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Abstract

The Bogoliubov-Dirac-Fock (BDF) model allows to describe relativistic elec-
trons interacting with the Dirac sea. It can be seen as a mean-field approximation
of Quantum Electro-dynamics (QED) where photons are neglected. This paper
treats the case of an electron together with the Dirac sea in absence of any exter-
nal field. Such a system is described by its one-body density matrix, an infinite
rank, self-adjoint operator which is a compact pertubation of the negative spectral
projector of the free Dirac operator. We prove the existence of minimizers of the
BDF-energy under the charge constraint of one electron assuming that the coupling
constant α and the quantity L = α log(Λ) are small where Λ > 0 is the ultraviolet
cut-off and chosen very large.

We then study the non-relativistic limit of such a system in which the speed
of light c tends to infinity (or equivalently α tends to zero) with L fixed: after
rescaling the electronic solution tends to the Choquard-Pekar ground state.
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1 Introduction

We study an approximation of no-photon Quantum Electrodynamics (QED) allow-
ing to describe the behavior of relativistic electrons in an external field interacting
with the virtual electrons of the Dirac sea via the electrostatic potential in a mean-
field type theory. Here there will be one "real" electron and no external field.

We use relativistic units ~ = c = 1 and set the bare particle mass equal to 1
and α = e2/(4π). We denote by D0 = −iα · ∇ + β the free Dirac operator acting
on the Hilbert space H = L2(R3,C4) and by P 0 = χ(−∞,0)(D

0) the projector on
its negative spectral subspace. Later on we will use a modified Dirac operator D0

together with the free vacuum P0
− introduced in [8, 11] instead of D0 and P 0.

In the BDF model a system is described by a Hartree-Fock state Ω in Fock
space completely characterized by its one-body density matrix P (an orthogonal
projector for pure states) containing both "real" and "virtual" electrons. It is
infinite-rank. To manipulate such a system and in particular to define properly
its density we consider the difference between P and the free vacuum P0

−, that is
Q = P − P0

−. Moreover an ultraviolet cut-off Λ is needed, restricting our study to
the Hilbert space

HΛ = {f ∈ H : suppf̂ ⊂ B(0,Λ)}.
Note that HΛ ⊂ H1(R3,C4) is D0 and D0 invariant. Indeed P0

− is a translation-
invariant projector on HΛ satisfying the Euler-Lagrange equation

{ P0
− = χ−∞,0(D0),

D0 = D0 − α
(P0

−
−1/2)(x,y)

|x−y| .
(1)

In Fourier space D0 takes the following form

D̂0(p) = α · ωpg1(|p|) + g0(|p|)β, ωp =
p

|p| , (2)

where g0 and g1 are real and smooth functions satisfying

x ≤ g1(x) ≤ xg0(x).

In the regime L := α log(Λ) = O(1) following [11] we will be able to get further
information on them via their self-consistent equation (that we have written in
(55)).
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We consider then Q̃Λ := {Q ∈ S2(HΛ) : Q∗ = Q, 0 ≤ Q + P0
− ≤ 1} where

Sp(HΛ) denotes the usual Schatten class of compact operators A on HΛ such that
Tr(|A|p) <∞. The charge of Q ∈ QΛ is defined by its P0

−-trace that is by

TrP0(Q) = Tr(P0
−QP0

−) + Tr(P0
+QP0

+), P0
+ := 1− P0

−;

it is known (cf [5]) that P0
−QP0

− and P0
+QP0

+ are trace-class when Q = P − P0
−

and we introduce the set of P0
−-trace class operators

S
P0

−

1 (HΛ) = S2(HΛ) ∩ {Q : Q++ := P0
+QP0

+, Q
−− := P0

−QP0
− ∈ S1(HΛ)},

so we will work in

QΛ := Q̃Λ ∩S
P0

−

1 (HΛ). (3)

The density of ΩP is represented by ρ(P−P0
−
)(x) = TrC4((P − P0

−)(x, x)) (which

makes sense as Q is locally trace-class). Its Fourier transform is:

ρ̂Q(k) :=
1

(2π)3/2

∫

|u+ k
2
|,|u− k

2
|≤Λ

TrC4(Q̂(u+ k
2
, u− k

2
))du, (4)

The energy functional is defined on QΛ by

E(Q) := TrP0(D0Q) +
α

2


D(ρQ, ρQ)−

x

R3×R3

|Q(x, y)|2
|x− y| dxdy


 , (5)

where

D(f, g) := 4π

∫

p

f̂(p)ĝ(p)

|p|2 dp

coincides with
s

f(x)g(y)
|x−y| dxdy for sufficiently smooth functions. Here Q(x, y) de-

notes the kernel of Q. The trace part is the kinetic energy while the two others are
respectively the direct term and the exchange term. Moreover there holds [5],[8, 1]

TrP0(D0Q) = Tr(|D0|(Q++ −Q−−)) ≥ Tr(|D0|Q2), (6a)
x |Q(x, y)|2

|x− y| dxdy ≤ π

2
Tr(|D0|Q2), (6b)

we will assume that α < 4
π
.

We introduce
C := {ρ ∈ S ′(R3) : D(ρ, ρ) <∞},

along with its norm ||ρ||C :=
√
D(ρ, ρ). Moreover we introduce the following

notations concerning the Dirac operator:

Notation 1.1. We note Ẽ (p) :=
√
g0(p)2 + g1(p)2 = |D0(p)| and

E (p) :=
√

1 + |p|2 = |D0(p)|.
We will designate by g0 (respectively g1) both functions

g⋆ : x ∈ [0,Λ] → g⋆(x) ∈ R+ and g⋆ : p ∈ B(0,Λ) → g⋆(|p|) ∈ R+. The (g0)’s are
C∞ while g1 ∈ C1(B(0,Λ)) (cf Appendix A).

At last we note




g1 : p ∈ B(0,Λ) → g1(|p|)ωp ∈ R3

g : p ∈ B(0,Λ) →
(
g0(p)

g1(p)

)
∈ R4.

Notation 1.2. C1 > 0 denotes a constant verifying g1(r) ≤ C1|r| and |g0|∞ ≤ C1.
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Notation 1.3. A recurrent function of this problem is

BΛ(k) :=
1

π2|k|2
∫

|p=l+k
2
|,|q=l−k

2
|≤Λ

Ẽ (p) Ẽ (q)− g(p) · g(q)
Ẽ (p) Ẽ (q) (Ẽ (p) + Ẽ (q))

dl. (7)

We define αr(k) by
αr(k) :=

αBΛ(k)
1+αBΛ(k)

. (8)

In Appendix A it is shown that BΛ(k) = O(log(Λ)) and that for L≪ 1 there holds
BΛ(0) =

2
3π

log(Λ) +O(L log(Λ) + 1).

Notation 1.4. Throughout this paper we work in the regime

α→ 0, Λ → +∞, α log(Λ) = L ≤ ε0, α(log(Λ))
3 ≥ ε1 > 0 (9)

so whenever we write o(·) and O(·) without specifying the limit it is understood
that it holds in the regime (9).
Moreover, K denotes a constant which is independent of α and Λ. It is understood
that > refers to such a constant.

2 Main results

Here we restrict our study to states Q ∈ QΛ such that TrP0(Q) = 1: is there a
minimizer on the surface of charge constraint 1 ? Following [7] it suffices to show
that the energy function

E(q) := inf
Q∈QΛ,Tr

P0 (Q)=q
(E(Q))

satisfies binding inequalities at level 1 that is

E(1) < E(1− q) + E(q), ∀q ∈ R\{0, 1}. (10)

We will show that it is the case in the regime (9).
The difficult case of (2) is 0 < q < 1, it will be a corollary of the fact that
E(1) < g0(0) := m(α) = min(σ(|D0|)). The inequality E(q) ≤ |q|m(α) is proven
in [7]. For 0 < q < 1 it is straightforward: it suffices to take trial tests of the form
Q = q|ψ〉〈ψ| with ψ ∈ Ran(P0

+).
Indeed the first step will be to show

Theorem 1. There exist three constants α0, L0,Λ0 > 0 such that

for α ≤ α0, L ≤ L0,Λ ≥ Λ0 there holds

E(1) ≤ m(α) +
(ααr(0))

2m(α)

2g′1(0)
2

ECP + o((ααr(0))
2), (11)

where ECP is the Choquard-Pekar energy

ECP := inf
φ∈H1(R3):||φ||

L2=1

{∫
|∇φ|2dx−D(|φ|2, |φ|2)

}
< 0.

Remark 2.1. For sufficiently small L there holds g′1(0) > ε > 0. More generally all
the results we need about g0 and g1 are proven in Appendix A.

Remark 2.2. The condition α log(Λ)3 ? 1 of (9) is not needed for this theorem.

We consider along with the authors of [7] that such a minimizer Q should satisfy
a self-consistent equation of the form (with Q = γ + |ψ〉〈ψ|)

γ + P0
− = χ(−∞,0)(DQ), DQ := D0 + α

(
ρQ ⋆ | · |−1 − Q(x, y)

|x− y|
)
, (12)

and |ψ〉〈ψ| = χ[0,µ](DQ) where µ < m(α) can be chosen such that DQψ = µψ.
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We thus take a trial test of the following form: let us first take φ′
1 the unique

minimizer of the Choquard-Pekar energy (cf Theorem 1.), then consider

φ1 :=
PHΛ

φ′
1

||PHΛ
φ′
1
||
L2

where PHΛ
is the projector onto HΛ and form the spinor

ψ1 :=

(
φ1

0

)
. For λ−1 := ααr(0)m(α)

g′
1
(0)2

we take ψλ := λ−3/2ψ1(λ
−1(·)) to form

N = Nλ := |ψλ〉〈ψλ| and nλ := |ψλ|2 = ρN . We define Γ by:

Γ := N ′ + γ with

γ = χ(−∞,0)

(
D0 + α((ργ + n) ⋆ | · |−1 − γ(x,y)+N(x,y)

|x−y| )
)
− P0

−, (13a)

π = γ + P0
−, N

′ =
|(1− π)ψλ〉〈(1− π)ψλ|

1− ||πψλ||2L2

. (13b)

It is not obvious that such a trial test exists: in fact the fixed point method of [5]
can be adapted to prove it. This last paper treats the case of D0, in Appendix A
it is shown that taking D0 does not change anything.

Then we calculate the energy of Γ.
Decomposing each term of the energy and considering that an electron does not

see its own field (that is here D(|ψ|2, |ψ|2)−
s |ψ(x)|2|ψ(y)|2

|x−y| dxdy = 0) we can write

E(Γ) = T +
α

2
(I − J) (14)

with T = TrP0(D0Γ) the kinetic energy and

I = D(ρΓ, ρΓ)−D(nλ, nλ), J =
s |Γ(x,y)|2

|x−y| dxdy −D(nλ, nλ). We prove

Lemma 2.3. There holds

TrP0(D0N ′) = m(α) +
g′1(0)

2

2λ2m

∫
|∇ψ1|2dx+ o(λ−2),

α

2
I = −α(2αr(0)−αr(0)

2)
2λ

D(n1, n1) + o
(
ααr(0)
λ

)
,

αJ = o
(
ααr(0)
λ

)
,

TrP0(Dγ) = α(αr(0)−αr(0)
2)

2λ
D(n1, n1) + o

(
ααr(0)
λ

)

such that in fine we get

E(Γ) = m(α) +
ααr(0)

2λ
ECP + o

(
ααr(0)

λ

)
.

Lemma 2.3. is proved in section 4.1 and Theorem 1. follows immediatly.
A corollary is then

Proposition 2. For each q 6= 0, 1 there holds E(1) < E(1− q) + E(q).

Theorem 1.[7] assures that there exists a minimizer of E(1).
We study such a minimizer taking the form Q = γ + |ψ〉〈ψ| with DQψ = µψ.

