doy = .

Thanks to Proposition 1 of [9], there only remains to prove x(o,,j(Pg) has rank
1: as v+ P2 is a compact perturbation of P2, its essential spectrum is the same
and necessarily 0 < p < m(a) and x[o,,)(Dg) is the projection onto an eigenspace
of Dg. It suffices to prove ||v||s, = o(1) to get:

Tr(Xj0,u1(P2)) = Tro(x(0,(Pe)) = Tro(y") — Tro(y) = 1.

The strategy for Theorem [l is to take a test function I'" which satisfies an
equation similar to ([24]). To this end let us first take ¢} the unique positive radial
minimizer of the Choquard-Pekar energy (c¢f Introduction) and consider ¢; :=

P, 4 . . . .
7:”‘?1 where Py, is the projector onto 5. We consider the spinor: ¢ =
[1Pg @11 L2 A

P —1._ aby(0)m(a) -
< 0 . FOI’ )\ = W we write

Ua = AT 2P (ATH), N = Noci= (o) (s and ny o= [a* = pv. (25)

It is possible to adapt the fixed point method of [7] to define v as the solution to
7= X(-o00 (D +a((py +n) %] - |7 = Ry + N))) = P2, (26)

provided « and alog(A) are small enough. In fact this paper [7] treats the case of
D° but in Appendix [Bit is shown that replacing it by D° is harmless (¢f Lemmas
[ and [{).

We chose the test function I' defined by the formulae

N [ ) TV (L . TN

Fi=~y+N, r=~+P°,
7 7 1— [mal2,

We then compute compute ESpp(I) using that an electron does not see its own
field (that is here D(|9|?, [v|*) — Ex[|v)(¥[] = 0).



Lemma 2. Let I" be as above 28), 7). Then the following estimate holds:

b ba (0
2)\ A
More precisely, writing I = ||pr||g2 — |lpn||2 and J = Ez[l'] — ||pn |3 we have

Tro(D°N') = m(a) + g1<o: /|V¢1|2d:c+o(/\*2)7

272
_ 2
T‘I‘o(D’y) = _a(bA(0)2>\bA(0) )D(nhm) Yo (abg\(o)) ,
a o _ 2 N
51 Z—WD(?%M)—%O( b&(o))7

_ abp (0)
aJ fo(AT).

Lemma lis proved in Section Il Theorem [I]is an obvious corollary.

At this point we know there exists a minimizer v/ = v + |[¢) ()| for ESpp(1)
and it satisfies Eq. (24). The computation of its energy in terms of ¢ gives a lower
bound of E3pr(1) of the same form as the right hand side of (28).

Theorem 2. There exist three constants ai, L1, A1 > 0 such that for a < aq,
L < Li, A> Ay, there holds

ab m(a
Egpp(1) = m(e) + %()O)Q()ECP + 0 ((aba(0))?) . (29)
Theorem 3. Writing C? := #@mm) in the regime (23) we have:

lim 1nf C3(EYpp(1) —m(a)) = limsup CF(E%pp(1) —m(a)) = Ecp.  (30)

a,A=1—0 a,A=1—0

Assume Q is a minimizer for EXpp(1): as in @) we can write: Q = v+ |¥) ().
In the limit « — 0 where alog(A) = L' is kept fixed and for L' small enough the
following holds:

Up to translation, the upper spinor ¢ € H*(R3, C?) of ¢(z) := ¢*/*¢(cx) tends
to a minimizer of the Choquar-Pekar energy Ecp. N
Remark 2. This paper uses heavily estimates and proofs of [7]. For convenience

Lemma [I7] is not fully proved: it is an adaptation of [7], the whole proof is in the
thesis [I7] of the author.

3 Preliminary results

3.1 Banach spaces

In this paper several Banach spaces are used.

As usual ||||z» and ||-||gs for p € [1,+00) and s € Ry are the usual norms of
L? and Sobolev functions. Moreover ||-||s, is the norm of the space of Schatten-
class operators G, (9a) and ||-||5 is the usual norm of bounded linear operators in
B($4). The norms ||-||c and ||-||gx are defined in the introduction.
A large part of the paper is devoted to estimate Sobolev norms of test functions @
and among them the norm

IQl&in = Tr(ID°I|QI%) (381)

is linked to the kinetic energy of Q.
In [7] Haingl et al. introduce the following norms for (Q,p) € G2($Ha) x C N L:

loIs = | Ep—q p+q>|@(p, 9)|*dpda,

E(k (32)
ol = [ EEPOE <z 1 g



Strictly speaking, the authors use E(-) instead of E (-). However thanks to ({d)
and (I5) these norms are equivalent:

1 ~
3K >0, Vp € B(0,A), =E(p) < E(p) < KE(p).
Moreover we write for an operator R(z,y):
Ep-—a)? 2
IRI% = [ Z2=0|R(p, ) *dpda. (33)
As in [7], we will estimate the above norm of Rq(z,y) = ?x(z ;")

Unfortunately this is not sufficient and intermediate norms between ||-||kin and
[I'lle (respectively ||-]lc and ||-||c) are necessary:

Iz, = ([ Ewp—a) B p+q> Qv )| dpda,

@z, —HE +9)|Q(p. )| *dpdg. (34)
4_ M

HPHQ ‘_/ |k|2 dk.

The numbers 0 and 1 refer to the exponent of E (p —q) and E (k).
We also introduce:

1QI% = [ max{E®),E(p—a)* E®—a) Ep+a) Qo) dpdg.  (35)

For any operator () € G2 we have:

2
\/;HQHEX < Qi < [Qlle < lIQlle- (36)
For some function f : R?® — [1,400), we write:
~ A k)
1Qlfs, = [ o= 0B G-+ 0 1Q. o) apda, ol = [ L1500

3.2 Some inequalities

Let us recall Hardy’s and Kato’s inequalities we will use throughout this paper.
For ¢ € L*(R?), the following inequalities hold:

|9()[*

|=[?

o),
B

eade <4V, 9), (37a)

< 5(VIo. 4), (37b)

Another recurrent inequality is Kato-Seiler-Simon’s inequality (K.-S.-S.) [16]:
for any f,g € B(R*, C*) (Borelian functions), we have:

3
P

1/ (2)g(iV)lle, < (2m)

We use the following Sobolev inequalities in this paper (¢f [2] Theorem 1.38
p.29): for suitable f (f € H'(R?) for instance)

1fllze S UV Flezs IFles S NIV o M1l S V128 (39)
An immediate result of (38)) (p = 6) and [B3) (p = 3) is the following Lemma.

Lemma 3. Let p € C and @, := p*|-|7'. For any t > 1/2 there exists Ky > 0
such that

Ifllzellglze, 2 <p < oo. (38)

O —_
oD " e < Kellpllc-
Moreover we have:

1 1 1
ool D72 les < (log(A)Ellplle,  llesIVI72 5 < llplle



Remark 3. The notation ¢, is used throughout the paper.
Let us consider R = Rg with @ € Qx. The Lemma 8 of [7] states that:

[Rell= < [1Qlle- (40)

The following Lemma generalizes this result:

Lemma 4. Lett > 0. Then we have:

IIV17"* Ralle, < 1IQllz, (41a)
ﬂ — q |R(p,q)*dpda < [[ B(p—a)' E(p+a)|Q(p.a)*dpda,  (41D)
H LX) p7 IR O 4,4 [[E®-a) E@®+q)|Qp,q)dpdg. (41¢)

Proof: Ineq. [@Id) is a consequence of @) for E (¢) ' < EEP+Z; Ineq. (ID) can

be proved by adapting the proof of Lemma 8.[7] (see Lemma [I5]). This gives:

ff — q |R(p,q)|*dpdg < 8jj E (20)" E (20) w(£,v)|Q(€ + v, £ — v)|*dldv,
where w(f,v) is a weight lesser than
)2 ff dudé'{E (u—v)*E (%,)1+1 |0 — |l — u|2}71

Ineq. ([@TQ) is proved as follows: up to a constant the operator |V|™" acts in Direct
space as a convolution by ﬁ (¢f [14], p.130).

The operator RZ)%RQ is nonnegative and by Cauchy-Schwartz inequality:

TI'{R*Q%RQ} fff |Q(z, y)| drdydz |Q(z, x)|

ot lz =yl ly—2* |z -2

2
< { [ e 5=t =)

RS)S

< jj 7|C|2:c _’iﬂ dzdy.

O

Lemma 5. There exist 0 < e < 1 and Ko > 0 such that, for all (Q,p) € Ex x C,
if (|| QllE=+ llplle) < &, then

ID°|(1-aKo(|Qllz=+lplle)) < 1P +alp,—Rq)| < IDOI(HaKo(HQIIEerIIPII(C)))-
42

Proof: We have
[RID’| 5 < IRQID°| Hls, < 1Qllex and [0, D™ ls < lIplle-

As shown in [7], it suffices to take the square root of

ID°|(1-2aK (| Qllex+Iplle)) < |D°+alp,—Ra)l* < D (1+aK (|Qlex+plle))*.

]
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3.3 The fixed point method

In [7] the authors prove the existence of a global minimizer of £5pp under some
assumptions on a, A, ||v|lc. The authors show there exists a solution to the self-
consistent equation that should satisfy a minimizer Qo of Efpp (when P is taken
as reference state). This equation is:

Qo+ P2 = X(—co,0)(D° + a(pao — v) * 1) — Ray)-

To this end a fixed-point scheme based on this equation is used: let us adapt this
proof to our problem.
As shown in [7] we can use the Cauchy’s expansion to write (at least formally)

Q = X(—00.0) (D’ + a(pq = RQ)) = X(~00,0)(D°) = > " Qs (43a)
k=1
[ 1 L \*k
Qr=—5- /700 dﬁm((RQ —¢Q)m) : (43b)

We also expand (R — ¢)*, Qi := Z?:o Qj,j—k: the function @Q; ;—x(+,-) is polyno-
mial of degree j in Rg and polynomial of degree (j —k) in pg. Thanks to Lemmas
and [ we know that each integral converges at least in Gg(Ha). If we take the

density of each @, we also obtain a (formal) expansion of p[Q)]:

“+o0 +oco k
plQI=> o p =" a"pj; & (44)
k=1 k=1 ;=0

In [7] it is proved that provided a(||Q]lo + ||pqlle) is small enough, those sums
converge in Q for @ and in € for p[@Q]. In fact the authors show:

Proposition 2. For any k € N* and any 0 < j < k, the function

Ox¢€ — 9x¢

(@) = (Qik-ilQ; 0l pik—i1Q,p])

is a continuous polynomial operator (with estimates of the norm precised in Lem-
mas I8 and [ in Appendiz[B2).

