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], we obtain the SLT expansions of the chemical potential and of the internal energy, up to to order exp(|EH|/kT ) included (EH -13.6 eV). Those truncated expansions describe the first five non-ideal corrections to the ideal Saha law. They account exactly, up to the considered order, for all effects of interactions and thermal excitations, including the formation of bound states (atom H, ions H -and H + 2 , molecule H2, ...) and atom-charge and atom-atom interactions. Among the five leading corrections, three are easy to evaluate, while the remaining ones involve well defined internal partition functions for molecule H2 and ions H -and H + 2 , for which no closed-form analytical formula exist currently. We provide accurate low-temperature approximations for those partition functions by using known values of rotational and vibrational energies. We compare then the predictions of the SLT expansion with the OPAL EOS and data of path integral quantum Monte Carlo (PIMC) simulations. In general, a good agreement is found. At low densities, the simple analytical SLT formulae reproduce the values of the OPAL tables up to the last digit in a large range of temperatures, while at higher densities (ρ ∼ 10 -2 g/cm 3 ), some discrepancies between the SLT, OPAL and PIMC results are observed.

I. INTRODUCTION

As the lightest and most simple element, hydrogen is important both theoretically and for practical applications. It is also the most abundant element in the universe, and a precise knowledge of its thermodynamical properties is needed by astrophysicists over a wide range of pressures and temperatures. In that context, the derivation of accurate tables for thermodynamical functions is quite useful. This motivated the celebrated OPAL program, which in addition provides tabulations of the opacity as a function of temperature and density, a key ingredient for astrophysical diagnosis.

The OPAL tables [START_REF] Rogers | [END_REF] have been derived from the so-called ACTEX approach, first introduced in Ref. [START_REF] Rogers | Statistical mechanics of Coulomb gases of arbitrary charge[END_REF] and implemented through successive papers [START_REF] Rogers | Occupation numbers for reacting plasmas-The role of the Planck-Larkin function[END_REF]. That approach is built within the physical picture, where hydrogen is described in terms of a quantum plasma made with protons and electrons interacting via the 1/r-Coulomb potential. For a given set of thermodynamical parameters, one proceeds to suitable estimations of the expected relevant contributions in the activity expansions determined by simple physical arguments. This allows one to account for complex phenomena arising from the formation of chemical species and their interactions. The resulting OPAL tables are very reasonably accurate over a wide range of temperatures and densities, as checked through comparisons to quantum Monte Carlo simulations [START_REF] Militzer | Path integral Monte Carlo simulation of the low-density hydrogen plasma[END_REF] and to high-pressure shock experiments [8].

Aside from the OPAL tables, exact asymptotic expansions can be used to provide reliable numerical data. It turns out that such an expansion, the so-called Scaled Low Temperature (SLT) expansion, has been recently derived in the Saha regime [START_REF] Alastuey | Exact results for thermodynamics of the hydrogen plasma: low-temperature expansions beyond Saha theory[END_REF], where hydrogen reduces to a dilute partially-ionized atomic gas. That regime is of particular astrophysical interest since it is observed for instance in the Sun interior. The main purpose of that paper is to derive, from the SLT expansion, simple and very precise estimations of the contributions of all the mechanisms at work in the Saha regime to any thermodynamical function. Our calculations avoid approximations introduced in the ACTEX approach, is written in terms of tractable analytic formulae which are quite easy to handle for determining the quantities of interest at any temperature and any density, and no interpolation has to be performed as in other purely numerical tables like OPAL. The corresponding high-accuracy and thermodynamically-consistent calculations should be quite useful for various applications, in particular the interpretation of recent seismology measurements in the Sun [START_REF] Däppen | The equation of state for the solar interior[END_REF].

In the physical picture, the equation of state is studied by applying methods of quantum statistical mechanics to Coulombic matter. Various analytical methods have been developed for this purpose, such as Morita's effective potential method [START_REF] Morita | Equation of State of High Temperature Plasma[END_REF]12], many-body perturbation theory [START_REF] Dewitt | Low density expansion of the equation of state for a quantum electron gas[END_REF][START_REF] Kremp | Quantum Statistics of Nonideal Plasmas[END_REF] and Mayer diagrams in the polymer representation of the quantum system [START_REF] Alastuey | [END_REF][START_REF] Brydges | Coulomb systems at low density: a review[END_REF][START_REF] Ballenegger | Quantum Mayer graphs for Coulomb systems and the analog of the Debye potential[END_REF]. Numerical techniques have also been elaborated, in particular density functional theory molecular dynamics [18][19][20] and path-integral Monte Carlo (PIMC) simulations [21]. In the present work, we use a suitable extension [START_REF] Alastuey | Screened cluster expansions for partially ionized gases[END_REF] -needed for dealing with a partially recombined phase -of the quantum Mayer diagrams method introduced previously to derive in particular the virial expansion of the equation of state up to order ρ 5/2 in the density, both in the absence [START_REF] Alastuey | [END_REF]23,24] and presence [33] of a magnetic field. This framework avoids the problems associated with the more widely used chemical approach [25][26][27][28][29][30] in which bound states (atoms H, molecules H 2 , ions H -, H + 2 , ...) are treated as preformed constituents that are assumed to interact via some given effective potentials [31,32] with the ionized charges and between themselves. The SLT expansion [START_REF] Alastuey | Exact results for thermodynamics of the hydrogen plasma: low-temperature expansions beyond Saha theory[END_REF] solves the difficult problem of dealing consistently and exactly with screening and bound states in the Saha regime within the physical picture. Effect of atom-atom interactions and (screened) interactions between ionized charges and atoms appear for instance in our calculations, without introducing any intermediate modelization, as a consequence of the basic Coulombic interactions between the electrons and protons, and are embedded in functions h 2 (β) and h 4 (β) defined in Sct. II.D. In the SLT expansion, the internal partition functions of all bound entities are finite thanks to a systematic account of collective screening effects, and the expansion exhibits no double counting (for instance between contributions associated to a hydrogen molecule or to two hydrogen atoms, despite the latter may form a molecule at short distances) nor missing term.