We write vγ = ργ ⋆ | · |−1 and Rγ(x, y) =
γ(x,y)
|x−y| : as (|ψ|2 ⋆ | · |−1 − ψ(x)ψ(y)∗

|x−y| )ψ = 0
we have

(D0 + α(vγ −Rγ))ψ = µψ. (15)

A natural question arises: does it have a form similar to the previous trial test,
in particular does its energy have the same asymptotic expansion at order 1 ?

Theorem 3. There exist three constants α1, L1,Λ1 > 0 such that

for α ≤ α1, L ≤ L1,Λ ≥ Λ1 in the regime α(log(Λ))3 ? 1 there holds

E(1) = m(α) +
(ααr(0))

2m(α)

2(g′1(0))
2

ECP + o
(
(ααr(0))

2
)
. (16)
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As it can be guessed we will follow the same path as the one for Theorem 1.
We will first prove that

Lemma 2.4. ||ψ||H3/2 = O(1),

enabling us to apply the fixed-point method with n = |ψ|2 and N = |ψ〉〈ψ| and
by so constructing the minimizer as a fixed point. Using the estimates that we
deduce from the fixed-point method and equation (15) we then prove that

Lemma 2.5. 〈|∇|2ψ , ψ〉 = O((ααr(0))
2).

It implies that a minimizer of E(1) has the same estimates of the trial test con-

cerning the quantities D(n, n),D(ργ , ργ) and
s |γ(x,y)|2

|x−y| dxdy: they are respectively

O(Lα), O(L2(Lα)) and O((Lα)2).
Following [7], we apply a scaling transform to the minimizer with a scale ααr(0):

we get ψ =

(
ϕ

χ

)
∈ H1(C4). The previous results will give

Lemma 2.6. ||ψ||H3/2 = O(1), ||χ||H1 = O(Lα).

This last lemma enables us to estimate E(1) and to obtain the result of Theorem
3. Thus

Theorem 4. writing C2
0 :=

2g′1(0)
2

(ααr(0))2m(α)
there holds in the regime (9)

lim inf
α,Λ−1→0

C2
0(E(1)−m(α)) = lim sup

α,Λ−1→0

C2
0 (E(1)−m(α)) = ECP. (17)

If L = α log(Λ) ≤ min(L0, L1) is fixed then limα→0 Λ
−1 = 0 so (17) holds with

α→ 0.

Remark 2.7. This answers an open question stated in [8].

3 Preliminary results

3.1 The fixed point method

Notation 3.1. For a compact operator Q we will write RQ or R(Q) the operator
whose kernel is Q(x,y)

|x−y| and ϕQ the function ρQ ⋆ | · |−1. In general we take the
notation of [5].

As shown in [5] we can use the Cauchy expansion to write (at least formally)

χ(−∞,0)(D0 + α(ϕQ −RQ))− χ(−∞,0)(D0) =

∞∑

k=1

αkQk, (18a)

Qk = − 1

2π

∫ +∞

−∞
dη

1

D0 + iη

(
(RQ − ϕQ)

1

D0 + iη

)k
. (18b)

We also expand (R−ϕ)k: Qk :=
∑k
j=0Qj,j−k like in [5] (the first number denotes

the number of (R)’s). This equation is about the vacuum without external field: to
consider an electron (represented by N := |ψ〉〈ψ|) we have to add its field n := |ψ|2
together with the operator N(x,y)

|x−y| in the exchange term and get:

ρ′ = ρ+ n, Q′ = Q+N , ϕ′
Q = ϕQ′ and so the equation

χ(−∞,0)(D0 + α(ϕ′
Q −R′

Q))− χ(−∞,0)(D0) = FQ(Q
′, ρ′) =

∞∑

k=1

αkQk(Q
′ρ′). (19)

There holds ρ̂0,1(p) = −ρ̂′(p)BΛ(p) so taking the density ρ of that equation we
obtain ρQ′ = Fρ(Q

′, ρ′),with

F̂ρ(p) =
1

1 + αBΛ(p)

(
α(ρ̂1,0(p) + n̂(p)) +

∑

k≥2

αk ρ̂k(p)
)
. (20)
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Of course this is not enough: we must precise the domain of the function

F := FQ × Fρ. (21)

We will first consider the Banach space X = Q× C defined by the norms

||Q||2Q =
x

Ẽ (p− q)2 Ẽ (p+ q) |Q̂(p, q)|2dpdq, ||ρ||2C =

∫
Ẽ (k)2

|k|2 |ρ̂(k)|2dk,

and ||(Q, ρ)||X = 2C
3/2
1 (2

√
2||ρ||C + CR

√
2||Q||Q) where CR is defined in [5] and

|g0(p)| ≤ C1, |g1(p)| ≤ C1|p|. Like in [5] we can show that we can apply the Banach
fixed point theorem in X ∩B(0, RΛ) where RΛ is O(

√
log(Λ)) when

√
Lα ≤ ε: in

our regime where α log(Λ) ≤ L0 the condition on α holds for α sufficiently small.
We will denote by ν the Lipschitz constant of F in B(0, RΛ) : ν = O(

√
Lα).

Indeed we can show that ||dF ||L(X) >
√
Lα.

We also introduce the norms

||Q||2S =
x |Q(x, y)|2

|x− y| dxdy, ||Q||2F = Tr(|D0|Q∗Q),

||Q||2E =
x

max(Ẽ (p) , (Ẽ (p− q))2, Ẽ (p− q) Ẽ (p+ q))|Q̂(p, q)|2dpdq,

and
√

2
π
||·||S ≤ ||·||F ≤ ||·||E ≤ ||·||Q.

Remark 3.2. By looking closely at the estimates of [5] we realize that we can take
another choice of norms for F and so another choice of Banach space on which
applying the Banach fixed point theorem. Indeed let us take a radial function
f : R3 → [1,+∞): as long as there exists a constant C > 0 such that

f(p− q) ≤ C(f(p− p1) + f(p1 − q)), α

(∫ Λ

r=0

dr

f(r)2

)1/2

=: θ = o(1),

we can apply the theorem with the norms

⋆||Q||2Q =
x

f(p− q)2Ẽ (p+ q) |Q̂(p, q)|2dpdq, ⋆||ρ||2C =

∫
f(k)2

|k|2 |ρ̂(k)|2dk,

even if it means changing the weights of the norms and restricting to θ ≪ 1. With
f(p) = Ẽ (p)a , 1

2
≤ a ≤ 1 we have θ = O(

√
Lα) →

α→0
0 so there will be no problem

in our regime.

3.2 Some inequalities

Let us recall Hardy’s, Kato’s and Kato-Seiler-Simon’s inequalities we will use
throughout this paper: for φ ∈ L2(R3), f, g ∈ B(R3,C4) (Borelian functions)
there hold: ∫ |φ(x)|2

|x|2 dx ≤ 4〈|∇|2φ , φ〉, (22a)

∫ |φ(x)|2
|x| dx ≤ π

2
〈|∇|φ , φ〉, (22b)

||f(x)g(i∇)||Sp ≤ (2π)
− 3
p ||f ||Lp ||g||Lp , 2 ≤ p <∞. (22c)

In particular (22b) and (22c) give

Lemma 3.3. Let Q ∈ QΛ and ρ ∈ C, then we have (ϕ = ρ ⋆ | · |−1)

∣∣∣∣RQ|D0|−
1
2
∣∣∣∣

B,
∣∣∣∣|D0|−

1
2RQ

∣∣∣∣
B > ||Q||S ,

∣∣∣∣ϕ|D0|−
1
2
∣∣∣∣

S6
,
∣∣∣∣|D0|−

1
2ϕ
∣∣∣∣

S6
> (log(Λ))

1
6 ||ρ||C ,∣∣∣∣ϕ|D0|−t

∣∣∣∣
S6
,
∣∣∣∣|D0|−tϕ

∣∣∣∣
S6

≤ Kt||ρ||C , t > 1/2.
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Let us consider R = RQ with Q ∈ QΛ. [5] introduces the norm ||R||2R =
s Ẽ(p−q)2

Ẽ(p+q)
|R̂(p, q)|2dpdq

and the proof of Lemma 8.[5] enables us to say that

Lemma 3.4. Let t ≥ 0.
∣∣∣∣|D0|−1/2R|D0|−1/2

∣∣∣∣2
S2

>
x

Ẽ (p+ q) |Q̂(p, q)|2dpdq, (23a)

x Ẽ (p− q)t

Ẽ (q)2
|R̂(p, q)|2dpdq >

x
Ẽ (p− q)t Ẽ (p+ q) |Q̂(p, q)|2dpdq, (23b)

x |R̂(p, q)|2

Ẽ (q)
dpdq >

x
Ẽ (p− q) Ẽ (p+ q) |Q̂(p, q)|2dpdq. (23c)

(23a) is straightforward for Ẽ (p)−1 Ẽ (q)−1 > Ẽ (p+ q)−1 and (23c) is due to

the fact that Ẽ (q)−1 > Ẽ(p−q)
Ẽ(p+q)

. Following the proof of 8.[5] we have

x Ẽ (p− q)t

Ẽ (q)2
|R̂(p, q)|2dpdq ≤ 8

x
Ẽ (2v)t Ẽ (2l) h(l, v)|Q̂(l + v, l − v)|2dpdq,

h(l, v) ≤ Ẽ (2l)1 (2π2)−2
s
dudl′(Ẽ (u− v)2 Ẽ (2l′)

1+1 |l − u|2|l′ − u|2)−1 > 1.

4 Proofs

4.1 Proof of Lemma 2.3.

We apply the Banach theorem with initial data (N,n) ∈ X : we note the iterations

γ′
j = γj +N, ρ′j = ρj + n (24)

with γj+1 = χ(−∞,0)(D0+α(ϕ′
ρj

−R′(γj)))−P0
− (so γ0 = 0). All the estimates we

need about γ etc. are in Appendix B, in particular we will use (68): ||γ||E > Lα
where we recall ||·||S2

≤ ||·||E and we define

τ := ααr(0). (25)

Remark 4.1. Here λ−1 and τ are of the same order Lα but the use of τ means
we estimate a quantity depending on γ while the use of λ−1 means we estimate a
quantity depending on ψλ.

A direct calculation shows that ||P0
−|D0|ψλ||L2 = O(λ−1) and

|||D0|ψλ||L2 = O(1). We will often use

||πψλ||L2 ≤ ||γψλ||L2 + ||P0
−ψλ||L2 > (τ + λ−1). (26)

Notation 4.2. Let us note φλ := (1−π)ψλ
||(1−π)ψλ||

L2
and N ′ = |φλ〉〈φλ|.

•Looking at the kernel of H =: [|D0|, γ] = [|D0|, π], ||H ||S2
≤ ||γ||E is immediate.

4.1.1 J =
s
(|γ(x, y)|2 + 2R〈γ(x, y),Φλ(x, y)〉)|x − y|−1dxdy.

(6) and (68) show that ||γ||2S = O(τ 2). By Cauchy-Schwarz inequality and (22a)
(G = |f〉〈g|)

|〈γ , G〉S| ≤ min(||γ||S ||G||S , 2||γ||S2

∣∣∣∣|∇|f
∣∣∣∣
L2 ||g||L2).

Now thanks to (22b) and (72):
s

|πψλ(x)|2|x−y|−1|πψλ(y)|2dxdy > ||πψλ||2L2 〈|D0|πψλ , πψλ〉
and 〈|D0|πψλ , πψλ〉 ≤ ||πψλ||L2(||H ||B + ||π|D0|ψλ||L2), so we obtain (τ + λ−1)4.
In the same ways

|ψλ(x)|2|x− y|−1|πψλ(y)|2dxdy > ||πψλ||2L2 〈|∇|ψλ , ψλ〉 > (τ+λ−1)
λ

and
finally:

s
|ψλ(x)|2|x− y|−2|ψλ(y)|2dxdy ≤ 4||ψλ||L2〈|∇|2ψλ , ψλ〉 ≤ 4λ−2.