We prove a similar result in the cited Lemmas.
It is necessary to precise the particular form of poi[p]. A direct computation
in Fourier space gives the following formula [7].

k.j*

Lemma 6. For p € C we have:
po.1(p; k) = —Ba(k)p(k) € C.

If p is in € (respectively €1 ) then so is po1[p].

The last statement follows from the fact that |Ba (k)| < log(A), proved in Appendix
Al
Let us describe a fixed-point scheme adapted to our problem in the spirit of
[7]. Given the projector N that corresponds to the "real" electrons and n = py its
density, we try to define the dressed vacuum @ surrounding it. We seek a solution
to
Q+PL = X(—o00) (D’ + apin — R(@Q+ N))). (45)
For convenience we write p’ = pl, == p+n, Q' = Q + N, v = ¢g/; Eq. @I
can be rewritten:

Fo(@'0) = X(—o0.0) (D +a(0lg —R0)) ~X(—00.0)(D)+N = N+>_ a*Qu(@’, p').

k=1
(46)

11



Taking the density p of both sides and using Lemma [B] we get por = F,(Q', p)
with:
— 1

B®) = T (k) + ap10(Q's k) + Y- '@ P k). (47)

£>2
We must precise the domain of the function

F:=Fg x F,. (48)
Following [7] we first consider the Banach space X = Q x € with the norm

Q. p)llx = 2C5"*(2v2|plle + CrV2(Qll ).

where Cr > 0 is defined in [7] and Cy > 1 is defined in Notation [4
Lemma 7. There exist Ra,e1,e2 > 0 such that if vVLa < e, a||(N,n)||x < e2
then Bx (0, Ra) is F-invariant. The number Ra is O(y/log(A)). Moreover in this
ball F is Lipschitz with constant vo = O(V La). In other words the fized point
theorem can be applied to F' on Bx (0, Ra).

This lemma and the next one are proved in Appendix [B.21

Remark 4. As explained and proved in Appendix[B.2] by adapting the estimates of
[7] we realize that another choice of norms for F' is possible and so another choice
of Banach space on which applying the Banach fixed point theorem. Indeed let
us take a radial function f : R® — [1,+00): as long as there exists a constant
C(f) > 1 such that

VI —a) < CUHWflp—p)+ Vo —a), (49)

we can apply the fixed point theorem with the norms

IS, = [[ 1o —DE 0+ ) 1w, 0) dpda, llp|lE, = / %dk.

Here we are interested in the case f(p —¢) = E(p — ¢) and f(p — q) = 1.
Let Xy C 62($Ha) x C be the Banach space with norm
1@, 2)llxy = K(D)(IQUlas + 19l ), for some K(f) > 0 depending on f (Appendix

Lemma 8. There exist R),e1,e5 > 0 such that if L < &1, al|/(N,n)||x, <ej then
B, (0, Ry) is F-invariant. The number R}y is O(y/log(A)). Moreover in this ball

F is Lipschitz with constant vy = O(VLa).

4 Proofs

We will use the following Lemma, proved in Appendix [B] (Subsection [B.3)).

Lemma 9. Let ¥x,7, py defined in (25) and [28). Then the following estimates
hold:

e <o IVl < Le, Vs, < aVia, (50)
lpslle < LVLa, |lpylle < LVLa.

Moreover:
7 D°|9allLz + [vall2 S Ve and H [|'DO|7’y} Hez < La. (51)

12



4.1 Proof of Lemma

We recall N and n are defined in (25).
Notation 7. For convenience we write

oy e L= moa (- mPa
(1= m)Yallpe 1= |lmall2,
So we have N’ = |¢px){(¢x|. Moreover we write
7 := aba(0). (52)

Remark 5. Here \™! and 7 are of the same order La. A direct calculation shows
that [|P2|D° a2 = O(A™1) and |||D° a2 = O(1). We will often use

lmallze < lvdallee + 1P29allz < (o(r) +A7H). (53)

1. Estimation of J
Lemma [ gives ||7]|3x < I7]1% = O(r?). By Cauchy-Schwarz inequality and
Ineq. BZa): for any G = |f){g| with f,g € H"

Te(G™Ry)| < min(|ly[|ex/Gllex, 2[vlles [[VF][ 2 gl 2)-
Now thanks to Ineq. (B7h) and Lemma [0t
Hmeallle < Imoalza (D°lmes , wn)
(D%min, ) < 2alln (1| 1D [, + D" ] ) = O((L®).

Similarly we have:

ID(a ] 17 al?) | < llmiball22 (IV]dha , dha) < L2

and : |Te(RyN)| < 206, [IVeallcz [alle < 7A7

Thus J = O(7% + A72) = O((La)?).
2. Estimation of 1
According to the self-consistent equation satisfied by p,, we write

Pv; k) = —ba(R)A(k) + (1 = ba(k)pro(y; k) + (1 = ba(k) D a'Pely;k)  (54)
=2

where we recall that by (p) = %4 We write p¢ := pe(v) and 3 := 1% afpe
for short. There holds:

D(pr:py) = 47T/k % (bzx(ki)zlﬁ(/’f)l2 + (1= ba(k))*|apro(k)[* + (1 — I)A(k))zlij2

+29% (ba (k) (1 = ba(R))ACR) (aB1o(k) + 32) + (1= ba(k))?apro(R)3 ) )

By Cauchy-Schwarz inequality it suffices to study [ "?géﬁdk for p € {n,p1,0,>_}
We recall ||ba ||~ < L < 27" for sufficiently small L.
Lemma 10. Let i € {1,2}, then there holds:

47T/bA(p)i |”A|Azfﬁ)| dp = bA(o)iM + o (L'A7Y). (55)

Moreover:
allprolle < VIalyle < (La)~/2, (56)
Xlle <o

13



Before proving this Lemma, we show the estimation of /. First there holds:

ba(0)? L
lonlle = 2 D,y + o (%)

Then [63P(0) = b (9@ + [rin @) — 2803 (min)(@). By
Cauchy-Schwarz and Kato inequalities the two last terms are O(L(Lc)?). In fact:

[roal? 2 < Imall22(IVImea, ma) < (La)
[ralleal |2 < 2lmenll22IVeallee 9l < (La)?,
50 [ D(py, [ma|* = 2R%{3 (ma)}) | € LV La(La)®2.

Then D(py,nx) = —4m [ ba(k)[7x(k)]* iz + O{(allprolle + X lle)Inalle -
In the same way:

D(py, |9a1") = =ba(0)D(nx, n) + 0 (%)

— 00

Since ————=— =1+ 0((7 + A™H?), we finally obtain:
S N
2
Iz_wp(nhm)+ o <£> (57)
A A—00 A

Proof of Lemma We use Proposition [B] (Appendix [A]). In the regime (Z3)

and for € = %, in a neighbourhood B(0,7.) of 0 independent of «, A we have:

[Ba(lkD) — BA(O)]

Vke B(0,r.)\{0}, 7]

(AT RV =2k, (58)

Then 2 2 k2 2
N ba(3)?|nr(k
[ RO 1[G
k |k A e k|
For A > r=% and k € B(0,\**): |Ba(k/)\) — BA(0)] < EL(z(A\7/*) + KA™'). As
fi:teRT = 1L+t and fo = fT have bounded derivatives (by 1 and 2 respectively),
for k with Ba(p) # Ba(0),

|ba(k) = ba(0)] < a|Ba(k) = Ba(0)l,  |ba(k)* —ba(0)*] < 2a|Ba(k) — Ba(0)],

SO
— 2 —-1/4 -1 — 2
/ fi(aBA(K)) — fi(aBa(o)T2EITdE o 2T + KA / [ (k) [k
|[k|<A3/4 |k3|2 ) A |k|
2 )\71 4 +A71
P L AT

As fi(t), f2(t) < t* then
z|ﬁ(k)|2 —3/2 i TN —3/2 14 2 iy—3/2
ba(k) 5 —dk S ALY [ na(k)[Pdk S ATV L[|l = O(LAT7)
|k|>A3/4 |k|

and

k) i D(n1,m) iy—1
/kbA(k:) pp k=00 S o (17,
There holds [, (1 — bA(k))2%dk < o®[|p1oll3. Then estimates of

llp1.0llc and ||>2||c are proved in Appendix B3l o
3. Estimation of Tro(D°N’)

We emphasize that ¥x has no lower part as a spinor.
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There holds
(Dmox, mpa) = —(ID°|P2un, Poaba) + (DPyn, yiha) + 2R(D°P2yhy , y4a)

= —(ID°[x, Pr) + O{HW/MHH(H 1D lypa | 2 + || |DO|P9¢AHL2)}
= —(ID°|¢bx , ¥a) + o((La)?).

Then we have:

(D%, ma) = (D%, y¥a) — (ID°PYen, )

= (ID%[¥x, PEYPRYa) + (ID°Jn, PRAPLeia) — (D°[PLehn , ¥a)
= —(ID°[PLyx, ¥a) + OUID Yall 2 1711E, + 1D wall 2 [yIlsIPL el £2)
= —(ID°[P{n, ¥a) + o((La)?).

Hence (D%¢y , ¢r) = mﬁ + (D[P s, 1) + o((La)?).

L
Notation 8. We write (g« , ¥) for (g.(—iV)y, ) for x € {0, 1}.
As ¢g4(0) = 0 and ||g§ ||l < @ and the (g})a,a’s are uniformly continuous in a

neighbourhood of 0 (¢f Proposition Blin Appendix A)

(DO ) ={gox , ) (1 + (PLaby , a)) + o((Lar)?)

N
=g0(0) + (L, ) + o((La)?)
=90(0) + £ 20 (V91 , ) + o((Le)?).

Furthermore

(D [PLon s ) = (D% — g0)vbx , ¥a) = oy (91%x » ) + 0(A 7).

Finally
Tro(D°N') = (D s, )
= go(0) + sBDT (VPG 1) + o((La)?).

4. Estimation of Tro(D7)
Notation 9. Let us write B = R/, — ¢/, = R(y+ N) — (py +n) |- |7".
Remark 6. Let us recall Lemma 1.[7]: if P,II are two projectors such that:
P —1II € G5 then

Q €67 «— Q€ &Y and then Trp(Q) = Trn(Q).
We apply this Lemma for P = P° and I := x(_w0,0)(D° + aB): formally

(59)

Tro((D” + aB)y) = Tr(|D°|y*) 4 aTro(B) (60a)
Tro((D” + aB)y) = =Tr(|D’ + aBy?) = =Tr(|D"]7*) + o(Tr(|D’|%)).  (60b)
So we would like to show that
Tr(ID°ly?) = —§Tro(By) + o((Le)?),
= —%(D(py + 1, py) — Te(Ryy)) + o((Le)?), (61)

&
2
&
2

= 2D (py +n,py) + o((La)?).

0
We have to prove that B~ in GT’ and Tr{(|P° + aB|— |D°|)¥*} = O(a(La)?).
Supposing those facts are true we get Tr(|D°y*) = —2Tro(Bv) + O(ar?). We
use ({Id):

IR Ale, < IRMID|™ 26 IIP°[*Alles + IRV 2 Inllez < (r+ A7)

First let us prove that Tr(|D° 4+ aB|y?) = Tr(|D°|y?) + O(a(La)?).

15



Thanks to Lemma [B] there holds:

{ ID° + aB| > |D°|(1 = aK (|Vllkin + [lpyllc + V1Y 29xl£2)),

ID° + aB| < [D°|(1+ aK(|[yllxin + lloylle + V12l 22))-

Then we multiply by v* = « on the left and by « on the right: this does not change
the inequalities. To conclude it suffices to take the trace.

0 /\
Let us prove Tro(¢,v) = D(py +nx, py). Infact if Q € (‘5?7 and if [ Tr(Q(p,p))dp
exists then this last integral is equal to Tro(Q), because P° = Fi (¢V), in Fourier

space we have Tr: (P2 (p)Q(p, p)PY(p)) = Trct (PL(p)Q(p, )PP (p)) = 0. Here,
the trace Tro(¢,7y) is formally equal to

(@m) 2 ([ @ )(Te(F(p,q))) dpdg
Ipl,lal<A

=emr ] @b (k) (Tr(F(u + k/2,u — k/2)))* dudk

ut |- <A
T Py (k)p~ (k)
= [ Gz dk = am [ PEEE k= Do),
k k
As shown in the estimation of I, there holds

2
D(py, py +nx) = MD(TLIJH) +0(§)7

) (62)

ﬂ W'W + 5 —%>|dudkSA3/2Hp|\c<A3/2|W||Loo+|wneg>.

so we get

>~

2_
Tr(|DO|fy2) = aibA(o)ZAbA(O)D(nl,nl (

Remark 7. The calculation above is correct if (p, q) € C°(B(

\u:l:2\<A

0
We conclude by continuity of Q) € (‘57)7 — pg € C shown in [9], that of
0
Qe6’” o Tro(¢,Q) and the density of C°(B(0, A)?) in F (S~ (H4)).
Let us prove ¢, Q € (‘5 . We have:
(#5Q) ™ = (P2¢, PRID’[T2) ID°1V2QT™ + (04, |D°1 %)™ ID°IY2Q7 € &1(9n)

€62(H4) €62(H) EB(HA) €G1(H)

(63)
and so [Tro(¢,Q)| < (A% + Vlog(A) I le| @, with

0

l@ls, , =10 iy +1Q* lley + 1@ *llow +1Q* e (64)

To see PP [}, PY]|D°|~'/? is Hilbert-Schmidt, it suffices to prove the kernel of
its Fourier transform is in L?(B(0,A)?): this is easy with the help of Lemma 4l

To conclude this section there remains to deal with R:,fy, we recall this operator is
trace-class (¢f Lemma [)):

Ry = ()P D)
N — ——
€G5(Hn) €62(HA)

and

_ av La
Te{Ry7} = OBl I llea+I B D216 D124 0) = O( 252 +(La)?)

(65)
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Remark 8. As A — +oo there holds (|D°[*41, ¥1) — D(n1,n1) = Ecp + o(1).
In fact 11 = (¢1,0)” where ¢1 = Pg, @1 /|| Py, ¢lllz2 and ¢} is the minimizer of

1
Choquard-Pekar energy. P, is the projector onto $a. So we have ¢1 N }%)r @h.
—+00

Writing n’ = |#}|* there holds by Kato’s inequality (B7h)

linalle = In'lle] < llm = n'lle < (V1o ) + VI, 61) ) a2 — 1641132
< Vi, o0)|lvallz: = 191

— 0.
A— oo

4.2 Proof of Proposition [I]

In this part we write E(-) for Ejpp(-).

Let us prove now the binding inequalities for 0 < ¢ < 1. According to Lieb’s
principle (Proposition 3.[9]) for each ¢ we can take minimizing sequences for E(q)
of the form

{ Quey = Py — P° + qlun) (], k € N -

with (P — P2) € Qa(0) and P} = Pi, Putpr = 0.

We write as before v, = P, — P, nj = |1/)k|2,Nk = |¢w)(Yr|. We will forget to
emphasize the dependence in k.

Writing I,(N) = aiﬁ(D(py, n) — Tr(R}‘ny)), E8pr(Q) can be written:
E8pr(Q) = EBpr(7) + ¢(D°Y, ¥) + ¢, (N) = (1 = 9)€8pr(7) + a€pe (v + N).

Taking the lim inf, we obtain
E(g) = liminf((1 — ¢)&8pr(7) + ¢€8pr (v + N)) = (1 - q) liminf Expr (7) + ¢ B(1).

Either z = likminfé’gDF(y) > 0 and E(q) > ¢E(1) or z = 0. What happens
— o0

in the second case ? Up to the extraction of a subsequence we can assume that
lim inf £3pr(7) is a limit. Thanks to Q) it implies Tr(|D°|y?) + D(p~, p) W 0.
—00

As Pyipr = 0, there holds P24y, = vy, in particular
IPLI = [l9)1* = IP2ol* = 1 — Iy l|* = 1

and (D%, ) = (D°[Y", ¥*) — (|D°|y9, ) where ) = P
As [|[DO2yp]|22 < Tr(ID°|y?)|[4]|22 and |32 = 1: up to extraction we have

Jim (D%, ¥) = Jim (D1, ) > m(a).

The sequence ((D%y , 1))x is bounded, else by Cauchy-Schwarz and Kato’s in-
equality

EQor(r+ N) > EBoe() + (D%, ) = 2 (a2 + Il + w0V, )

— +o00.
k—+oco

By Cauchy-Schwartz inequality I,(N) — 0 and
lim inf E3pr(Qk) = E(g) > lim inf E3pp(7)+¢lim inf I, (N)+¢lim inf (D, 1) > gm(a).
k— o0 k— 00 k— o0 k— o0

It implies E(q) = gm(«), but we can use the method of Section @1l to prove that
E(q) < gm(a) for sufficiently small « and L in regard with ¢: we define Q by the
formulae

+PL = X(—o,0) (DO +alpr+anx|- |7~ R(7+qN))),
+ WW — D)) (1 = T)ea .
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If we assume that E(q) = gm(«) once E(1) < m(«) has been proven, we also
obtain E(q) > qE(1). We thus get E(q)+ E(1—q) >qE(1)+(1—-¢)E(1) = E(1).

There remains the case ¢ > 1. However it has been proved in that for each
integer M, Eppr(-) is concave on [M, M + 1]. Besides thanks to (20) there holds

E(q) = q(1 — af)m(a).

So it suffices that 2(1 — aZ)m(a) > E(1) to get E(q) > E(1) for ¢ > 1. For a < 2
it is true and as E(q) > 0 for ¢ # 0 the binding inequalities for ¢ > 1 are proved.

4.3 Proof of Theorems [2] and
4.3.1 Notations

Let Q@ =" = v+ N be a minimizer written with the notation of (24). As before
we write n := pn.

We have N = x(o,,) (Dgq) with Dg := D° + a(R), — ¢’,). We have to show that
N = |¥)(1|, then we can choose p such that Doy = |Dgl = pyp with p < m(a).

We split ¢ in two: ¥ = (i) The wave function ¢ € L*(R?, C?) is the upper

spinor and y € L*(R?, C?) the lower spinor.

. 2. 2g1(0)? _ _(gfo)?
We write C§ := 7((11)/\(3))27”(0‘) and ¢ := abA%O)m(a).
As (R(N) = ty2)¥ = 0, there holds
(DO +alpy = Ry = wyp = |DO +alpy — Ry)[e. (67)
We write v} := ¢3,b) := vJ — R}, where % is a prime symbol or no prime.
Moreover we write d := D°. We recall:
vy, ) = D(py,n) and (R, )| < [[7[lExInle, (68)

We recall the notation (g« , ¥) := (g« (—iV)y, ¥) with x € {0, 1}.

4.3.2 Strategy of the proof

The proof of Theorem [2relies on bootsrap arguments enabling us to get appropriate
estimates of || |V[*¢||z2 for s = 1,1, 2. The starting point is a priori estimates of
I1V[*24] L2, |V 22, Tr(|D°|4?). Tt is possible to use an adaptation of the fixed
point method of [7] to get estimates of

[f B0 B+ 050 dpdg ana. [ ZE 0 gt

in terms of the Sobolev norms ||| ;;s11/2 at least for s =0, 2, 1. Then the second
part of Eq. ) enables to get estimates of || [V[*T14)[| ;2 in terms of || [V|*+1/24]| 12
and the (squared) norms above. It is possible to keep going as explained in the
thesis of the author [I7], provided «, L are small enough.

More precisely the steps are the following.
1. We first prove a priori estimates and get ||pg||c, ||@Q]|kin are O(1) and then show
that ||y||kin = o(1). Asa consequence Lemmal[lholds and we get || o+ |lc, [|7]lq0, (| D2, )
are O(1). This enables us to show that we can apply the fixed point method
(Lemma [8 f = 1) and that the minimizer v + N and its density py + n form a
fixed point (at least in the space associated to ||-||¢, and ||-||c)-
2. We then prove

%1l zra/2, [Inlle = O1). (69)
Thus we can apply the fixed-point method (Lemma [[) with n = [¢|*> and N =
[) (1| and so to construct (v + N;py + pn) as a fixed point in (a ball of) X.
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3. Using the estimates that we deduce from the fixed-point method and Eq. (24])
we then prove that

(V0. 1) = O((aba(0))*).
4. Following [9], we apply a scaling transform to the minimizer with the scaling
factor ¢ = O(aba (0)) defined in Subsection [L3T}
we get ¥(x) := ¢*/?(cx) € H'(C*). The previous results will give

[1$llsr3/2 = O1), lIxllm = O(La),

where x € H*(R?,C?) is the lower spinor of Pp.
5. At last we compute the energy and show the asymptotic expansion.