Thus J = O(τ 2 + λ−2) = O((Lα)2).
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4.1.2 I = D(ργ , ργ) + 2D(ργ , |φλ|
2).

According to the self-consistent equation satisfied by ργ , we write

ρ̂γ(p) = −αr(p)n̂(p) + (1− αr(p))ρ̂1,0(p) + (1− αr(p))
∞∑

k=2

αkρ̂k(p) (27)

where we recall that αr(p) =
αBΛ(p)

1+αBΛ(p)
. Thus

D(ργ , ργ) = 4π

∫

p

(
αr(p)

2|n̂(p)|2 + (1− αr(p))
2|αρ̂1,0(p)|2 + (1− αr(p))

2
∣∣∣
∑∣∣∣

2

+2R
(
αr(p)(1− αr(p))n̂(p)

(
αρ̂1,0(p) +

∑)
+ (1− αr(p))

2αρ̂1,0(p)
∑)) dp

|p|2 ,

and by Cauchy-Schwarz inequality, we just look at
∫ |ρ̂(p)|2

|p|2 dp with ρ = n, ρ1,0,
∑

.

By Proposition 9. in a neighbourhood of 0 independent of α,Λ in the regime (9),
for ε = 1

6
, there holds (|k| = x < rε):

|BΛ(x)−BΛ(0)|
x

> (Λ−1 + x1/2) =: z(x). (28)

Then ∫

p

αr(p)
2|n̂λ(p)|2
|p|2 dp =

1

λ

∫

p

αr(
p
λ
)2|n̂1(p)|2
|p|2 dp,

For λ ≥ r−4
ε and p ∈ B(0, λ3/4): |BΛ(p/λ) − BΛ(0)| ≤ |p|

λ
(z(λ−1/4) +KΛ−1). As

f1 : t ∈ R+ → t
1+t

and f2 = f2
1 have bounded derivatives (by 1 and 2 respectively),

for p with BΛ(p) 6= BΛ(0),

|αr(p)− αr(0)| ≤ α|BΛ(p)−BΛ(0)|, |αr(p)2 − αr(0)
2| ≤ 2α|BΛ(p)−BΛ(0)| so

∫

|p|≤λ3/4

|fi(αBΛ(p))− fi(αBΛ(0))| |n̂λ(p)|
2dp

|p|2 ≤ 2α
z(λ−1/4) +KΛ−1

λ

∫ |n̂1(p)|2dp
|p|

> α
z(λ−1/4) + Λ−1

λ
||n1||C ||ψ1||2L4 .

As f1(t), f2(t) ≤ t2 then

∫

|p|>λ3/4

αr(p)
i |n̂1(p)|2

|p|2 dp > λ−3/2Li
∫

|n̂1(p)|2dp > λ−3/2Li||ψ1||2H1 = O(Liλ−3/2)

and

Lemma 4.3.

∫

p

αr(p)
i |n̂λ(p)|2

|p|2 dp = αr(0)
iD(n1, n1)

λ
+ o
λ→∞

(Liλ−1).

Furthermore
∫
p
α2(1− αr(p))

2 |ρ̂1,0(p)|2
|p|2 dp > α2||ρ1,0||2C where

ρ̂1,0(p) =
2−1

(2π)3/2

∫

|l+k/2|,|l−k/2|<Λ

TrC4(R̂γ′ (l+ k/2, l− k/2)M(l− k/2, l+ k/2))dl,

(29)
writing R(γ′) =

∑
k≥1(Rγk+1

−Rγk )+Rγ1 +RN we propagate by linearity in (29):
thanks to (65b) and (70a) there holds

α2||ρ1,0||2C > α2(λ−3||ψλ||4H1 + L
√
LαD(n1, n1) +O(α

√
Lα)).

Then ||∑||C > α2 is immediate with the estimates of [5].
Now |φλ|2(x) = 1

1−||πψλ||2
L2

(|ψλ(x)|2 + |πψλ(x)|2 − 2〈πψλ(x), ψλ(x)〉). For the

two last terms, we use Cauchy-Schwarz inequality to get thanks to (22b)K (τ+λ−1)2

λ

(cf 4.1.1 and |〈πψλ(x), ψλ(x)〉| ≤ |πψλ(x)||ψλ(x)| etc.)
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Then D(ργ , nλ) = −4π
∫
αr(p)|n̂λ(p)|2 dp

|p|2 +D(αρ1,0, nλ)+D
(∑

k≥2 α
kρk, nλ

)
.

With the same method as for D(ργ , ργ) and Cauchy-Schwarz inequality:

D(ργ , |φλ|2) = −αr(0)D(nλ, nλ) + o
λ→∞

(L
λ
).

Since 1
1−||πψλ||2

L2

= 1 +O((τ + λ−1)2), we finally obtain:

I = −2αr(0) + αr(0)
2

λ
D(n1, n1) + o

λ→∞

(
L

λ

)
(30)

4.1.3 TrP0(D0N ′) = Tr(DN ′) = 〈D0φλ , φλ〉.

We emphasize that ψλ has no lower part as a spinor.

As in a) there holds |〈D0πψλ , πψλ〉| ≤ ||πψλ||L2

∣∣∣
∣∣∣|D0|πψλ

∣∣∣
∣∣∣
L2

and thanks to (72),
∣∣∣
∣∣∣|D0|πψλ

∣∣∣
∣∣∣
L2

> K(τ + λ−1) so |〈D0πψλ , πψλ〉| = o((Lα)2).

Hence 〈D0φλ , φλ〉 = 〈D0ψλ , ψλ〉
1−||πψλ||2

L2

+ 〈|D0|P0
−ψλ , ψλ〉+ o((Lα)2). Indeed

〈D0ψλ , πψλ〉 = 〈πD0ψλ , πψλ〉 etc.

Notation 4.4. We will write 〈g0ψ , ψ〉 for (2π)−3
∫
g0(p)|ψ̂(p)|2dp etc.

As g′0(0) = 0 and ||g′′0 ||∞ > α and the (g′1)α,Λ’s are uniformly continuous in a
neighbourhood of 0 (cf Proposition 5. in Appendix A)

〈D0ψλ , ψλ〉
1−||πψλ||2

L2

=〈g0ψλ , ψλ〉(1 + 〈P0
−ψλ , ψλ〉) + o((Lα)2)

=g0(0) +
g0(0)

4
〈 g

2
1

g2
0

ψλ , ψλ〉+ o((Lα)2)

=g0(0) +
g′1(0)

4g0(0)λ2 〈|∇|2ψ1 , ψ1〉+ o((Lα)2).

Furthermore 〈|D0|P0
−ψλ , ψλ〉 = 1

2
〈(|D0|−g0)ψλ , ψλ〉 = 1

4g0(0)
〈g21ψλ , ψλ〉+o(λ−2).

Finally

TrP0(D0N ′) = 〈D0φλ , φλ〉 = g0(0) +
g′1(0)

2

2λ2g0(0)
〈|∇|2ψ1 , ψ1〉+ o((Lα)2) (31)

4.1.4 TrP0(Dγ).

Notation 4.5. Let us write B = R′
γ − ϕ′

γ = R(γ +N)− (ργ + n) ⋆ | · |−1.

Remark 4.6. Let us recall Lemma 1.[5]: if P,Π are two projectors such that:
P − Π ∈ S2 then

Q ∈ S
P
1 ⇐⇒ Q ∈ S

Π
1 and then TrP (Q) = TrΠ(Q).

Here we will take P = P0
− and Π := χ(−∞,0)(D0 + αB): formally (cf [9])

TrP0((D0 + αB)γ)
?
= Tr(|D0|γ2) + αTrP0(Bγ) (32a)

TrP0((D0 + αB)γ)
?
= −Tr(|D0 + αB|γ2)

?
= −Tr(|D0|γ2) + o(Tr(|D0|γ2)) (32b)

so we would like to show that Tr(|D0|γ2) = −α
2
TrP0(Bγ) + o(τ 2).

Two problems arise: are Bγ,BQk(γ) in S
P0

−

1 and how can we evaluate
|D0+αB|−|D0| ? We will deal with the last question in Appendix C and prove

Lemma 4.7.

Tr(|D0 + αB|γ2) = Tr(|D0|γ2) +O(ατ 2).

Supposing those facts are true we get Tr(|D0|γ2) = −α
2
TrP0(Bγ) + O(ατ 2).

We use (23c):

||R′
γγ||S1

≤ ||R(γ)|D0|−1/2||S2
|||D0|1/2γ||S2

+ ||R(N)||S2
||γ||S2

> (τ + λ−1)τ.
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Then let us prove TrP0(ϕ′
γγ) = D(ργ + nλ, ργ). In fact if Q ∈ S

P0
−

1 and if∫
Tr(Q̂(p, p))dp exists then it is equal to TrP0(Q) for P0

− = f(i∇): in Fourier

space TrC4(P̂0
−(p)Q̂(p, p)P̂0

+(p)) = 0.

(2π)−3/2
x

|p|,|q|<Λ

ϕ̂′
γ(p− q)(Tr(γ̂(p, q)))∗dpdq = (2π)−3/2

x

|u+ k
2
|,|u− k

2
|<Λ

ϕ̂′
γ(k)(Tr(γ̂(u+ k/2, u− k/2)))∗dudk

=

∫

k

ϕ̂′
γ(k)ρ̂γ(k)

∗dk = 4π

∫

k

ρ̂′γ(k)ρ̂γ(k)
∗

|k|2 dk = D(ργ , ρ
′
γ).

Like in the calculation of I there holds

D(ργ , ργ + nλ) =
αr(0)

2−αr(0)
λ

D(n1, n1) + o
(
L
λ

)
,

so

Tr(|D0|γ2) = ααr(0)
2−αr(0)
2λ

D(n1, n1) + o

(
L

λ

)
. (33)

Remark 4.8. The calculation above is correct if γ̂(p, q) ∈ C0(B(0,Λ)2):

A1 =
x

|u± k
2
|<Λ

|ρ̂(k)|
|k|2 |γ̂(u+ k

2
, u− k

2
)|dudk > Λ3/2||ρ||C(Λ3/2||γ̂||L∞ + ||γ||S2

).

We conclude by continuity of Q ∈ S
P0

−

1 7→ ρQ ∈ C shown in [7] and of

Q ∈ S
P0

−

1 7→ TrP0(ϕ′
γQ) and the density of C0(B(0,Λ)2) in F(S

P0
−

1 (HΛ)).
Indeed, using the notations of [5] and [4]: γe1e2 = P0

e1γP0
e2 , there holds(cf 3.3.):

(ϕ′
γQ)−− = (P0

−[ϕ
′
γ ,P0

+]|D0|−1/2)|D0|1/2Q+−+(ϕ′
γ |D0|−1/2)−−|D0|1/2Q−− ∈ S1(HΛ)

(34)
and so |TrP0(ϕ′

γQ)| ≤ ||ρ′γ ||CΛ1/2(log(Λ))1/6
∣∣∣∣Q
∣∣∣∣

S
1,P0

−

with

∣∣∣∣Q
∣∣∣∣

S
1,P0

−

:= ||Q−−||S1
+ ||Q++||S1

+ ||Q−+||S2
+ ||Q+−||S2

. (35)

BQk(γ) ∈ S
P0

−

1 (HΛ). We recall: |D0|−1/2ϕ′
γ ∈ S2(HΛ), |D0| ∈ B(HΛ),

|D0|−1/2R′
γ ∈ S2(HΛ), and thanks to [5] γ++, γ−− ∈ S1(HΛ).

These facts enable us to show: for k ≥ 4, Qk(γ) ∈ S1(HΛ) since
Q+···+
k = Q−···−

k = 0 (by the residuum formula in the formula of the kernel in
Fourier space as shown in[5]).

We can adapt Lemma of [4] and prove in the same way:

Lemma 4.9. For 0 ≤ t < 1/2 there holds with A = ||ργ′ ||C + ||γ′||S
∣∣∣∣|D0|1/2+tQ2(γ)

∣∣∣∣
S3/2

≤ KtA
2,

∣∣∣∣|D0|Q3(γ)
∣∣∣∣

S6/5
≤ KtA

3,

∣∣∣∣|D0|tQ̃4(γ)|D0|t
∣∣∣∣

S1
≤ Kt

(
A4 + αA5 + α2

( ||ρ′γ ||6
C

dist(0,σ(D0+αB))
+A6

))
.

where γ =
∑k−1
j=1 α

jQj + αkQ̃k.

Using the same method as in [4] with D(x) := D0 + xB(||ργ′ ||C + ||γ||S)−1

(there exists 0 < x0 ∈ R+ with |D(x)| ≥ 1
2
,−x0 < x < x0) we obtain

Lemma 4.10. Let 0 ≤ t < 1/2, then there exists Kt > 0 such that
∣∣∣∣|D0|tQ±±

2 (γ)|D0|t
∣∣∣∣

S1
≤ Kt∣∣∣∣|D0|tQ±±

3 (γ)|D0|t
∣∣∣∣

S1
≤ Kt
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Therefore γ, Q̃4(γ), Q3(γ), Q2(γ) ∈ S
P0

−

1 (HΛ) and so Q1(γ) ∈ S
P0

−

1 (HΛ).
Then as in (34): P0

−(BQk)P0
− = P0

−[B,P0
+]|D0|−1/2

︸ ︷︷ ︸
∈S2(HΛ)

|D0|1/2Q+−
k︸ ︷︷ ︸

∈S2(HΛ)

+P0
−B|D0|−1

︸ ︷︷ ︸
∈S6(HΛ)

|D0|Q−−
k︸ ︷︷ ︸

∈S1(HΛ)

,

so BQk(γ) ∈ S
P0

−

1 (HΛ).

Remark 4.11. As Λ → +∞ there holds 〈|D0|2ψ1 , ψ1〉 − D(n1, n1) = ECP + o(1).
In fact ψ1 = (φ1, 0)

T where φ1 = PΛφ
′
1/||PΛφ

′
1||L2 and φ′

1 is the minimizer of

Choquard-Pekar energy. PΛ is the projector onto HΛ and by so φ
(Λ)
1

H1

→
Λ→+∞

φ′
1.

Then writing n′ = |φ′
1|2 there holds by (22b)

∣∣||n1||C − ||n′||C
∣∣ ≤ ||n1 − n′||C > (〈|∇|ψ1 , ψ1〉+ 〈|∇|φ′

1 , φ
′
1〉)|||ψ1||2L2 − ||φ′

1||2L2 |
> 〈|∇|φ′

1 , φ
′
1〉
∣∣∣||ψ1||2L2 − ||φ′

1||2L2

∣∣∣ →
Λ→∞

0.

4.2 Proof of Proposition 2.

Let us prove now the binding inequalities for 0 < q < 1. According to Lieb’s
principle ([7]) for each q we can take minimizing sequences for E(q) of the form

Q(k) = P(k)−P0
−+q|ψk〉〈ψk|, Q(k) ∈ QΛ, P

2
k = Pk, Pkψk = 0,TrP0(Pk−P0

−) = 0, k ∈ N

(36)
and we note as before γk = Pk − P0

−, nk = |ψk|2, Nk = |ψk〉〈ψk|. We will forget to
emphasize the dependence in k.

Writing Iγ(N) = αRe

(
D(ργ , n)−

s Tr
C4 (N(x,y)∗γ(x,y))

|x−y| dxdy
)
; E(Q) can be written:

E(Q) = E(γ) + q〈D0ψ , ψ〉+ qIγ(N) = (1− q)E(γ) + qE(γ +N).

Taking the lim inf, we obtain

E(q) = lim inf
k→∞

((1− q)E(γ) + qE(γ +N)) ≥ (1− q) lim inf
k→∞

E(γ) + qE(1).

Either x = lim inf
k→∞

E(γ) > 0 and E(q) > qE(1) or x = 0. What happens in

the second case ? Up to the extraction of a subsequence we can assume that
lim inf E(γ) is a limit. Thanks to (6) it implies Tr(|D0|γ2) + D(ργ , ργ) →

k→∞
0.

As Pkψk = 0 we obtain ||P0
+ψ||2 = ||ψ||2 − ||P0

−ψ||2 = 1 − ||γψ||2 → 1 and
〈D0ψ , ψ〉 = 〈|D0|ψ+ , ψ+〉 + 〈|D0|γψ , ψ−〉 where ψε = P0

εψ. As D0 is bounded
on HΛ and ||ψ||2 = 1, lim inf

k→∞
〈D0ψ , ψ〉 ≥ m(α), so by Cauchy-Schwartz inequality

Iγ(N) → 0 and

lim inf
k→∞

E(Qk) = E(q) ≥ lim inf
k→∞

E(γ) + q lim inf
k→∞

Iγ(N) + q lim inf
k→∞

〈D0ψ , ψ〉 ≥ qm(α).

It implies E(q) = qm(α), but we can use the method of Section 4.1. to prove that
E(q) < qm(α) for sufficiently small α and L in regard with q:

Q+P0
− = χ(−∞,0)

(
D0+α

(
ϕγ+qn⋆|·|−1− γ(x,y)+qN(x,y)

|x−y|
))

+q
|(1− π)ψλ〉〈(1− π)ψλ|

1− ||πψλ||2L2

.

If we assume that E(q) = qm(α) once E(1) < m(α) has been proven, we also
obtain E(q) > qE(1). We thus get E(q)+E(1− q) > qE(1)+ (1− q)E(1) = E(1).

There remains the case q > 1. However it has been proven in [7] that for each
integer N , E is concave on [N,N + 1]. Thus thanks to (6) there holds

E(q) ≥ q(1− απ
4
)m(α)

and it suffices that E(2) > E(1) to obtain in fine E(q) > E(1) for q > 1. For α < 2
π

it is therefore true and as E(q) > 0 for q 6= 0 we obtain the binding inequalities for
q > 1 and hence for all q.
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4.3 Proof of Theorem 3.

Notation 4.12.

• Let Q = γ + |ψ〉〈ψ| be the minimizer written with the notation of Section 2.

• As before N = |ψ〉〈ψ|, n = |ψ|2.
• We have |ψ〉〈ψ| = χ(0,µ](DQ) with DQ := D0 + α(R′

γ − ϕ′
γ).

• µ is chosen such that DQψ = |DQ|ψ = µψ: µ ≤ m(α).

• We note C2
0 :=

2g′1(0)
2

(ααr(0))2m(α)
and c := (g′1(0))

2

ααr(0)m(α)
.

• As (R(N)− ϕ|ψ|2)ψ = 0, there holds

(D0 + α(R(γ)− ϕγ))ψ = µψ (37)

• We note vγ := ϕγ , bγ := vγ −Rγ , d := D0. We remark:

〈vγψ , ψ〉 = D(ργ , n), |〈Rγψ , ψ〉| ≤ ||γ||S ||n||C . (38)

• We mean by 〈g0ψ , ψ〉: (2π)−3
∫
p
g0(p)|ψ̂(p)|2dp etc.

Remark 4.13. Throughout this section we will prove estimates more and more
precise of the norms of ψ, n, γ, ργ .

4.3.1 ||ψ||H3/2 = O(1).

First let us prove that we can construct Q as a fixed point with the norm of [5]: it
suffices to prove that ||n||C, ||N ||Q = O(1) and as
||N ||Q > ||ψ||2

H3/2 we will first prove Lemma 2.4.
Thanks to 38 and (22b) there holds

〈D0ψ , ψ〉 = 〈DQψ , ψ〉−α〈bγψ , ψ〉 = 〈|DQ|ψ , ψ〉+O(α
√

〈|D0|ψ , ψ〉(||γ||S+||ργ ||C)).

Thanks to C.3. and the fact that ||N ||2S − ||n||2C = 0 there holds
by Cauchy-Schwartz inequality and (22b):

E(Q) = E(γ) + 〈D0ψ , ψ〉+ αR(D(ρ, n)− 〈γ,N〉S)
≥ (1−Kα)Tr(|D0|γ2) + α

2
D(ργ , ργ) + (1− C2α)〈|D0|ψ , ψ〉 − α

√
〈|D0|ψ , ψ〉(||γ||F + ||ργ ||C),

as E(Q) ≤ m(α) we thus have

Tr(|D0|γ2) + αD(ργ , ργ) + 〈|D0|ψ , ψ〉 = O(1). (39)

Thanks to (37) we have

〈D0ψ , D0ψ〉 = µ2||ψ||2L2 − 2αµR〈bγψ , ψ〉+ α2||bγψ||2L2 . (40)

Then as

|〈bγψ , f〉| ≤
√
π

2
|||∇|1/2ψ||L2(||ργ ||C + ||γ||S)||f ||L2 ,

by duality

||bγψ||L2 ≤
√
π

2
|||∇|1/2ψ||L2(||ργ ||C + ||γ||S). (41)

Furthermore

α〈vγψ , ψ〉 = αD(ργ , n) = O(
√
α||∇ψ||L2 ), α2|〈vγψ , vγψ〉| > α(α||ργ ||2C)〈|∇|ψ , ψ〉,

|〈Rγψ , ψ〉| ≤ ||γ||S ||n||C = O(1), |〈Rγψ , Rγψ〉| > ||γ||2S〈|∇|ψ , ψ〉
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while there holds thanks to Proposition 5.

|〈(g20 − g0(0)
2)ψ , ψ〉| ≤ Kα〈|∇|2ψ , ψ〉.

Thus ||ψ||H1 = O(1) and
〈g21ψ , ψ〉 > α2/3 (42)

In particular there holds ||ψ||L4 > ||ψ̂||L4/3 > ||ψ||H1 and ||n||L2 = O(1).
Moreover there holds D(n, n) ≤ π

2
〈|∇|ψ , ψ〉 such that ||n||C = O(1).

Then by (37) we have |d|2ψ = µdψ − αdbγψ such that

〈|d|3ψ , ψ〉 = µ〈|d|dψ , ψ〉+ α〈|d|1/2(Rγ − vγ)|d|−3/2|d|3/2ψ , d|d|1/2ψ〉.

Then thanks to (23b) and C.2., writing

|d|1/2bγ |d|−3/2 = [ |d|1/2, bγ ]|d|−3/2 + bγ |d|−1

we get |||d|1/2bγ |d|−3/2||B > (||γ||S+||ργ ||C)+
√s

Ẽ (p− q) Ẽ (p+ q) |γ̂(p, q)|2dpdq.
Thanks to Remark 3.2 and the fact that

∫
Ẽ (p)

|p|2 |n̂(p)|2dp,
x

Ẽ (p− q) Ẽ (p+ q) |N̂(p, q)|2dpdq > 1,

we can apply the fixed point method with the choice of norms

⋆||q0||2Q :=
x

Ẽ (p− q) Ẽ (p+ q) |q̂0(p, q)|2dpdq, etc.

and construct this minimizer as a fixed point with these norms. In the same way
as in Appendix B we get that ⋆||γ||Q > 1: we obtain 〈|d|3ψ , ψ〉 = O(1). Therefore
we can apply the fixed point method with the norm of [5]: ||·||Q, ||·||C etc.

4.3.2 〈|∇|2ψ , ψ〉 = O((ααr(0))
2).