4.3.3 A priori estimates

The first step is the following result.
Lemma 11. For Q = v+ N a minimizer of E%pr(1), then N has rank 1 and
there holds the following a priori estimates:

Te(ID1*) + aD(py, py) + (1Pl ¥) < 1.
The decomposition v + N is the same as in 24), Section[B with N = |1) ().

Assuming this result is true we can go further: we know that
F(Q,pq) = (@, pg) where F is the function defined in (#6)) and ([{T). Using the
estimates of Appendix [B.3] we get that:

+oo
lovlle < Liinlle + VZaliQllay + D _(aK (llpellc +1Qlla)) < L = O).

Jj=2

We then apply Lemma [§] (with f = 1): we get that (Q, pg) is in fact the unique
fixed point of F'in a ball of Xp.

Proof of Lemma [T} As Q is a minimizer and that E3pp(1) < m(a) then there
holds:

m(a) > Epr(Q) 2 (1 - o) (1 D°|Q%) + $D(pa, p), (70)

and [|Q||kin, vallpallc = O(1). As v = X(—c0,0)(D3) — P2, using estimates of
Lemmas 16 and [I7 we get:

[lle. < ellpelle + 1Qllex) < Ve

Thus |Tro ()| < [|[7]|&, S @ < 1, as a consequence Tro(y) = 0 and N has rank 1.
Thanks to (G8) and Kato’s inequality there holds

(D¢, ) = (Do, ¥) —albyyy, ¥) = ([Dalv, ¢>+0(04H¢||H1/2(||7||Ex+||Pw|\((:)))-
71
We apply Lemma [Blon |Dg|:
(IDole, v) = (1 - K(allQllex + a'/? x a'?|lpolle) (1D [, ), (72)
and:
(D, ¢) > (1 = KVa) (D[, ¢) + O(alllpellc + I Qlkin) 1l g1s2).  (73)
By Cauchy-Schwartz inequality and Kato’s inequality:
g]%DF(Q) = ggDF(’Y) + <D01/)7 ¥y + ozf)‘{(D(p%n) - TT(R"/N))
> (1= af)Te(ID°Y?) + 5 D(py, py) + (1 = Cov/@) (D", ¥)
—al[$ll sz (Iyllin + [loy lle)-
As E8pr(Q) < m(a) we have

Te(|D°[7*) + aD(py, py) + (D[, ¥) = O(1). (74)
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4.3.4 Estimates around the fixed point method

Let us prove that we can construct (@, pg) as a fixed point in X. We have to show
[[nlle, | N]le = O(1) and as ||N|lo < ||1/JH§{3/2 it suffices to prove (G3]).
By Sobolev inequality (B9]):

Inllz2 = 1l1Za < [[IVP 405 < IVRIEZ RIS = O(Va).

Moreover there holds D(n,n) < (|V|¢, ¥) < 1 and ||n|le = O(1).

At this point we have: Hnﬂql, [[Nlg, < 1: we can apply Lemma [§] with
f(p—q) = E(p—q) and construct (Q, po) as a fixed point in X1. As shown in
Appendix [B.3] there holds ||v]le; + [lpylle, < 1.

Let us now prove that [|¢| 432 < 1. By 1) we have |d|*y = pdyp — adbyp,
therefore:

(di*y, ) = p(ldldy , ) + a(|d]"/* (Ry — vy)|d|*/2|d]* 4, d|d]"/*).
Then thanks to (41Dh) and Lemma [I2] below, writing
12 ] = (a2, b, ]2 + by

we get [|[d]'/2b,[d| 72| 5 < (I17llex + llovlle) + 17lla: -
We obtain at last [[¢)]| 32 < 1. In particular we can apply Lemma [7 and
construct (@, pg) as a fixed point in X and get ||v|la, ||p~lle < 1.
Lemma 12. Let (yé,p(’)) be in Q x C and by := pj * ﬁ — Y0, V0 = po * ﬁ Then
1
ey
B

there holds: (Ilvolle + llpollc)-

(D12 [bo, [D°]2]

Proof: The estimation for the term R(v)) comes from (41D) in Lemma [} indeed
we have

o s = s |p—q|
|E(p)* —E(q)°| < K=—F——————fors= L pent
E@)' T +E(@" 2*

3 1
We write f € Ha and & = |D?|"2 [v{h |DO|§}7 the following holds:

dpdq |E(p) — E(q) ] |P0 /
P dp < K dq.
/| Folar < K f] 20— Fla)?
To deal with last term we use the same method. O

Let us prove (|V|*¢, ) = O((aba(0))?).
We write = z(N) = ||g1(—iV)¥|| 2. By Lemma [I9 we have:

loylle < La'/? + azx + Lay, (75a)
Bx < Lox'/? + ax + La. 75b
~y \/

Taking ||| ,2-norm of dy) = uyp — ab,1p, we have (¢f Proposition Bl for ||g¢[|ec):

(@9, ) = 2° +m(@)? + O(|g5 || oz) = 2° + m(a)? + O(az?)
al(byr, Y|+ a?[byt||25 < K1La*2'/? + KaLax + Kza?2®? + Ky(La®)z? + Kea'a®
1211172 < m(a)?.

For the first equality we have used Taylor’s Formula (order 2) and the fact that
g6(0) = 0. As z = O(1) we have a*z® = O(a*z?) and

2® < k1La’z'? 4 ka(La)z + kzaz®/2, (76)
Finally we obtain

2'? < kP (La®)Y? + kY2 (La)'? + ksa® < (La)'/?, (77)
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and there holds z? < K(La)? = O(c™?).
By Lemma [I9 the following estimates hold for the minimizer:

Ivlle S | llovlle < (L +w(N)VIa,
IVle < Le, | lpylle £ LVLa

where we recall:
R 1/2
W)= { [ o=+ dlF 0.0 Pdpa | <[ 91720

4.3.5 Scaling

We have considered so far the problem associated with Ec—1,,a(BDF energy where
the parameters are: speed of light 1, fine structure constant « and cut-off A). We
link it to the BDF energy in another choice of parameters: speed of light ¢, fine
structure constant ac and cut-off cA, with ¢ > 0 defined in Subsection 311
As in [9] we write
Hr = Hea

o 03/2¢(C('))7

and so Ucp(z) = ¢ *2¢(x/c). There holds a scaling correspondence between
(1,, A) and (c, ca, cA) :

U;

Eecacn(UiQU:) = ¢ B1,a.4(Q).

To distinguish the corresponding objects of (¢, ca, ¢cA) we underline them:

P(x) = Us(x) = &/ *y(ca), D’ = P UDU, = mc®B + T,
Y(z,y) = UlyUc(z,y) = AEqylex, cy), | m = go(—iV/c),

pr(@) = Epyler),v=py x| |7 | Ta = cgi(=iV/o)a - &,
R(w,y) = (. y)|lz =y~ T, = c1(=iV/c)o - Y.

There holds |V| < |T,| < C1|V] and

Il = Velrlles IRID?| 7215 < IVllex = velrllex
lpalle = Vellpylle [l D°172l5 < llpylle = vellprlle

We have shown (giv), 9) = O((La)?), so for ¢ := 91 (0 1 has uniformly bounded

abp (0)7
H' norm with respect to the parameters in the regime (23).

Remark 9. Here the constant of scaling ¢ corresponds to A of the test function.

First we we prove the following middle results.

Lemma 13. Let Y =Y (¢) := ||gf/21,/)|\L2 where 1 is defined as above. Then we

have

iz < ¢ and [Vxllp2 < oY+

Moreover u =m(a) +O(c™?) and EYpp(1) = E3pp(y) = m(a) + O(c™?).
Proof: Thanks to (67)) we have

mczﬁﬁ +cTat) + acly — R)Yp = uczy. (78)
Considering the upper part ¢ and the lower part x of :
mczf +clox + acvp — ac(Ry)1 = uczf (79a)

—mex + Ty + acvy — ac(Ry)2 = /J,CQX (79b)
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From ([[9h) we obtain

We take the L2-norm:

al/La alLa < 1

o TR

+

e < 1, o

1
X < -
+ \[(prl\c Flvllex) < -

In particular we have |x|/z2 = [x|[r2 = O(c™).
We write Sx = g,(—iV) - x with x either o or a. As T exchanges upper and
lower spinors, by Cauchy-Schwarz inequality the following holds:

(D%, ) = {gow, @) — {gox, X) + 2R(S-¢, X)

m(a)]ellzz +O(c™?)
=m(a) + O(c™?).

It enables us to estimate
p=m(a)+0(c?) and E3pr(1) = ERpr(Y) = m(a) + O(c?). (80)
From Eq. ([Qal) we get

(ne® —me*)p

Tox = =+ of(By) — Vgl

C

As 1 = m(a) + O(c™?), the L*-norm of T5x has the following upper bound:
IToxllze € @+ ¢! + ave(La+ LVLa) < a,
writing Y2 = Y (¥)? := (¢g§1, ¥), we get the middle estimates
x|l < o (81a)
Xl S (@Y +c7h). (81b)

Im
c

¢ has L?-norm lesser than K¢~ '. Then:

Indeed writing p = m(c) +dm, ¢ x

v Ip| Ip|
‘/ go(tp/c)dt?‘ < KoL,
0

90(p/e) = go(0)| = ‘/196'(tp/6)(1—t)dt@’ < Kaltk,
0 C

and |go(p/c) — go(0)| < a|p|®/c*. In particular

(91X, %) < /(X0 X) =0(c  x (aY +c M) ') =0(aYe ?+c¢7°) (82)

and there also holds the middle estimate: ||Vx|/ 2 < ac™ . |
Let us prove that ||UZ¢| zs/2 = O(1). The method is the following: we take the
scalar product of |V|s with each part of the equation [D°|*¢) = D°(u—ab,)rp. Then
we cancel the leading terms in order to get an inequality involving Y2 = (g3, )
of the form:

Y2 <O(c 4+ Y32 4 Y3273/4),

As a consequence we get Y2 = O(c™?).
Let us first deal with (|D°%, |V|).
Thanks to estimate (82) there holds

wlgra- 5w, (V1) < 11Vl 2l V12xlpe = O(Ye ™ + Y2 ae™).
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We recall that |go(p) — m(a)| < min(|gb = |p, 2llgollz=): it is O(min(1, alp|)).
Then we have:
(98¢, [VIY)  =m(a)*(IVIe, ) + 2m(a)((g90 — m(a)¥, [V[¥) + ((go — m(a))?*s, |V|¢)
=m(a)? +0(aY?),

Thus we have:
(D14, [VI) = m(@)(IVIy, ¢) + (9i|VIY, ) + O(aY?).
Let us now treat the term (D°(u — ab-)e, |V|¢) and first the term p(D 4, [V|e)).