We note x = (〈g21ψ , ψ〉)1/4. Thanks to (69), (70a) and B.3 (that gives ||ρ1,0(N)||C , ||n||L2 >
(α1/3)3/2 = α1/2 with (42)), there holds

||ργ ||C > α3/2 + (Lα)3/2 + Lx+ α
√
Lαx2 (43a)

||γ||S > Lα+
√
Lαx+ αx2. (43b)

Thus going back to (40) we have (cf 5. for ||g′′0 ||∞)

〈d2ψ , ψ〉 = x4 +m(α)2 + 〈2g0g′′0 |∇|2ψ , ψ〉 = x4 +m(α) +O(αx4)

α|〈bγψ , ψ〉|+ α2||bγψ||2L2 ≤ K1α
5/2x+K2Lαx

2 +K3α
2x3 +K4(Lα)

2x4 +K6α
4x6

µ2||ψ||2L2 ≤ m(α)2.

As x = O(α1/6), α4x6 = O(α5) = O((Lα)2), therefore

x4 ≤ k0c
−2 + k1α

5/2x+ k2(Lα)x
2 + k3α

2x3. (44)

Finally

x ≤ k
1/4
0 c−1/2 + k

1/3
1 α5/6 + k

1/2
2 (Lα)1/2 + k3α

2 > (Lα)1/2 + α5/6, (45)

and there holds x4 ≤ K(Lα)2 = O(c−2) provided that

α5/3 = O(Lα) ⇔ α log(Λ)3 ≥ K > 0.

Thus the same estimates as for the test function hold for the minimizer:

||γ||Q > α, ||ργ ||C > L
√
Lα,

||γ||E > Lα, ||ργ ||C > L
√
Lα

where for ||ργ ||C , ||ργ ||C we use now ||ρ1,0(N)||2C > c−3 by B.3.
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4.3.3 The spinor ψ.

Remark 4.14. We follow now the path of [7] and [3].

We consider the problem associated with Ec=1,α,Λ. As in [7] we note

U∗
c :

HΛ → HcΛ

φ 7→ c3/2φ(c(·)),

and so Ucφ(x) = c−3/2φ(x/c).
There holds a scaling correspondence between (1, α,Λ) and (c, cα, cΛ) :

Ec,cα,cΛ(U
∗
cQUc) = c2E1,α,Λ(Q).

To distinguish the objects of (c, cα, cΛ) we underline them:

ψ(x) = U∗
c ψ(x) = c3/2ψ(cx), D0 = c2 U∗

cD0Uc = mc2β + cT,

γ(x, y) = U∗
c γUc(x, y) = c3γ(cx, cy), m = g0(−i∇/c),

ργ(x) = c3ργ(cx), v = ργ ⋆ | · |−1, T = cg1(−i∇/c)α · −i∇
|∇| ,

R(x, y) = γ(x, y)|x− y|−1, D = cg1(−i∇/c)σ · −i∇
|∇| .

There holds |∇| ≤ |D| ≤ C1|∇| and
{

||γ||S =
√
c||γ||S ,

||ργ ||C =
√
c||ργ ||C

so

{
|| |D0|−1/2R||B > ||γ||S =

√
c||γ||S etc.

|| |D0|−1v||S6
> ||ργ ||C =

√
c||ργ ||C etc.

We have shown 〈g21ψ , ψ〉 = O((Lα)2), so choosing c :=
g′1(0)

2

ααr(0)
, ψ has finite H1

norm.

Remark 4.15. Here the constant of scaling c corresponds to λ of the test function.

Moreover thanks to (37) it satisfies

mc2βψ + cTψ + αc(v −R)ψ = µc2ψ. (46)

Considering the upper part ϕ and the lower part χ of ψ:

mc2ϕ+ cDχ+ αcvϕ− αc(Rψ)1 = µc2ϕ (47a)

−mc2χ+ cDϕ+ αcvχ− αc(Rψ)2 = µc2χ (47b)

From (47b) we obtain

χ =
Dϕ

mc+ µc
+

α

mc+ µc
((Rψ)2 − vχ).

We take the L2-norm:

||χ||L2 >
||ψ||H1

c
+

α√
c
(||ργ ||C + ||γ||S) > 1

c
+
αL

√
Lα√
c

+
αLα√
c

> 1

c
.

In particular the lower part χ tends to 0 in L2(H) at speed c−1.
As T exchanges upper and lower spinors, by Cauchy-Schwarz inequality:

〈D0ψ , ψ〉 = 〈g0ϕ , ϕ〉 − 〈g0χ , χ〉+ 2Re(〈g1σ · −i∇
|i∇| ϕ , χ〉)

= m(α)||ϕ||22 +O(c−2)

= m(α) +O(c−2).

It enables us to estimate

µ = m(α) +O(c−2) and E(1) = E(γ′) = m(α) +O(c−2). (48)
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From (47a) we obtain

Dχ =
(µc2 −mc2)ϕ

c
+ α[(Rψ)1 − V ϕ].

As µ = m(α) +O(c−2), its L2-norm has the following upper bound:

||Dχ||L2 > α+ α
√
c(Lα+ L

√
Lα) > α,

writing Y 2 = 〈g31ψ , ψ〉, we get the middle estimates

||χ||H1 > α (49a)

||χ||H1 > (αY + c−1) + Lα. (49b)

Indeed writing µ = m(α)+δm, c2× δm
c
ϕ has L2-norm lesser than Kc−1. Then:

∣∣∣g0(p/c)− g0(0)
∣∣∣ =





∣∣∣
∫ 1

0

g′0(tp/c)dt
|p|
c

∣∣∣ ≤ Kα |p|
c

∣∣∣
∫ 1

0

g′′0 (tp/c)(1− t)dt
|p|2
c2

∣∣∣ ≤ Kα |p|2
c2

.

In particular

〈g1χ , χ〉 ≤
√

〈χ , χ〉〈g21χ , χ〉 = O(c−1 × (αY + c−1)c−1) = O(αY c−2 + c−3) (50)

and there also holds the middle estimate:
∣∣∣∣χ
∣∣∣∣
H1 > c−1 + αc−1.

4.3.4 ||U∗
c ψ||H3/2 = O(1).

As before:
|d|1/2Rγψ = [|d|1/2, Rγ ]|d|−1|d|ψ +Rγ |d|1/2ψ,

and thanks to (23b)

∣∣∣∣[|d|1/2, Rγ ]|d|−1
∣∣∣∣2

S2
>

x
Ẽ (p− q) Ẽ (p+ q) |γ̂(p, q)|2dpdq > c−2.

Thanks to (50) there holds (with Y 2 = 〈g31ψ , ψ〉):
∣∣∣∣µ〈g1α · −i∇|i∇| ψ , |∇|ψ〉

∣∣∣∣ > || |∇|3/2ϕ||L2 |||∇|1/2χ||L2 = O(Y c−3/2 + Y 3/2√αc−1).

Then:

〈g20ψ , ψ〉 = m(α)2 + 2(2π)−3

∫

p

(∫ 1

t=0

(1− t)g0(tp)g
′′
0 (tp)dt

)
|p|3|ψ̂(p)|2dp

= m(α)2 +KαY 2,

〈g0βψ , |∇|ψ〉 = (2π)−3

(∫

p

g0(p)|p||ψ̂(p)|2dp− 2

∫

p

g0(p)|p||χ̂(p)|2dp
)

= 〈g0ψ , |∇|ψ〉 +O(αY c−2 + c−3)

= m(α)〈|∇|ψ , ψ〉+O(αY 2 + αY c−2 + c−3),

〈D0ψ , |∇|ψ〉 = 〈g0βψ , |∇|ψ〉 + 2Re(〈g1σ · −i∇
|i∇| ϕ , |∇|χ〉)

= m(α)〈|∇|ψ , ψ〉+O(αY 2 + αY c−2 + c−3 + Y c−3/2 + Y 3/2√αc−1),

µ〈D0ψ , |∇|ψ〉 = m(α)2〈|∇|ψ , ψ〉+O(αY 2 + Y 3/2√αc−1 + Y c−3/2 + c−3).

We write down S = g1(−i∇)σ · −i∇
|i∇| .

With the same method as in C.2:
∣∣∣
∣∣∣[|∇|, v]|d|−3/2

∣∣∣
∣∣∣
B
,
∣∣∣
∣∣∣[|∇|1/2, v]|d|−1

∣∣∣
∣∣∣
B
,
∣∣∣
∣∣∣v|d|−1/2

∣∣∣
∣∣∣
B

> ||ργ ||C
√

log(Λ).
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|〈Rγψ , S|∇|ψ〉| ≤ |〈[|∇|1/2, Rγ ]|d|−1|d|ψ , S|∇|1/2ψ〉|+ |〈Rγ |∇|1/2ψ , S|∇|1/2ψ〉|
> Y ||γ||S(1 + 〈|∇| |d|ψ , ψ〉︸ ︷︷ ︸

from ||Rγ |∇|1/2ψ||

),

|〈Svγϕ , |∇|χ〉| ≤ 3C1|〈|∇|vγϕ , |∇|χ〉|
≤ 3C1|〈[|∇|, vγ ]|d|−3/2|d|3/2ϕ , |∇|χ〉|+ 3C1|〈vγ |d|−1/2|d|1/2|∇|ϕ , |∇|χ〉|
> αc−1

√
log(Λ)||ργ ||CY = KL(Lα)2Y,

|〈Svγχ , |∇|ϕ〉| > |〈|∇|1/2vγχ , |∇|3/2ϕ〉|
> |〈[|∇|1/2, vγ ]|d|−1|d|χ , |∇|3/2ϕ〉|+ |〈vγ |d|−1/2|d|1/2|∇|1/2χ , |∇|3/2ϕ〉|
> Y

√
log(Λ)||ργ ||C ×

∣∣∣∣|d|χ
∣∣∣∣
L2 > Y

√
log(Λ)L

√
Lα(αc−1 + c−1),

|〈vγϕ , |∇|ϕ〉| =
∣∣∣
x (|∇|ϕ)∗(x)ϕ(x)ρ(y)

|x− y| dxdy
∣∣∣ ≤ Y 2||ργ ||C etc.

|〈Rγϕ , |∇|ϕ〉| =
∣∣∣
x (|∇|ϕ)∗(x)γ(x, y)ϕ(y)

|x− y| dxdy
∣∣∣ ≤ Y 2||γ||S etc.

Therefore : Y 2(1−Kα) ≤ K0c
−3 +K1(Lα

2)Y +K3
√
αc−1Y 3/2.

As Lα2 = o
Λ→+∞

((Lα)3/2), we deduce 〈|∇|3ψ , ψ〉 = O(c−3) and so

||ψ||H3/2 = O(1).

We now improve (49a) as written before:

g0(p/c)− g0(0) =

∫ 1

0

g′0(tp/c)
|p|
c
dt =

∫ 1

0

(1− t)g′′0 (tp/c)
|p|2
c2

dt

|g0(p/c)− g0(0)|2 =
∣∣∣
∫ 1

0

g′0(tp/c)dt

∫ 1

0

(1− u)g′′0 (up/c)du
∣∣∣ |p|

3

c3
,

and therefore

||(m(α)−m)cψ||L2 ≤ K

√
||g′0||∞ ||g′′0 ||∞

c
= Kα

√
Lα = o(c−1). (51)

So
||χ||H1 = O(c−1) and || |∇|χ||H1 = O(c−2). (52)

4.3.5 Estimation of E(1).

Thanks to (47b)

χ =
Sϕ

g0 + µ
+ α

(Rγψ)2 − vγχ

g0 + µ
=

Sϕ

g0 + µ
+ δχ,

where the remainder δχ has L2-norm lesser than KαL
√
Lα = o(c−1). Thus as

||g1ψ||L2 = O(c−1), thanks to 5. we have the following asymptotic expansion:

E(1) + ααr(0)
2c

D(n, n) = 〈g0ϕ , ϕ〉 − 〈g0 S
g0+µ

ϕ , S
g0+µ

ϕ〉+ 2Re〈 S
g0+µ

ϕ , Sϕ〉+ o(c−2)

= m(α)(1− 2〈 g21
(g0+µ)2

ϕ , ϕ〉) + 2〈 g21
g0+µ

ϕ , ϕ〉+ o(c−2)

= m(α)− 〈 g21
2m(α)

ϕ , ϕ〉 + 〈 g21
m(α)

ϕ , ϕ〉+ o(c−2)

= m(α) + 1
2m(α)

〈g21ϕ , ϕ〉+ o(c−2)

= m(α) + 1
2m(α)

〈g21ψ , ψ〉+ o(c−2),

where to deal with g0 we use 〈|∇|3ϕ , ϕ〉 = O(c−3) and |g′0| = O(α) and treat the
((g0 + µ)−1)’s one after the other. For the last line we use the fact that

〈|∇|2χ , χ〉 = O(c−3).
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Writing with ψ:

C2
0 (E(1)−m(α)) =

1

(g′1(0))
2(2π)3

∫
c2g1

(p
c

)2
|ψ̂(p)|2dp−

x |ψ(x)|2|ψ(y)|2

|x− y| dxdy+o(1).

(53)
We recall (cf 6.) the (g′1)α,Λ’s are uniformly continuous in a neighbourhood of 0;
cutting in Fourier space at level |p| = √

c there holds

∫

|p|≤√
c

c2g1(p/c)
2|ψ̂(p)|2dp =

∫

|p|≤√
c

g′1(0)
2|p|2|ψ̂(p)|2dp+

∫

|p|≤√
c

(∫ 1

t=0

(g′1(tp/c)− g′1(0))dt

)2

|p|2|ψ̂(p)|2dp

+2g′1(0)

∫

|p|≤√
c

(∫ 1

t=0

(g′1(tp/c)− g′1(0))dt

)
|p|2|ψ̂(p)|2dp

=

∫

|p|≤√
c

g′1(0)
2|p|2|ψ̂(p)|2dp+O

(
sup

|q|≤c−1/2

{
|g′1(q)− g′1(0)|

}
|| |∇|ψ||2

)

=

∫

|p|≤√
c

g′1(0)
2|p|2|ψ̂(p)|2dp+ o

c→+∞
(1).

Moreover:
∫

|p|≥√
c

c2g1(p/c)
2|ψ̂(p)|2dp >

∫

|p|≥√
c

|p|3
|p| |ψ̂(p)|

2dp

> 1√
c
〈|∇|3ψ , ψ〉 > c−1/2 →

c→+∞
0.

Thus

1

(g′1(0)
2)

〈c2g21(·/c)ψ , ψ〉 −D(n, n) = 〈|∇|2ψ , ψ〉 −D(n, n) + o(1),

By unicity of the asymptotic expansion and by definition of ECP we thus have

E(1) = m(α) +C−2
0 ECP + o((ααr(0))

2). (54)
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Appendices

A The operator D0

A.1 The functions g0 and g1

As established in [8], D0 is solution of the following equation in the Fourier space

D̂0 = D̂0 +
α

4π2

D̂0

|D0| ⋆
1

| · |2 in B(B(0,Λ),End(C4)) (55)

and by a bootstrap argument D̂0 ∈ ∩m≥1H
m
(
B(0,Λ)

)
. With the notation of 1.1.

it shows that g0,g1 are smooth while g1(p) = g1(p)·ωp is a priori C∞(B(0,Λ)\{0})
and there holds

g0(|p|) = 1 +
α

4π2

∫

|r|<Λ

dr
1

|p− r|2
g0(|r|)√

g1(|r|)2 + g0(|r|)2
, (56a)

g1(|p|) = |p|+ α

4π2

∫

|r|<Λ

dr
ωp · ωr
|p− r|2

g1(|r|)√
g1(|r|)2 + g0(|r|)2

. (56b)

Remark A.1. We recall here that C1 > 0 is a constant such that g1(r) ≤ C1r and
|g0|∞ ≤ C1.

Let us show first that

Proposition 5. g1 ∈ C1([0,Λ],R) and g′0(0) = 0.
Moreover writing ||d2g1||⋆ = sup

0<|p|≤Λ

|| |p|d2g1(p)|| we have

{
||g′0||∞ = O(α)

||g′1||∞ = O(1)
and

{
||g′′0 ||∞ = O(α)

||d2g1||⋆ = O(1)
.

In fact it suffices to differentiate (55) to get g′0(p), g
′
1(p) and then taking the

norm to obtain the first part; then we differentiate once more to get the second
part.
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A.1.1 Proof of 5: part 1.

We can define dg1(p) for p 6= 0. First we have

dg0(p)h =
α

4π2

∫
dq

|p− q|2

(
dg0(q)h

Ẽ (q)
− g0(q)dg0(q)h+ g1(q)dg1(q)h

Ẽ (q)2
g0(q)

Ẽ (q)

)
.

We remark that for p 6= 0 we have:
{

dg1(p)h = g′1(|p|)〈ωp , h〉
〈dg1(p) · ωp , ωp〉 = g′1(|p|).

Then

dg1(p)·h = h+
α

4π2

∫
dq

|p− q|2

(
dg1(q) · h
Ẽ (q)

− g0(q)dg0(q)h+ g1(q)dg1(q)h

Ẽ (q)2
g1(q)

Ẽ (q)

)
,

so that for any ω ∈ S2:

g′1(x) = 1 +
α

4π2

∫

|q|≤Λ

dq

|xω − q|2
((g1(q)

|q| (1− 〈ω, ωq〉2) + g′1(q)〈ωq, ω〉2
(
1− g21(q)

Ẽ (q)2
)) 1

Ẽ (q)

− g1(q)
Ẽ (q)

〈ω,ωq〉2

Ẽ (q)

g0(q)g
′
0(q)

Ẽ (q)

)
.

The regularity of g1 (as a function of R+) will come from the continuous ex-
tension to x = 0 of the formula above.

We have

|g′0(|p|)| ≤
α

4π2

∫
dq

|p− q|2

(
|g′0|∞
Ẽ (q)

+ |g0|∞
|g′0|∞ + |g′1|∞

Ẽ (q)2

)
(57a)

|g′1(|p|)| ≤ 1 +
α

4π2

∫
dq

|p− q|2

(
|g′1|∞
Ẽ (q)

+
|g′0|∞ + |g′1|∞

Ẽ (q)

)
. (57b)

Thus {
|g′0|∞ ≤ K1α log(Λ)|g′0|∞ +K2α|g′1|∞
|g′1|∞ ≤ 1 +K3α log(Λ)(|g′0|∞ + |g′1|∞)

and |g′0|∞ > α, |g′1|∞ ≤ 1 +Kα log(Λ).

Remark A.2. In particular we get g′1(0) = 1 +O(L) > 0 for L sufficiently small.

Since g0 ∈ C∞(B(0,Λ),R) and radial, necessarily

dg0(0) = 0 and g′0(0) = dg0(0)ω = 0, ∀ω ∈ S
2.

A.1.2 Proof of 5: part 2.

Let us now calculate d2D0. We note h⋆ = g⋆
Ẽ(·) and j = Ẽ (·)−1: the coefficient of

β in d2D0(p)h2 is

d2g0(p)h
2 =

α

4π2

∫

q

dq

|p− q|2 d
2h0(q)h

2,

where

d2h0(q)h
2 = d2g0(p)·h2

Ẽ(q)
− 2

Ẽ(q)3
dg0(q)h [g0(q)dg0(q)h+ g1(q)dg1(q)h]

− g0(q)

Ẽ(q)3

[
(dg0(q)h)

2 + g0(q)d
2g0(q)h

2 + (dg1(q)h)
2 + g1(q)d

2g1(q)h
2
]

+3 g0(q)
Ẽ(q)5

[g0(q)dg0(q)h+ g1(q)dg1(q)h]
2.
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Furthermore, there holds

d2
g1(p)h

2 =
α

4π2

∫
dq

|p− q|2
(
d2g1(q)h

2

Ẽ (q)
+ 2dg1(q)hdj(q)h+ g1(q)d

2j(q)h2

)

and taking the scalar product with ωp we get

|p||d2g1(p)| ≤ C1 +
α

4π2

∫ |p|dq
|p− q|2|q|E (q)

||d2g1||⋆ + α

4π2

∫ |p|dq
|p− q|2E (q)2

||d2g1||⋆

+
α

4π2

∫

q

|p|dq
|p− q|2

(
1

E (q)2
(|dg0|2 + |dg1|2) + g0(q)

E (q)2
|d2g0|+ 3

E (q)2
(|dg0|+ |dg1|)2

+2(|dg1|+ C1)
|dg0|+ |dg1|

E (q)2
+

1

E (q)

2|dg1|+ 4C1

|q|

)
,

as there holds 〈|p|d2g1(p)h
2, ωp〉 = |p|d2gp1 · h2 + g1(p)

|p|
(
〈ωp, h〉2 − ||h||2

)
.

Analogously there holds

|d2g0(p)| ≤ α

4π2

(∫
C1dq

E (q)2 |p− q|2
||d2g1||⋆

∫

q

dq

|p− q|2
( |d2g0|
E (q)

+ 2
|dg0|(|dg0|+ |dg1|)

E (q)2
+
g0(q)

E (q)

|dg0|2 + |dg1|2
E (q)2

+
g0(q)

2

E (q)2
|d2g0|
E (q)

+ 3
g0(q)

E (q)

(|dg0|+ |dg1|)2
E (q)2

))
.

As |p|
|p−q|2|q| ≤ 2max( 1

|p−q||q| ,
1

|p−q|2 ), there holds

∫

|q|≤Λ

dq|p|
|p− q|2|q|E (q)

≤ 2

(∫

|q|≤Λ

dq

|p− q||q|E (q)
+

∫

|q|≤Λ

dq

|p− q|E (q)

)
,

we recall then that the convolution of radial nonnegative functions is radial non-
negative. Hence we obtain

{
||g′′0 ||∞ ≤ Kα

||d2g1||⋆ ≤ C1 +Kα log(Λ)

A.1.3 Variations of dg1.

Then we can show that for p, q ∈ R3 ∩B(0,Λ)
∫

|l|<Λ

∣∣|p− l|−1 − |q − l|−1
∣∣ dl

Ẽ (l)
≤ 8π|p− q|

∫ Λ

r=−Λ

dr√
1 + r2

> log(Λ)|p− q| (58)

so

Proposition 6. The function

dg1(p) = id +
α

4π2

∫

|r|<Λ

dr

|p− r|Ẽ (r)

(
dg1(r)− g1(r)

g0(r)dg0(r) + g1(r)dg1(r)

Ẽ (r)2

)

is in C0(B(0,Λ), L(R3,C4)) and

|dg1(p)− dg1(p)| ≤ KL|p − q|.
In particular the same holds for g1(t) = 〈g1(tω), ω〉 and KLt.

In fact it suffices to split B(0,Λ) in two domains:
We write Fp = R3 ∩ {r : |p− r| ≤ |q − r|}, Fq = R3 ∩ {r : |q − r| ≤ |p− r|}.

In Fp ∩ B(0,Λ) we take spherical coordinates centered in p, in Fq ∩ B(0,Λ)
centered in q. There holds

∣∣|p− r|−1 − |q − r|−1
∣∣ ≤

{ |p−q|
|p−r|2 for r ∈ Fp,
|p−q|
|q−r|2 for r ∈ Fq.

Proposition 5. enables us to prove
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Lemma A.3. Let p, q ∈ B(0,Λ) and k = p− q. There holds

Ẽ (p) Ẽ (q)− 〈g(p),g(q)〉
Ẽ (p) Ẽ (q) (Ẽ (p) + Ẽ (q))

≤ min(2, 2K|k|2
Ẽ(p)

, 2K|k|2
Ẽ(q)

).

where we can choose K ≤ 2 for α log(Λ) sufficiently small.