(90Bv, [VI¥) = (g0¥, [V[¥) —2{gox, [VIX) = (0¥, [V|¢) + O(aY e +c7?)
=m()(|[V|¢, )+ O(aY? +aYe 2 +¢77),

(90BY, [VIY) + 2R((Ss, [VIX))

m(a) |V, ¥) + O(aY? +aY e 24+ ¢ 2 + Y32 1 Y32 Jac™?),

WD, V) =m(a)*(|V|Y, ¥) +0(aY? + Y32 Jac™ + Y32 4 ¢73).

(D, [V|)

‘We write:
|d|"* Ry = [|d]"/?, Ry]1d] ™" |d]v + R |d|" v,

and thanks to Lemma H we have:
— 2 —
| D2, Bl S, S Il < Il < e

By adapting the proof of Lemma [I2] we can prove the follwing estimates:

1z < lloslle/log(A).

HHVLUV]W 5 7UV]W 5

We use Lemmas Bland [ to get estimates of ||b,t)| ;2. First we deal with the terms
with Sq:

{Ry, Sal VW) < [([IVIVZ Ry Jld Iy, SalVIY29)| + (B VY29, SalVIY2y)|
SYllex(X+ IVllz2) S Y (La.

The operator So exchanges upper and lower spinors, so we get:

(Sovy, [V = [{VIvse0, Sox)] < || IV ]enel| o 115112
< ac {|[[1V], v ] ell + lonl Viel2 }

< ac {I0sW)lips lle x || 1911d2e]] .2 + o5 llcY }
< L 2(|Vglluz + 1[IV F/20l12) S L™ + L2y,

Similarly the following holds:

[(Sovy x5 [V]0)]

VY205 [VY255¢)|

(v

< {012, 01 o + 0 912l | 1920

< (V1ogW)llps lle NIV 121d12xl 2 + lloylle || V122X ] )Y
< (Ly/Tog(A)e™2(¢73/2 4 ¢ 'VaY 4 ac 2Y))Y.

We treat now the terms with go(—iV):

(v, IVIgoo)l < losllel[IVIY2ell 2 IVIgoell,. S Le™®
(wax, IVIgox)| < lleylle| V12X 2 [ IVIgox]|,. < Le 2,
Ry, [VIgow)| < [Ivllex || IVI20]| 2 || WIgow]| o S %2

It is clear that a(Le™2 + ¢ %/2) = O(c™?). At last:
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(D°(n—aby), |VI9) = m(a)([V]Y, ¥) +O(aY? +Y**ac  + Y7 %),

and:
Y%(1 - Ka) < Koc ® + K1 (L)Y + Ksy/ac 'Y3/2.

As e~ = O(c*/4) (because a(log(A))* = of1) in the regime (), we deduce
(V2 , ) = O(c™?), equivalently

1%l z73/2 = O(1).

We now improve estimate (8Ial) as written before:

do(p/c) — go(0) = / ghttp/e) Lt / (1 = a8 (tp/e L
nto/e) =@ = | [ sitepsa [ (1= )i up/erta ﬂ

and therefore

lom(@) — myev e < Ky 18l W08le e /Tg — o). (ay)

Xl = O(c™) and || |[VIxlr2 = O(c™). (84)

So

4.3.6 Estimation of Eg R (1).
Thanks to Eq. (Z9h)

So o

+
90+#¢ go + u

» +0x,

X = ((R7¢)2 - U'VX)

9+H

where the remainder dy is such that [|dx||z2 is lesser than
EKa(|llex VY29l + lpllell[V]'/*xll2) = O(ac™?) = o(c™!). Thanks to
Proposition B as ||g1)]| 2 = O(c™"), we have the following asymptotic expansion:

Bpr(1) + 249 D(n,n) = (g0, @) — @fiu&w% %%“Sa@ + 29
m(a

)1 -2, ¢>>+2<W¢ o)+ olc™?)
(@) ~ (5850, @) + (250, ) +o(c™?)
:m(a)""zm(a)(gl‘ﬂ @) +o(c™?)
= m(@) + g (g3, ) + o(c ™).

1
go+np

To deal with go we use both results (|[V[>¢, ¢) = O(c™?) and |gf| = O(a) and
treat the ((go + 1)~ ")’s one after the other. For the last line we use the fact that
(IV]*x, x) = O(c™?). Writing in terms of 1

1 @) [ )*

Co(Eppr(1)—m(a)) = CIOEE /C g1 (B) [ (p) jj 7|d zdy+o(1).
(85)
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We recall (¢f Proposition @l Appendix [A) the (gi)a,a’s are uniformly continuous
in a neighbourhood of 0; splitting in Fourier space at level |p| = v/c we get

g1 (p/)*[D(p)Pdp = / G102 1p 21 (p) [2dp
[p|<Ve Ip|<Ve

</ </;o(g“tp/ - 93(0))“)2 Ip219(0) dp

[p|<ve

+241(0) /‘pm (/ " (dhltp/e) - 340t o D)

=0
= / 91 (0)%pI*[%(p)*dp + O(|| [V ]2|? Supl{lgi(q)—gi(O)l})

IpI<v/e lq|<c™ 2
= [ SOPpPE@rd o (.
Ipl<ve
Moreover:
3
[ caworiwre <[ Hgers
[p|=ve 1\;;\3\/53 p] o
S (VP 9y <2 = 0
Thus
1
W<ng%('/0)£7 Y) — D(n,n) = (|V[*, ¥) — D(n,n) + o(1),
1
By unicity of the asymptotic expansion and by definition of Ecp we thus have

Egpr(1) = m(a) + G5 *Ece + o((aba(0))%). (86)

As a consequence, the Choquard-Pekar energy wave function ¢ (more specif-

ically ) tends to the minimizer. It is known [I3] there is but one minimizer in
H'(R? C) up to translation. The fact that we work with spinors is harmless.
By using convexity inequality for gradients [I4] (Theorem 7.8 p.177) and Riesz’s
rearrangements inequality (sharp version in [13]), we have that there is but one min-
imizer of the Choquard-Pekar energy in H'(R?, C*) up to translation and overall
rotation in C*. Keeping track of the mass of 1 with the help of some translation
we get that necessarily it tends to a Choquard-Pekar minimizer.
Acknowledgment. The author wishes to thank E. Séré and M. Lewin for useful
discussions and helpful comments, in particular the latter for suggesting the link
with the Choquard-Pekar energy. He is also indebted to the referees and to E.
Goujard for useful comments on the paper. This work was partially supported by
the Grant ANR-10-BLAN 0101 of the French Ministry of Research.

Appendices
A The operator D'

Remark 10. In this part the scalar product in R? is written (-, ) for d = 3,4.

A.1 The functions gy and ¢;

As established in [I0], D° is a solution to the following equation in the Fourier
space

By e D1 :
DO = DO 4 17 D9 * BE in B(B(0,A),End(C")) (87)
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and by a bootstrap argument DO € MNm>1H™(B(0,A)). With the notation of Bl
(Subsection 2]) it shows that go, g1 are smooth while g1(p) = gi1(p) - wp is a priori
in C*(B(0,A)\{0}) and we have

o 1 go(Ir])
:1 e d?” ) 88a’
go(lp) +4w2/m<A P =7 /g (D) + 90712 (55
a {(Wp, wr) gi(lr])
1 = — dr . b
o1(lel) 'p'+47r2/m<A PRV e

Remark 11. We recall here that C7 > 0 is a constant such that gi(r) < Cyir and
|go]oe < Ch.

Proposition 3. We have g1 € C*([0,A],R) and g4(0) = 0.

Writing ||d%g1]|« = sup ’ |p|d2gl(p){ the following holds:

0<|p|<A
llgollsc = O(a) 96 lloc = O(c)
, and 9 .
llg1llec = O(1) [d*g1][« = O(1)

Moreover there exists K > 0 such that

90(0) = 1| < Kad log X +1
Va € BO,A\B(0,1), l
lgi(q) —1| < Kaj log 7l +15s,
and we have

L 21
g0(0) =1+ —+ O(L* + o), ¢1(0)=1+ e + O().

In fact it suffices to differentiate (8T) to get go(p) and gi(p), we take the norm
to obtain the first part; then we differentiate once more to get the second part.
The third part is a consequence of those parts.

Proposition Bl enables us to prove the following result.

Lemma 14. Let p,q € B(0,A) and k = p — q. There holds

EOIEW —(B0)80) (o 267 21T
E(p)E(q)(E(p)+ E(q)) ~ E(p)* E(q)°

where we can choose K < 2 for aclog(A) sufficiently small.

. : _ 3. _ a2t27(t,a>2
Proof: In fact we can write for a,b,t =b—a € R’: |a||b| — (a,b) = If

Tal[o[+(asb)
(a,b) > _# then A = % < %, by symmetry we also have A < 25;22.

Else —|a||b| < (a,b) < —12% then {|a||b|(allb] + (a,b))} " > 2(a2b?), so:

2 24+b%+]allb
25_22211 bz‘aH‘22

2 2 2
22_222%;\“”“22.

Proposition 4. The function

. «
dgi(p) = id+ yr) /

[r|<A
is in C°(B(0,A), L(R?,C*)) and
|dg1(p) — dg1(q)| < KL[p — q.

In particular the same holds for g1 (t) = (dg1(tw),w).
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Proof of Proposition
1. We can define dgi(p) for p # 0. First we have

_a dg [ dgo(@)h  go(g)dgo(q)h + g1(q)dg1(a)h go(q)
dgo(p)h_4w2/|p—QI2<E E )

E (q) E (q)* E (q)
We remark that for p # 0 we have:
dg«(p)h = gi(Ip]){wp , h), x € {0, 1},
(dg1(p) - wp , wp) = g1 (Ip])-
Then

dg1 (p)-h = h+%/ ; iqqp (dgl(q) b g0(9)dgo(@)h + 91(9)dgs(g)P gl(q)> ‘

E (q) E (q)? E(q)

So for any w € S? we have

, - o d 1(q) ) 2
i) =1t g [t (- ) 5 (59)

+(g{(q)<wq7w>2(1 B %%(g;)) 1 91(9) (w,we)” 90(9)90(9)

E(q) E(q E(g9 E(9

The regularity of g1 (as a function of R™) will come from the continuous ex-
tension to x = 0 of the formula above.

We have
/ o dg 190 90|00 + |91 |00
go(lp))| < —/ = + [90|oo = 90a
| O(l |)| 472 |p_q|2 <E(q) | 0| E(q)2 ( )
, o dg 91]0c | 19000 + |91]c0
gi(lphl <1+ —/ = + = . 90b
Thus

|g0loc < Kralog(A)]go]ee + K2algi]eo
91100 < 1+ Ksalog(A)(|g0]eo + 191 00)-
So |go]ee < @ and |gi|e < 1+ Kalog(A).

Since go € C*°(B(0,A),R) and radial, necessarily

dgo(0) = 0 and g¢(0) = dgo(0)w = 0, Yw € S°.

2. We treat now the second derivative d°D°. We write h, = Ef’(*_)
and J = E (). The coefficient of 8 in d?D°(p) h? is

«@ dq

d’go(p) b d*ho(q) K2,

B 471'2 q |p_ Q|2
where

5 5 dzgo(p) -h? 2
d<h h = = — = d h d h 1(q)dg1(q)h
o(q) 7 (q) E(q)3 go(@)h [go(q)dgo(q)h + g1(q)dgi(q)h]

- 1%0((;))3 [(dgo(g)h)? + go(q)d*go(a)h? + (dgr(g)h)? + g1 (g)dg1 (q)?]
+3 go((qtz))s [90(q)dgo(q)h + g1(q)dg1(q)h]>.

Furthermore, we have

2 2 dq d2g1(q)h2 2 2
oo = % [ s (PR g T+ s T )
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Since we have (|p|d*g1(p)h*,wp) = Ip|d>g} - h* + L4 ((wp, h)* — |h[*), by taking
the scalar product with w, we get

dq 2 |p|dg
a2 <O+ &/L Coille + 5 / .
|p|| gl(p)| >~ 1 A2 |p—q|2|q|E(q)H gl” | |2E 2” gl”
o Ipldg { 1 2 go(q)
— dgo|” + |dg1 2222 1dPgo
prc P E(q)z(lgl Igll) |E(|q)2|| 9ol .
3 dgo + d91 1 2dgl +4C,
+ dgo| + |dg1])? + 2(]dg1| + C1 + .
E(q)2(| | + [dg1]) (Idgal ) B Q)7 10 1l
We also have:
2 <o Cudg
o)l <1 {/E FIa.
/ Id290| 51d90l(|dgo| + |dg1]) | go() [dgo|* + [dg: |*
Ip—ql2 (a) E (¢)? E(q)  E(g)?

(9)* |d° gol go(q) (Idgol + |dg:])?
E(q)2 E(q) +3E(q) E(q)* )}

As < 2max(

we have

_Inl 1 ;)
[p— Q\Z\Q\ [p—allql’ [p—q|? />

/ dgp| <9 / dgq +/ dq
la1<a 1P —al?ladlE(q) ~ la<a 1P = dlldlE (@) Jig<a Ip — dlE (q)

We recall then that the convolution of radial nonnegative functions is radial non-
negative. So the following holds:

90 lloe < Ka
[d®g1[l+ < C1+ Kalog(A)

3. By Ineq (B8al) and for p € R*, 1 < |p| < A we get that:

la|<

/ 1 < / dq_1goloo
2
la? /1y \‘pﬁqw lg|* [p + 4l

4r? |90 —1] / go(q) < dq 1
Ip—qIQ\/ z)? + i lp—q|? lal®
go@f +a(@* = 4 VIt oz

lg|<2A lg|<2A
A A
dr T+ r+ipl—|r—Ip
:%lgm/ og |7+ 17) :%'gO'w/ lpl = |r — Ipl]
o rlpl — Ipl 0 rlpl

<1+10g

To deal with gi we use Eq. (EQI) The integral of the integrand in the second line
is O(1): as we multiply by « its contribution is O(«a). For 1 < |p| < A there holds:

/ 91(q) < / dgq <1+ 1log A
|p—q| |E q) lal la|2|p + 4 Ipl”

lal<A lal<2A

For go(0) we have:

7T|g0 ) —1] A , 1+ O(alog 2)
/ \/go +91 ! { Vitr? }+O(1)
= log(A ( + alog(A) )

Let us prove the estimation of g{(0). There holds for any 0 < z < A and w € S%:

(wwe)’dg  g1(q) :2W/Adrr2+r2 {m2+r2 o ’m—kr’ _1} g1(r)
0

I

A|:cw —q?E(q) ldl 222 2rx rE (r)
Az 2 2

e [ [ g L))

0 2r 2r 1—r E (xr)
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We split at two levels: e and e. The integral over (e*,e) is O(1) for log is
integrable on (0,¢). For x € (0,e™") there holds the following expansion:

2
1+r (log(14+7r) —log(l—r))—1= %7"2 + rQo(Ts)’

thus the integration over (0,e™') is O(1). For € (e,A/z) there holds:

1 1 _ 4 -3
(log(14+7r"") —log(1 —r ))—l—ﬁ—i—rﬁqm(r ).

1472

2

we get 2 4+ O (r7?). Thus the integration over (e, A)

T 3r  r—too

Ar A gy (ra)dr _4r A g (r)dr
3 /e E (rz)r o= 3 /ez E(r)r +o

If we multiply by !

gives:

At last we get:
) a (A gi(r)dr 1 2alog(A)

O
Proof of Proposition [ In fact it suffices to use another formulae for d2g1 and
d?go consisting in replacing g1(q)dgi(q) by

(g1(a), dg1(q))-
By the same method as for dgo,dgi, we get that

[d*g1 | < L. (91)

A.2 The function By
We recall that

_ 1 E(p) E (g) — (g(p),8(q))
no-mm | Rprede gz

lp=1—£|,|lg=l+£|<A

This formula holds only for k # 0: our first purpose is to extend it continuously to
0. Thanks to Lemma [[4] we can say that Ba(k) < K log(A).

Notation 10. Throughout this part, p = ¢+ %, q=10— g
Proposition 5. Let w be any in S2. For £ € B(0,A) we write:

w . (gé(lfl)wz "W

‘T dg1(f) - w

) and EY = |g¥|.

Then we have )
1 w
Ba(k) —» — M(M —: BA(0), (93)
k=0 e<a 4E(€)
Moreover

Ba(0) = % log(A) + O(L log(A) + 1).
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Proof: Let us write I = 7°|k|>?Ba(k), its integrand f(¢) and = = |k|. Let us

consider 0 < € < % and s = % +¢. We assume x < 1 and split the domain in three:
B={l{: [f| <z} ,A={l: 2" <[{|<A—-3},
C={:[0—E[Je+5<AN{: || <A-L}C{t:A-L<|f|<A}=C"

Using Lemma [T4] we get the following behaviour independent of a;, A in the regime

@3):

] < Kz*1% = K& = o (2%), |Ic| < Kz’ log A ~ K:CS. (94)
- z—0 ’ - A-2 z—=0 A

2

There remains to deal with I4: we rewrite f(¢) as follows:

= — lg(p) A g(@)]” (95)

E(p)E (q) (E (p) + E (q))(E (p) E (q) + g(p) - 8(a))
where |g(p) A g(9)* = X, [Aoil* + 32, 144517,

go(p)  go(q) | | 090  golq) o
A“_‘(gl(p))i (g1(q)): "(agl)@- (g1(0)): (96a)
| (&) (g1(@)i | _ | (9g1)i (g1(q))s
A”"<g1<p>>j (g1(a)); “(5g1>j (g1(9)); (96b)

39+ = g+(p) = 9+(9)-
If we take k along a fized half-line: k = zw we have

1

Lago(kit) = [ dgo(+ (6= 1/2)8) - wdt =3, gh(l)er -
t=0 x

Logi(k,0) = / dg1 (¢ + (t — 1/2)k) - wdt e dg1(¢) - w.
t=0 xr—r

In fact, as A, go, g1 are radial symmetrics so is 74 (k) and for w € S? fized and
p' =L+ 2%, ¢ ={— % there holds

La(k = 2wp) = —— E@)E(d)— (80).8ld)) 4
mE e EOVE@EW) T EW)

foll) = % Xrea is also symmetric. By Proposition [B] we have
[fo(0)] < KWXWSA,,C/Q. By dominated convergence we get the integral

formula ([@3).

As there holds by symmetry

25 éﬂ_ n)-wldn = éﬂ_ I\2 91(5)2
[ meran=gn [ dwem wpan = 3r (6020 + 2208 ) on

we have

Ba(O) ( / u2((gé>2<u>+<ga>2(u>+2g}£7;2>(gé<u>+g%(u>>

=1L - du
N N (Y R K
2 (9ogo(v) + g191(u))
— u > \5/3 du |,
u=o (90(w)? +g1(u)?)°
and
! ! u 2
B0 = ([ 7 (90)° () + (91)*(w) + 220" [\ bt i)
= — u u — u
: 31\ Ju=o (90(u)? + g1(u)?)3/2 w0 (90(w)? + g1(u)?)>/?
Thanks to Proposition [3 we get the estimate of Bx(0). ]

Let us look at the variations |k|~!|Ba (k) — Ba(0)].
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Proposition 6. There exists 0 < r. € R", independent of o, A in the regime (23)
such that
for |k| < re:
k| 7" Ba (k) — Ba(0)] < K(A™" + L?[k| + [k[> + |k[*/*79).
Choosing € := 61 there holds:
k|~ [Ba(k) — Ba(0)] < K(A™" + [k[*/%).

Proof: For k € B(0, 1) we write |k| = x. We reconsider the domains A, B and C
of the proof of Proposition [l and write fi the integrand in (02)).

We have | [, fi| < Kz = Oo(m1+35) and | [, fi| < Klog( OO(%).
T T

There remains the integration over A. For |¢| > z° we have = O(x*/37%) so we

A —
Afac/2) -

can expand the integrand of I4(z) at order 1. Indeed:

Fov w1 [ E@ B0 =g, B0~ E(p) z
BEp) =B {1+ HIO V=B IO +x90(E(5)2)}’

where the OO(~) is independent of ¢ (because E (£) > 1) . The same holds for
T—
E(q)"" and (E (p) + E (q))~". Writing h(¢,k) = E (p) E (q) — g(p) - g(q) we have:

@) = L [ R g L[ LR (2E<e>—E(p>—E(q>
2 AzE(e)S A 2E (0)° E (¢)
() E(p) - () x’
B ) +OG@)

By Taylor formula (at order 2):

2E (6) - (E (p) + E ()] < / / dtduk a3 E = Kgi 28
tJu
By Proposition [l and by Taylor formula at order 1 we have:

‘g(p) —8(9)

-g’| < L.