In fact we can write for a, b, t = b − a ∈ R3: |a||b| − 〈a, b〉 = a2t2−〈t,a〉2
|a||b|+〈a,b〉 . If

〈a, b〉 > − |a||b|
2

then A = |a||b|−〈a,b〉
|a||b| ≤ 2a2t2

a2b2
, by symmetry there is also A ≤ 2b2t2

a2b2
.

Else 〈a, b〉 ≤ − |a||b|
2

, then 1
|a||b|(|a||b|+〈a,b〉) ≥ 2(a2b2)−1 and

2 t
2

b2
≥ 2a

2+b2+|a||b|
b2

≥ 2

2 t
2

a2
≥ 2a

2+b2+|a||b|
a2

≥ 2.

Remark A.4. This last estimate assures us that we can apply the fixed point
method with D0 instead of with D0. Indeed all the estimates of [5] remains the
same modulo multiplicative constants: here because of A.3 we must add 2; C1 also
appear.

A.2 The function BΛ

We recall that

BΛ(k) =
1

π2|k|2
∫

|p=l− k
2
|,|q=l+k

2
|<Λ

Ẽ (p) Ẽ (q)− 〈g(p),g(q)〉
Ẽ (p) Ẽ (q) (Ẽ (p) + Ẽ (q))

dl ≥ 0.

This formula holds only for k 6= 0: our first purpose is to extend it continuously to
0. Thanks to A.3. we can say that BΛ(k) ≤ K log(Λ).

Notation A.5. Throughout this part, p = l + k
2
, q = l − k

2
.

Let us write I = π2|k|2BΛ(k), its integrand f(l) and x = |k|. Le 0 < ε < 2
3

and
s = 1

3
+ ε. We look at x < 1 and split the domain in three:

B = {l : |l| ≤ xs}, A = {l : xs < |l| < Λ− x
2
},

C = {l : |l − k
2
|, |l + k

2
| < Λ}\{l : |l| < Λ− x

2
} ⊂ {l : Λ− x

2
< |l| < Λ} = C′.

With A.3. we obtain the following behaviour independent of α,Λ in the regime (9)

|IB | ≤ Kx2+3s = Kx3+3ε = o
x→0

(x3), |IC | ≤ Kx2 log

(
Λ

Λ− x
2

)
∼
x→0

Kx3

Λ
. (59)

There remains IA: we rewrite f(l) as

f(l) =
|g(p) ∧ g(q)|2

Ẽ (p) Ẽ (q) (Ẽ (p) + Ẽ (q))(Ẽ (p) Ẽ (q) + g(p) · g(q))
(60)

where |g(p) ∧ g(q)|2 =
∑
i |∆0i|2 +

∑
i,j |∆ij |2,

∆0i =

∣∣∣∣
g0(p) g0(q)

(g1(p))i (g1(q))i

∣∣∣∣ =
∣∣∣∣
δg0 g0(q)

(δg1)i (g1(q))i

∣∣∣∣ (61a)

∆ij =

∣∣∣∣
(g1(p))i (g1(q))i
(g1(p))j (g1(q))j

∣∣∣∣ =
∣∣∣∣
(δg1)i (g1(q))i
(δg1)j (g1(q))j

∣∣∣∣ (61b)

δg⋆ = g⋆(p)− g⋆(q).
If we take k along a fixed ray: k = xω we have

1
x
δg0(k, l) =

∫ 1

t=0

dg0(l + (t− 1/2)k) · ωdt →
x→0

g′0(|l|)ωl · ω

1
x
δg1(k, l) =

∫ 1

t=0

dg1(l + (t− 1/2)k) · ωdt →
x→0

dg1(l) · ω,
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We write gωl =

(
g′0(|l|)ωl · ω
dg1(l) · ω

)
and Ẽωl = |gωl |.

In fact, as A, g0, g1 are radial symmetrics so is IA(k) and for ω ∈ S2 fixed and
p′ = l + xω

2
, q′ = l − xω

2
there holds

IA(k = xωk) =
1

π2x2

∫

xs<|l|<Λ− x
2

Ẽ (p′) Ẽ (q′)− 〈g(p′),g(q′)〉
Ẽ (p′) Ẽ (q′) (Ẽ (p′) + Ẽ (q′))

dl,

f ′(l) = f(l)

x2
χl∈A is also symmetric. By Proposition 5.:

|f ′(l)| ≤ K 1

(1+|l|2)3/2χ|l|≤Λ−x/2 and by dominated convergence we have

Proposition 7.

BΛ(k) →
k→0

1

π2

∫

|l|≤Λ

|gωl ∧ gl|2

4Ẽ (l)5
dl =: BΛ(0). (62)

As there holds by symmetry
∫

n∈S2

〈n, ω〉2dn =
4

3
π,

∫

n∈S2

|dg1(|l|n) · ω|2dn =
4

3
π|dg1(l)|2 (63)

we have

BΛ(0) =
1

3π

(∫ Λ

u=0

u2 ((g
′
0)

2(u) + |dg1(u)|2)(g20(u) + g21(u))

(g0(u)2 + g1(u)2)5/2
du−

∫ Λ

u=0

u2 (g0g
′
0(u) + g1g

′
1(u))

2

(g0(u)2 + g1(u)2)5/2
du

)
,

and

BΛ(0) =
1

3π

(∫ Λ

u=0

u2 (g
′
0)

2(u) + |dg1(u)|2
(g0(u)2 + g1(u)2)3/2

du−
∫ Λ

u=0

u2 (g0g
′
0(u) + g1g

′
1(u))

2

(g0(u)2 + g1(u)2)5/2
du

)
.

Finally thanks to Proposition 5. and remark A.2, as |dg1(u)| = |g′1(u)|:
Proposition 8.

BΛ(0) =
2

3π
log(Λ) +O(L log(Λ) + 1).

Let us look at the variations |k|−1|BΛ(k) − BΛ(0)|. Let f0 be the integrand in
Proposition 7.: we have |

∫
B
f0| ≤ Kx3s = O

x→0
(x1+3ε) and

|
∫
C
f0| ≤ K log( Λ

Λ−x/2 ) = O
x→0

( x
Λ
). There remains the integration over A.

For |l| ≥ xs: x
|l| = O(x2/3−ε) so we can expand the integrand of IA(x) at order 1.

Indeed:

Ẽ (p)−1 = Ẽ (l)−1
{
1+

Ẽ (p)− Ẽ (l)

Ẽ (l)

}−1

= Ẽ (l)−1
{
1+

Ẽ (l)− Ẽ (p)

Ẽ (l)
+O
( x2

Ẽ (l)2
)}

etc.

where as Ẽ (l) ≥ 1 the O(·) is independent of l.
Writing h(l, k) = Ẽ (p) Ẽ (q)− g(p) · g(q) there holds

IA(x) =
1

x2

∫

A

h(l, k)

2Ẽ (l)3
dl +

1

x2

∫

A

h(l, k)

2Ẽ (l)3

(2Ẽ (l)− Ẽ (p)− Ẽ (q)

Ẽ (l)

+
2Ẽ (l)− Ẽ (p)− Ẽ (q)

2Ẽ (l)
+O

( x2

Ẽ (l)2
))
.

By Taylor formula (at order 2):

|2Ẽ (l) − (Ẽ (p) + Ẽ (q))| ≤
∫

t

∫

u

dtduKx1+2/3−ε = Kx1+2/3−ε.

Thanks to Proposition 6. we have by Taylor formula at order 1:
∣∣∣∣
δg

x
− g

ω
l

∣∣∣∣ > Lx,

so in fine
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Proposition 9. There exists 0 < rε ∈ R+, independent of α,Λ in the regime (9)
such that
for |k| < rε:

|k|−1|BΛ(k)−BΛ(0)| ≤ K(Λ−1 + L2|k|+ |k|3ε + |k|2/3−ε).

Choosing ε := 6−1 there holds:

|k|−1|BΛ(k)−BΛ(0)| ≤ K(Λ−1 + |k|1/2).

B Estimates in the fixed point method

Remark B.1. We note ⋆||Q||2Q =
s
Ẽ (p+ q) |Q̂(p, q)|2dpdq and by the proofs of

Lemmas 8.[5] and 11.[5] there hold

||ρ1,0(Q)||C ≤ K
√

log(Λ) ⋆||Q||Q and ⋆||Q0,1||Q ≤ K
√

log(Λ)||ρ||C . (64)

B.1 Preliminary estimates.

Let us form the test function of Lemma 2.3. or construct the minimizer as a fixed
point: let us decompose Γ = γ + |ψ〉〈ψ| where we know ||ψ||H3/2 = O(1) and
〈|∇|2ψ , ψ〉 > (ααr(0))

2.

Notation B.2. We write as before N = |ψ〉〈ψ| and n = |ψ|2. We also write
the Choquard-Pekar minimizer ψCP. We take the notation of Section 4.1 for the
iterations of the fixed point method.

• As ||(N,n)||X = O(1), for L,α sufficiently small, ||(γk, ρk)||X = O(1) due to the
fact that ||(γ1, ρ1)||X > (L+ α2)||(N, n)||X and the function F is a contraction of
constant ν = O(

√
Lα).

• By (22a) ||R(N)||S2
> ||∇ψ||L2 > Lα. Then by 11.[5]:

||Q1,0(N)||E > ||R(N)||S2
> Lα.

• Moreover |Q̂0,1(N)(p, q)|2 = (4π)2

25π3

|n̂(p−q)|2
|p−q|4 |M(p, q)|2 in the notation of [5] so

⋆||Q0,1(N)||Q >
√

log(Λ)||n||C . We recall: ||Q0,1(ρ)||Q >
√

log(Λ)||ρ||C.
• Now ρ1,0: there holds

∫

k

f(k)2

|k|2 |ρ̂1,0(k)|2dk >
∫

k

f(k)2dk




x

|l|<Λ,r

|ψ̂(l − k/2)||ψ̂(l + k/2)|
r2E (l + r)2

dldr




2

> K

∫

k

f(k)2dk

(∫

|l|<Λ

|ψ̂(l − k/2)||ψ̂(l + k/2)|dl
)2

,

and by Young inequality

||ρ1,0(Nλ)||C > λ−3/2||ψCP||W1,4/3 (65a)

||ρ1,0(N)||C > λ−3/2||ψ̂||2L4/3 > λ−3/2||ψ||2H1 (65b)

Remark B.3. In fact, if we know that ψA := A3/2ψ(Ax) = O(1) in H1 then

||ρ1,0(N)||C > A−3/2||ψA||2L4 > A−3/2||ψA||H1

and
||n||L2 = A−3/2||ψA||2L4 > A−3/2||ψA||H1 .
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By remark B.1. we have

||ρ1,0(γ1)||C > α||ρ1,0(Q1(N,n))||C +
∑

k≥2

αk||ρ1,0(Qk(N, n))||C

> (α(Lα)3/2 + L
√
Lα) +

√
log(Λ)

∑

k≥2

αk||Qk||Q > (α(Lα) + L
√
Lα+ α

√
Lα).

Writing δγ = (γ2 − γ1) we also have ||ρ1,0(δγ)||C >
√

log(Λ)⋆||δγ||Q. We note
x = 〈|∇|2ψ , ψ〉1/4.

δγ =
∑
k≥1 α

k(Q′
k(γ1, ρ

′
1) − Qk(N,n)) = αQ1(γ1, ρ1) +

∑
k≥2 α

k(Q′
k(γ

′
1, ρ

′
1) −

Q′
k(N,n)) and thanks to (23a) for Q1,0, Lemmas 11, 13, 15 of [5] for Q0,1, Qk we

get
α||ρ1,0(δγ)||C > (α2

√
Lαx2 + L2αx+ Lα2). (66)

Indeed
⋆||Q1,0(γ1)||Q > ⋆||γ1||Q

>
√
lαx+ αx2 + α2

⋆||Q0,1(ρ1)||Q >
√

log(Λ)||ρ1||C
> L

√
log(Λ)x+

√
Lα.

B.2 Estimates of ||γ||Q, ||γ||E, ||γ||F , ||ργ||C, ||ργ||C.

We write: γ =
∑
k≥1(γk+1 − γk) + γ1 and γ1 =

∑
k≥1 α

kQ′
k, taking the norm we

obtain

||γ|| ≤
∑

k≥1

νk||F (N, n)− (N,n)||X + ||γ1|| = ν||(γ1, ρ1)||X + ||γ1||. (67)

Underlining the terms with the biggest estimates:

||ρ1||C > ||W̌ ⋆ n||C + α||ρ1,0(N)||C +

∞∑

k=2

αk||(N, n)||kX >
√
Lα+ Lx, and finally

Depending on taking ||·||E or ||·||Q we have

||γ1||Q > α(||Q0,1(n)||Q + ||Q1,0(N)||Q) +

∞∑

k=2

αk||(N, n)||kX >
√
Lα||n||C + α,

||γ1||E > α(||Q0,1(n)||Q + ||Q1,0(N)||E) +
∞∑

k=2

αk||(N, n)||kX >
√
Lα||n||C + Lα.

||γ||Q > α, ||γ||E > Lα. (68)

Emphasizing the dependance of x = ||∇ψ||1/2
L2 (for the proof of Lemma 2.5)

||γ||F ≤
∑

k≥2

||γk+1 − γk||Q + ||γ2 − γ1||F + ||γ1||F > Lα+ ||γ2 − γ1||F + ||γ1||F

||γ1||F > α(||Q1,0(N)||F + ||Q0,1(n)||F ) + α2 > αx2 + (
√
Lαx) + α2

||γ2 − γ1||F > α(||Q1,0(γ1)||F + ||Q0,1(ρ1)||F ) + α2 > α||γ1||Q +
√
Lα||ρ1||C + α2

> α(⋆||γ1||Q) +
√
Lα(Lx+

√
Lα) + α2 > α(

√
Lαx+ α) + L

√
Lαx+ Lα

> L
√
Lαx+ Lα.

So
||γ||F > αx2 +

√
Lαx+ Lα. (69)

Analogously

||ργ ||C > ||W̌ ⋆ n||C + α
(
||ρ1,0(δγ)||C + ||ρ1,0(γ1)||C + ||ρ1,0(N)||C +

∑
k≥2||ρ1,0(γk+1 − γk)||C

)
+ α2

> Lx+ α((L2x+ α
√
Lαx2 + Lα) + (Lx+

√
Lαx2 + α

√
Lα) + ||ρ1,0(N)||C) + (Lα)3/2
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||ργ ||C > α||ρ1,0(N)||C + (Lα)3/2 + Lx+ α
√
Lαx2 (70a)

where (Lα)3/2 comes from α||ρ1,0(
∑

)||C ≤ K
√
Lα||∑||Q, the other terms are

negligible and x = 〈|∇|2ψ , ψ〉1/4.
With the test function we get: ||ργ ||C, ||ργ ||C > Lx|| |ψCP|2||C, it is easier for there
is a simple estimate of ρ1,0(N).

B.3 Estimates of ||γSψλ||L2, S = id, |D0|.

We write
||γSψλ||L2 ≤ ||γ||B||Sψλ||L2 . Looking at the expression of Qk(γ′ρ′γ) (cf [5]) it is
straightforward that

||Q1,0(γ
′)||S2

> ||R(N)||S2
+ || R̂(p,q)

Ẽ(p)+Ẽ(q)
||L2

> ||R(N)||S2
+ ⋆||γ||Q > Lα,

||Q0,1(ρ
′
γ)||S2

> ||ρ′γ ||C >
√
Lα.

So

||γ||B ≤ ||γ||S2
> α(||Q1,0(γ

′)||S2
+ ||Q0,1(ρ

′
γ)||S2

) + α2 > α
√
Lα. (71)

Thus
||γ|D0|ψλ||L2 ≤ Kα

√
Lα = o(Lα). (72)

C The operator |D0 + αB| − |D0|

C.1 Tr(|D0 + α|γ2).

We use the following formula: for x > 0

√
x =

1

π

∫ +∞

0

x

x+ u

du√
u

(73)

by applying it to |D0|2 and |D0 + αB|2. Indeed we can write
|D0 + αB|2 = |D0|(1 + αT )|D0| where T = G + αW = O(1) in B(HΛ) thanks to
3.3.
Similarly we write

|D0 + αB|2 + u =
√

|D0|2 + u(1 + α(Gu + αWu))
√

|D0|2 + u, Tu = Gu + αWu.

|D0 + αB| =
1

π

∫

u

|D0|(1 + αG+ α2W )
|D0|√

|D0|2 + u

1

1 + αGu + α2Wu

1√
|D0|2 + u

du√
u

= |D0|+ α

π

∫

u

(
|D0|G |D0|√

|D0|2 + u

1√
|D0|2 + u

− |D0| |D0|√
|D0|2 + u

Gu
1√

|D0|2 + u

)
du√
u

+

∫

u

(· · · )

where the last integral is a bounded operator, O(α2) as power series in α:

∫

u

(· · · ) =
α2

π

∫

u

(
|D0|W |D0| 1

|D0 + αB|2 − |D0 + αB|2 1√
|D0|2 + u

Wu
1√

|D0|2 + u

)
du√
u

+
α2

π

∫

u

|D0|(1 + αT )
|D0|√

|D0|2 + u

T 2
u

1 + αTu

1√
|D0|2 + u

du√
u
.

Notation C.1. To simplify we will write

d = D0, q = D0 + αB, q2 = d2 + αy, du =
√

|D0|2 + u

g = G,Gu, w =W,Wu, m = g, v b = B.

26



Let q1, q2 ∈ Q:
∣∣∣Tr
(
|d|g |d|

d2u
q1q2

) ∣∣∣ =
∣∣∣Tr
(
g |d|
d2u
q1q2|d|

) ∣∣∣ ≤ ||g|d|1/4||B || |d|3/4
d2u

||B ||q1|d|1/2||S2
|||d|−1/2q2|d|||S2

,

(74)
as Ẽ (q)2 Ẽ (p)−1 ≤ 2C2

1 Ẽ (p− q) Ẽ (p+ q), |||d|−1/2q2|d|||S2
≤ K||q2||E and

||q1|d|1/2||S2
≤ ||q1||E is immediate.

Then G = b|d|−1 + |d|−1b and T = |d|−1b2|d|−1 such that

g|d|1/4 = b|d|−3/4 + |d|−1[b, |d|1/4] + |d|−3/4b

T |d|1/4 = |d|−1b b|d|−3/4

We treat the commutator in C.2, for the others Lemma 3.3 gives

||b|d|−3/4||B ≤ K(||ρ′γ ||C + ||γ′||Q).

For a bounded borelian function f , ||f(D0)||B = sup
x∈σ(d)

|f(x)|; the function x >

0 → xs

x2+u
, s ≤ 1 reaches its maximum at the point x0 =

√
su
2−s where f(x0) =

us/2

u(1+
s

2−s )
s

2−s ≤ us/2−1. For x0 < 1 the norm is f(1) and for x0 > Ẽ (Λ) it is

f(Ẽ (Λ)) such that

∫ ∣∣∣∣
∣∣∣∣
|d|s
d2u

∣∣∣∣
∣∣∣∣
B

du√
u

≤
{
Ks s<1

K log(Λ) s=1

Similarly the trace Tr
{
|d|T |d|d−1

u vd−1
u q1q2

}
is equal to the trace of

T
|d|3/4
du

(|d|1/4v)d−1
u (q1|d|1/2)(|d|−1/2q2|d|)

and Tr
{
|d|m |d|

du
m 1
du
q1q2

}
to the trace of:

|d|−
1
2m|d|

3
4
|d|

1
4

du
m

|d|
1
2

du
(|d|−

1
2 q1|d|)(|d|−1q2|d|

1
2 ) (75a)

and





|d|−
1
2G|d|

3
4 = |d|−

1
2 b|d|−

1
4 + |d|−

3
2

[
b, |d|

1
2

]
+ |d|−1b

|d|−
1
2 T |d|

3
4 = |d|−

3
2 b|d|

1
2 |d|−

1
2 b|d|−

1
4

Thanks to Lemma 3.3.,

|d|−
1
2 b|d|−

1
2 ∈ B(HΛ) and there holds

Lemma C.2.

∣∣∣∣
∣∣∣∣ |d|

− 3
2

[
b, |d|

1
2

]∣∣∣∣
∣∣∣∣
B
,

∣∣∣∣
∣∣∣∣|d|

−1
[
b, |d|

1
4

]∣∣∣∣
∣∣∣∣
B

> (||γ′||Q + ||ρ′||C).

The estimation with R(γ′) comes from (23b): indeed we have

|Ẽ (p)s − Ẽ (q)s | ≤ K
|p− q|

Ẽ (p)1−s + Ẽ (q)1−s
, s =

1

2
,
1

4
etc.

Then with f ∈ HΛ there holds with Φ = |d|−
3
2

[
ϕ′
a, |d|

1
2

]

∫

p

|Φ̂f(p)|2dp ≤ K
x dpdq

Ẽ (p)3
|Ẽ (p)− Ẽ (q) |2

|p− q|4
|ρ̂′γ(p− q)|2

Ẽ (p) + Ẽ (q)

∫
|f̂(q)|2dq,

and we do the same for the last term.
Let us now deal with Tr(|D0+αB|γ2). Using (73) we have the trace of an integral.
We can change the order of summatiom for the integrand (which is the operator
q2

q2+u
γ2√
u
) is non-negative. Doing so, we then expand the operator q2

q2+u
into the six
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operators we have written previously. Estimating the absolute value of the traces
we obtain:

Tr(|D0+αB|γ2) = Tr(|D0|γ2)+O(α(||γ′||Q+||ρ′γ ||C)||γ||2E) = Tr(|D0|γ2)+O
(
α(Lα)2

)

(76)
where (||γ′||Q+||ρ′γ ||C) comes from the estimates of the bounded operator ||g|d|1/4||B
etc.
The integration over u gives a constant K while ||γ||E > Lα.

C.2 〈|D0 + αB|φ , φ〉, φ ∈ H1/2.

We want to prove

Lemma C.3. There exists C2 > 0 such that

〈|D0 + αB|φ , φ〉 ≥ (1− C2α)〈|D0|φ , φ〉. (77)

Indeed we go back to (73):

q(q2 + u)−1q − d(d2 + u)−1d=q(d2 + u)−1q − d(d2 + u)−1d+ q((q2 + u)−1 − (d2 + u)−1)q

=αb d
d2+u

+ α d
d2+u

b+ α2b(d2 + u)−1b− αq(q2 + u)−1y(d2 + u)−1q

=α(x1 + x2 + αx3 − x4).

And then we do the same as before. For instance let us treat x4:
writing s = |d|1/2, ru = (d2 + u)1/2 and φ+, φ− according to χ(0,∞)(D0 + αB),
there holds:

〈x4φ
+ , φ+〉 = 〈s−1|q|s−1 sr−1

u ru(q
2 + u)−1ru r

−1
u yr

−3/4
u r

−5/4
u s s−1|q|s−1 sφ+ , sφ+〉

|〈x4φ
+ , φ+〉| > ||sr−1

u ||B ||r−5/4
u s||B ||r−1

u yr
−3/4
u ||B 〈|d|φ+ , φ+〉.

Then |d|−1y|d|−3/4 = b|d|−3/4 + |d|−1b|d|1/4 + α|d|−1bb|d|−3/4 and we finish as
before.
We do the same for (φ−, φ+) etc.

Then integrating over u we get
∣∣∣〈|D0 + αB|φ , φ〉 − 〈|D0|φ , φ〉

∣∣∣ ≤ Kα(||γ′||Q + ||ρ′||C)〈|D0|φ , φ〉. (78)
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