Thus [k]~*[Ba(k) = BA(O)| = O (A" + L+ [k|*). o

B The fixed point method: estimations

B.1 Estimation about the R. operator

Let us generalize Lemma 8.[7] that states the inequality: ||Rq|lr < ||Q|le. Further
generalisations are detailed in [I7].

Lemma 15. Let f be some function f : B(0,A) — Ry and Q € Q. Then we
have:

[f - 02O iy < [f 15— g+ Q) Papta. (99

~

Proof: The kernel E(p7 q) := Rq(p,q) is equal to:

/Qp La—10) .,
PU=50 lE '

We remark the Fourier multiplier:

Alw,y) = 77 {f0 - 0Ap.0)}

31



commutes with R. : A+ Ra. So it suffices to show that:

IS ']Tpi’ dpdq < [ 1p+dllO, o) Pdpda.

To this end we follow the proof in [7], for any 6 € (0, 2):

H'|p+ dpdg 8H ﬁ;dfmuﬂ —Ik

Q¢+ v, = )0 +v,¢ —
|2u||€—u| [0/ — ul?

Qe+ v, £ —v)* |20+ ,
(2#2)2 //// [2u] [0 — u2[0 — uf? |24/|1+9d udvdldl
e || 1201Q + v, £ = v) o (¢)dvd,

V)| dudvdtdl’

IN

where the weight we(¢) is:

o 0 dudé'
) - |2€| jf |2u||2£’|1+9|€ _ u|2|4’ — 7_L|2‘

du 0 dél
< — (|2 —)
= / 2u] 0w — (2 (12u / 2O — up?
1 dx 2

<(z2 ) — =~
T2 [z —ef?/

Then we have:

where e € R? is any vector satisfying |e| = 1. O

B.2 Estimates for the fixed point method

Let No > 0 be in &1($a) and let o be in 6 (JﬁA)
We write ng := pn, and z(No) := ||V No||s,. We assume that

Tr(No) < 1 (99)

to simplify. In our problem Ny = |¢)(¢| with ||[¢]| 2 = 1.
In this part f is some function f: R> — [1, +00) satisfying condition (@) and
we consider the Fourier multiplier m:

Q(z,y) € L*(Ha x Ha) = F ' (f(p — 0)Q(p, ).
For Qo € Qyf, po € €5 we write:

Qo po)llx; = Ko)(f)(|Qolley + [lpolle,),

where K (o)(f) > 0 to be precised later.
By Kato’s inequality and Sobolev inequality &3) ||nofc < /2 and |[no||z2 < 2*/2.
For the last inequality it suffices to write No := Y a;|fi)(fil, @i > 0 and || fi]| ;2 = 1.

Then:
Inollze <> aill VA < ZazIIszIIL )34

The same method enables us to prove that ||RN0 e, S 2.

Lemma 16. Let Ny and 7o be as above. Then we have:

||Q0v1[p"/0]||gf SV log(A ”p’Yonp

[Quolvollley < llolley
<

llo10lorollle, < Viog(A)lvolle;-

Quo[No]lle < =,
llp10[Nollle < .

Moreover:
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Lemma 17. Let (Qo, po) be in Xy. There exist constants K1y, K2y > 0 such that,
writing
Gr(Q,p) = Ka)C(f)IRQlles + llplles)

we have:

K
VE2 25 Qe p0lQus pollly < <2 Gr(Qo, )" (100)

Assuming these lemmas hold, we follow [7] to find a ball B(0, Ry) invariant
under the function F' = Fg x F, of the fixed point method (({#6]) and [@T)) and on
which F'is a contraction. Indeed for some K4 > 0, we have:

+oo
1Fo[Qo, pollle, < INlle; + K VIa(lQolle, + lpolle,) + Kz D €% (aGr(Qo, po))",

=2
+oo
[ F6[Qo; pollle, < lInlle; + Ky VLa(l|Qollos + [lpolle,) + K2 Zfl/z(aGf(Qo,Po))Z7
=2

these upper bounds are finite provided aG;(Qo,po) < 1 where Gy is defined in
Lemma [I71 Moreover:

+oo
||dF[Q(), pO]HL(Xf) < 2{K(4>\/E + OéK(3)(f) 243/2(aGf(QO, po))lfl}
=2

where K3)(f) = K1)K@2)C(f)A(f). The supremum of the above upper bound on
Bx, (0, R) is written v = v(f, R).

We take Koy (f) := KqyC(f), Ry = e5+/log(A) for some e5 > 0 and assume
(INlles + lInlle,) < eny/log(A) (with 0 < en < &f).

For any (Qo, po) € Bx,; (0, Ry) the following holds:

I1F(Qo, po)llxe, < w(f, Bp)ll(Qos po)llxy + [[F(0,0) %,
< v(f, By)esy/10g(A) + Ko)(f)en/log(A).

We have:

too 01
v(f,er\/log(A)) < 2K 4V La + 20K 3)(f) 241/2 <aEfC\/(1;;g(A)>
=2

To apply the Banach fixed point Theorem it suffices to have:

u(f,e5y/Tog(A) < 1 and 2V ’EfﬁogT? + K@Cen _ |
f

For fj(p—q) = E (p— q)’ with j € {0,1,2} and provided o log(A)ey is small
enough we have:

v(f1,e1v/108(0) S VIa(l + av/log(Mes) = O(VIa).

In the case alog(A) < 1, it suffices to take Z—;‘ small enough to apply the fixed

point Theorem.
Proof of Lemma Let M(-,-) be the function

1 DO(p) D°
(.0) € BO.AY o M(p,q) = —————(ZW D@ 4
E@) +E(@)*E@P) E()
We write S(p) = EO(;Z’)) for short. A direct computation in Fourier space (and

Cauchy’s formula) gives like in [7]:

{ Qoi(pip,a) = 5572572%0(0 — DM (p, 9),

¢ - i (101)
Quo(vip,g) =—3(S()Ry(p,q)S(q) — Ry(p,q)).
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We will use Lemma [[4} it gives an estimation of M (p,q) :

lp —d|
IM(p,q)] £ =——=—"
(B (p) + E(a)?
The estimation of |[Qo,1(p~)lle, is then easy. In (IO, it suffices to use Lemma
5l to get estimation of [|Q1,0(70)(le;-
Then, as ||Ry|le, < x, the estimation of ||Q1,0(No)||kin follows from a simple

computation of jj 1Q1.0(No) .
Then the norm ||p1,0[70]||e; is dealt with in the same way as in [7]:

1 =~ k k k k
pl’o[’yo;k]:—m / Trc4{R/70(7.L+§,U—§)M(U—§,U+ 5)}

k
\ui§\<A

By Cauchy-Schwartz inequality we have:

1 ~ TP
2 1 k ky|2
< 25,3 /E(Qu) [Bog (u+ 5,u = 5)[du x

/E(zu) |M(u— 5 u+ 5)Pdu.

[p1,0[v0; k]|

By Lemma [IH || p1,0[0]lle, < v/1og(A)lolle;-
a
Proof of Lemma [IT7] We only sketch the proof of Lemma [I7] in this paper: we
refer the reader to [7) [I7] for full details.
The main idea is to use the K.-S.-S. inequality (B8] together with the Holder
inequality for G,($a). For instance, let us take the Hilbert-Schmidt norm of
Qo 3[po]: writing hp,y := .F *(|@p,|) We have

1 1 1
h < = Boo |l 6 -
H(|'DO|2+772)1/4 Po (|DO|2+7]2)1/4H6G ~ E(n)l/zH P()”Lﬁ

By Sobolev inequality we get ||yl < ||pollc and thus there holds:

1 [t 1 1 3 dn
|‘Q0,3[p0]||62 < %/700 H (|DO|2+n2)1/4hp0 (|D0|2+n2)1/4H66§(n)
< llpolf2-

Let us first estimate [|Qello,, £ > 2.

The term Q2 is dealt with the same way as in [7]: we refer to this paper for
details.

The difference between the example above [|Qo,3[po]lls, and [|Q¢[Qo, po]lle, is

that we have to multiply @g (p, q) by the weight

fp—9E(+q)

before taking the Hilbert-Schmidt norm. Besides this fact the main idea is the
same:

e We consider 1/ f(p — q)E (p+ @@b

o We take its Hilbert-Schmidt norm and get an upper bound of it using K.-S.-S.
and Holder inequalities.

To deal with /f(p — q) we use condition (Z9)):
VIp=a) <COH Vo —p) + VI —p2) + -+ Ve —a)} (102)
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and to deal with \/ E (p + q) we use the following trick:

_ 1 < ! .
{E @)+ (E @+ " JBp+q B

(103)

We consider the integral representation of each term of @M,j [Qo, pol; for con-
venience we write Rg := R[Qo] and o := ¢[po].

For instance let us treat the term where the j operators Ry are on the left, we
take the modulus and get the upper bound:

e d R I Ro(pi.pi
n [Ro(p,p1)] |Ro(pi, pit1)]
/ (2m) 1305 /2 / dp1 -~ dp1—= 2. o ~ 2 8
o B(0,A)¢~1 \/E (p)” +n? =t \/E (pi)” +nm
-1

|Bo(pr — Prt1)l

=1\ B (pr)” + 02
(104)
We write po := p and p, := q.

We multiply (I04) by 1/ f(p — q)E (p + ¢) and use tricks (I02) and ([I03). We
then use ([I03]) for the terms involving p; and p;y1 (0 <i < j —1) and get:

1£@ = a) 1R, NN E W + ), <1Qllo,- (105)

Moreover we have by the K.-S.-S. inequality:

IR — ~ INV(T (A — HPOHC
(B (@) + ) VI — )o@ — d)I(E (@) +n°) Vley = F o
1B @) +0*) " /IW = a0 — dE (@) +n*) 4|
T \2 — 7 AV / / N2 —
< B @) +m) VIR =)o@ — d)I(E (@) + 7)o,
(106)
By using those K.-S.-S. inequalities under the integral sign fn in (I04)) (multi-

plied by the weight 1/ f(p — ¢)E (p+ q)), we get an upper bound of the form:

+oo d . )
n ’ 2 j 0—j
| s K O Qo ol

This upper bound is valid provided (¢4 1)/2 > 1 and £ > 3 ie if £ > 3.
In fact the same method gives:

1Q20[Qlle, < C(f)?IQolIS,,
1Q1.1[Qo, pollle, < C(f)?[Qolle;llpolle, -

Let us now deal with the densities p¢[Qo, po]. First remark: as recalled in [7],
Furry’s Theorem states that for all £ = 2¢; € 2N™ even, we have

po,2¢; = 0.

As in [7], we deal with the other terms by duality: the dual ¢ of € is:

¢ = {g € S'(R%) : ||z§|(f()z|<;) dk < +oo}.

For any ¢ € @} NL? and Q € G2(Ha) we have

QC = (QID° ) (15hC) € &1 (L2 (RY)),
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Above, it is understood that ﬁ is the Fourier multiplier

I 2/p3 -1 Xlpl<A 2 2R3
|D0|2.¢6L(R)b—>J {E(p)2¢(p)}€L(R).

Then the following holds:

l{pq, O) = ITe(QQ)] = |Tx(QQ)| < / 1Q<(p, p)|dp.

The idea is to get an upper bound depending only on the Q}—norm of ¢ and to
conclude by density of €7 N L? in ¢}.

The ingredients are the same but we treat p1,1 and po,3 differently (as in [7]).
We use the same K.-S.-S. inequalities and (I02]).

For instance, for ¢ > 5:

e—1
Oo -0 1 e |%o(p — p1)| |Po (P — Pr+1)]
|Qo,5¢(p,p)| < W/ﬂm /dp = | | — X

2
siomyer & @) FYES VE () 42

~

[Cpe—1 —p)|
(E (p)? +n?)1/4
We write
= ~ Vf(pe—1—p) ~ B ~
[C(pe—1 — p)| = T—=5|¢(pe—1 — )| = V/ [ (Pe—1 — P){' (Pe—1 — D)

f(pe-1 —p)
and use ([02)):
Ve —p) <CH T W —p) + -+ V(1 — pe-2)).

Then it suffices to use 6 times the first inequality of (I06) and (£ + 1 — 6) times
the second.
We refer the reader to |7} [I7] for the other terms. o

B.3 Estimates of a fixed point

Let (N,n) € X, be given where x means 0,1 or no subscript. Let us assume that
the norms of N and n are O(1) such that we can apply the fixed point Theorem (cf
Lemmas [ and ). From now on v is Lipschitz constant in Lemma[7 that is the one
corresponding to F applied on some ball Bx (0, R). We write: z = /Tr(—A|N]).

We apply the Banach theorem with initial data (0,0) € X, : iterations are
written (7(y), p(s)) and (), p(e) are defined as follows:

Yoy =0 + N, sl =Py +n (107)
With Y(e41) = X(—00,0)(D° + a(gop/(e) — R(7(z)))) — P2. The fixed point is written:

(', %) = (v, p9) + (N, n).
Lemma 18. Let N, n,~, py be as above. If ||(N,n)|x, = O(1) then so is ||(7, py) || x, -
Proof: In the regime (23]), the Lipschitz constant vy in Lemmas[7] Blis o(1). So:

—+oo
1Y 05) = (0,0l <D N (Wexnys Porny) — (Vs oyl
£=0

—+oo
3
<Dl (v Pry) = (Vo Pyl

=0
< [FOOlx, o 1),
— 1—vg — 1—vg :

We want to be more precise and prove Lemma[Ql We first have:

36



Lemma 19. Let N,n,~, py,z(N) =: x be as above. Let us write:

w(N) = \/H lp = al*lp + all N (p, ¢) *dpda.
Then the following estimates hold:

lpsle < La™"/2+aa + La,
loylle < Lz™Y? 4+ az + w(N)VLa + La.

Iz < VLIex'? +az+ L,
Ivle < VLaz'?+a,

Proof: The first point is devoted to Lemma and the second to the end of
Lemma[0
1. We write @ := .F'(7(k)/(1 + aBa(k))). There holds: F(0,0) = (N,7); in
particular vy = 0 and p(y =0 —n = —F ' (ba) * n.

Writing v = 3" 1% (1) — Y0)) + 71y we have:

Mz < XiSlvesy —volle + e —yolle + v lle
<SS VHIF(0,0)||x, + |Fo(N, ) — Nz

The first term on the right hand side is equal to %||N7ﬁ||xf = O(La). The
second term is the ||-||z norm of:

—+oo
> QN 7).
j=1

By Lemmas[I8and [T the following inequalities hold: a||Q1[N, 7|z < vV Loz ™2+
ox and

+oo too
Y NQiNAllle <Yl |Q;[N,7le < o®([(N,7)||x = O(a”) = O(La).

Jj=2 Jj=2

Using the same method for |-||o, we have a||Q1[N,7]||o < VLaz™?+a||N|o
and:
Iz < vVILaz™?+az+ La$VLar '? +az + La,

hlle € VIaz™/2+a|N|e+La £ VIaz™/? +a.

There remains to check that = O(La) to get ||v]lg < La and ||v]le < a.
For the density we have:

(108)

—+ o0

lpalle < Moy = pwlle + o — paylle + lloalle
=2

+oo
<D _VIFO,0)x, + 1Fp(N7) = 7lle + [In —7lle.
=2

It is clear that |[n — 7llc < ||bal|re<||nllc < Lz~ '/?. The first term is O(a?). The
last term is the norm of:

+oo
_ 1 ;
F! 7(A N,k JA-N_‘k) .
{1—|—OéBA(k) Oépl,o( )+Jz:;ap3( IR )
We use Lemmas and [T’ to get:

all(6o — ba) * pro(N)lle < aw,

—+ o0
Y@l —ba)*pi(NA)le S P|(N, )% < @® < LVLa
j=2

Here §p is the usual Dirac’s generalized function.
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If we consider the norm ||-||¢, there holds:

o[ (80 = ba)  pro(N)llz2 < m\/ [ 1p+dllp — o’ |N (b, @) Pdpdq = vVLaw(N)

where we have used Lemma [[5 with f(p — q) = |p — q|*. Provided = = O(La) and
w(N) = O(L) the following estimate hold:

HP'VH& HP'VHC < LV La.

For the test function defined by (23] and (26]), it is clear that + = O(La) and
w(N) = O((La)?'?).
2. The estimate of ||v||g, follows from these estimates. First by computing in
Fourier space it is clear that:

Vpo € C: [|Qo,1lpo]lls, < llpollc-

Then:

+oo
e, <D QR lles

Jj=1

—+oo
< a([Qoa o lle, + Q1o Tls,) + Y & lIQ;1, A5l e
=2

< allplle + a(lIBnlle, + [7llex) + O@?[I(+', 25)IIZ) < /Lo

Moreover:
[[1E® - E (@) PA®.0)lPdpdg < [{ p— af*F(p,q)Pdpdg < [7]5 < (La)®.

To conclude this part, there remains to estimate ||v|D°[¢a]lz2 and ||yabx|| 2.
We have: 0 N
VD [l < IVlles [P [9allzz < aviLa,

Voalle < [llexll¥allre < aviLo
We can get better upper bounds [I7] but we do not need them here. o

References

[1] V. Bach, J-M. Barbaroux, B. Helffer, H. Siedentop, On the Stability of the
Relativistic Electron-Positron Field., Comm. Math. Phys. 201 (1999), 445-60.

[2] H. Bahouri, J.-Y. Danchin, R. Danchin, Fourier Analysis and Nonlinear Partial
Differential Equations, Springer (2011).

[3] P. Chaix, D. Iracane, From quantum electrodynamics to mean-field theory:
1. The Bogoliubov-Dirac-Fock formalism J. Phys. B: At. Mol. Opt. Phys. 22
(1989), 3791-3814.

[4] M. Esteban, E. Séré, Nonrelativistic Limit of The Dirac-Fock Equations, Ann.
Henri Poincaré 2 (2001), 941-961.

[5] P. Gravejat, M. Lewin, E. Séré, Ground state and charge renormalization in
a nonlinear model of relativistic atoms, Comm. Math. Phys. 286 (2009) no. 1,
179-215.

[6] P. Cravejat, M. Lewin, E. Séré, Renormalization and asymptotic expansion of
Dirac’s polarized vacuum. Comm. Math. Phys. 306 (2011), no. 1, 1-33.

[7] C. Hainzl, M. Lewin, E. Séré, Ezistence of a stable polarized vacuum in the
Bogoliubov-Dirac-Fock approximation, Comm. Math. Phys. 257 (2005), 515-562.

38



[8] C. Hainzl, M. Lewin, E. Séré. Self-consistent solution for the polarized vacuum
in a no-photon QED model, J. Phys. A: Math and Gen. 38 (2005) no. 20,
4483-4499.

[9] C. Hainzl, M. Lewin, E. Séré, Existence of Atoms and Molecules in the Mean-
Field Approximation of No-Photon Quantum Electrodynamics., Arch. Rational
Mech. Anal. 192 (2009) no. 3, 453-499.

[10] C. Hainzl, M. Lewin, J.P. Solovej, The Mean-Field Approximation in Quantum
Electrodynamics. The no-photon case., Comm. Pure Appl. Math. 60 (2007)
no.4, 546-596.

[11] C. Hainzl, H. Siedentop, Non-perturbative mass and charge renormalization
in relativistic no-photon quantum electrodynamics, Comm. Math. Phys. 243
(2003) no 2, 241-260.

[12] M. Lewin, N. Rougerie, Derivation of Pekar’s Polarons from a Microscopic of
Quantum Crystals, STAM J. Math. Anal. 45 (2013) no 3, 1267-1301.

[13] E. H. Lieb, Ezistence and uniqueness of the minimizing solution to Choquard’s
nonlinear equation, Studies in Applied Mathematics, 57 (1977) 93-105.

[14] E. H. Lieb, M. Loss, Analysis, AMS (1997).

[15] E.H. Lieb, H. Siedentop, Renormalization of the regularized relativistic
electron-positron field, Comm. Math. Phys., 213 (2000) no. 3, 673-683.

[16] B. Simon, Trace Ideals and their Applications, Vol 35 of London Mathematical
Society Lecture Notes Series. Cambridge University Press, 1979.

[17] J. Sok, Modéle de champ moyen en électrodynamique quantique, Ph. D. thesis,
Université Paris-Dauphine (to appear in 2014).

[18] B. Thaller, The Dirac Equation, Springer (1992).

39



	Introduction
	Description of the model and main results
	Preliminary results
	Banach spaces
	Some inequalities
	The fixed point method

	Proofs
	Proof of Lemma 2
	Proof of Proposition 1
	Proof of Theorems 2 and 3
	Notations
	Strategy of the proof
	A priori estimates
	Estimates around the fixed point method
	Scaling
	Estimation of EBDF0(1).


	Appendices
	The operator D0
	The functions g0 and g1
	The function B

	The fixed point method: estimations
	Estimation about the R operator
	Estimates for the fixed point method
	Estimates of a fixed point