The Saha regime corresponds to low-temperature and sufficiently low-densities, so the most abundant chemical species are ionized protons, ionized electrons and hydrogen atoms in their groundstate. The corresponding thermal ionization equilibrium H e + p is well described in first approximation by the mass-action law for ideal mixtures [START_REF] Saha | On Ionization in the Solar Chromosphere[END_REF] ρ id at

ρ id p ρ id e = 2π 2 β m 3/2 e -βEH , (1) 
which relates the number density ρ id at of hydrogen atoms in their ground state with energy E H = -me 4 /(2 2 ) -13.6 eV, to the number densities ρ id p and ρ id e of ionized protons and electrons with ρ id p = ρ id e because of charge neutrality. In ionization equation (1), β is the inverse temperature, while m p and m e are the proton and electron masses, and m = m p m e /(m p + m e ) is the mass of the reduced particle. All ideal densities can be computed in terms of the sole total electron or proton density ρ = ρ id e + ρ id at = ρ id p + ρ id at and of the temperature-dependent density ρ * = exp(βE H ) 2(2πλ 2 pe ) 3/2 with λ pe = (β 2 /m) 1/2

(2) which naturally emerges in ionization equation (1). The resulting Saha equation of state (EOS) follows from adding the partial pressures of the three ideal gases in the mixture, and it reads

βP Saha = ρ + ρ * [ 1 + 2ρ/ρ * -1] . (3) 
Temperature-dependent density ρ * controls the cross-over between full ionization and full recombination, as illustrated by the respective behaviors βP Saha ∼ 2ρ for ρ ρ * , and βP Saha ∼ ρ for ρ ρ * . As recalled in Section II, within the physical picture, the Saha predictions have been proved to be asymptotically valid in a suitable scaling limit in the grand-canonical ensemble [START_REF] Macris | Ionization equilibrium in the proton-electron gas[END_REF], where temperature T is decreased while chemical potentials µ p and µ e go to E H with a linear dependence in T . The corresponding density decreases exponentially fast with T , in order to keep the same energy-entropy balance and hence the same ionization degree. The identification of that scaling limit opened up the possibility to construct systematic expansions beyond Saha theory [START_REF] Alastuey | Exact results for thermodynamics of the hydrogen plasma: low-temperature expansions beyond Saha theory[END_REF]. The structure of the corresponding SLT expansion of the density in terms of the chemical potential is described in Section II. The successive terms depend on temperature-dependent functions h k (β) which decay exponentially fast when T → 0 with increasing decay rates. Their physical content is discussed in relation with the formation of chemical species, interaction and screening effects.

In Section III, starting from the SLT expansion of density and using standard thermodynamical identities, we derive the SLT expansions of chemical potential, pressure and internal energy. By construction, all expressions are thermodynamically consistent, and similar expressions for other thermodynamical quantities can be easily derived along similar lines. In those SLT expansions, beyond the leading terms given by Saha theory, each correction reduces to an algebraic function of ratio ρ/ρ * times a temperature-dependent function which decays exponentially fast when T → 0. We give the expressions of all corrections up to order exp(βE H ) included. Such corrections account for various phenomena such as plasma polarization, thermal atomic excitations, shift of the atomic energy levels, formation of hydrogen molecules H 2 , ions H -and H + 2 , and interactions between ionized charges and atoms.

As usual for asymptotic expansions, and aside from the question of convergence in a strict mathematical sense, the truncation of SLT expansions can be reasonably expected to provide reliable quantitative informations on thermodynamics. Here, since the characteristic energy scale |E H | involved in SLT expansions is rather large, the corresponding calculations should be reliable up to temperatures of the order 10 4 Kelvins for which the condition k B T |E H | is indeed fulfilled. Furthermore, we stress that, though the SLT expansion is built by considering a low-density and low-temperature scaling, it can provide actually accurate predictions in a rather large range of densities and temperatures that cover the fully ionized, partially ionized and the atomic phases of the hydrogen gas. Indeed, the SLT expansion reduces by construction to the standard virial expansion when ρ ρ * at fixed T [START_REF] Alastuey | Exact results for thermodynamics of the hydrogen plasma: low-temperature expansions beyond Saha theory[END_REF]. Thus, the SLT formulae remain valid in the fully ionized regime where one may have T > T Rydberg = |E H |/k = 157 801 K, as long as the density is not too high, namely the coupling parameter Γ = βe 2 /a must remain small.

If we keep all corrections to Saha leading terms up to order exp(βE H ) included, as provided by the SLT formulae, the knowledge of the first four functions h 1 (β), h 2 (β), h 3 (β) and h 4 (β) is required. If functions h 1 (β) and h 3 (β) are explicitly known in closed elementary forms and can be calculated exactly at any temperature, no similar formulae for functions h 2 (β) and h 4 (β) are available since analytical results on the three-and four-body quantum problem are very scarce. In Section IV, we propose simple approximations of those functions which account for their exact low-temperature forms on the one hand, and incorporate the usual reliable descriptions of the spectra of ions H -, H + 2 and of molecule H 2 on the other hand. Those approximations are sufficient for computing thermodynamical properties of a partially ionized hydrogen gas for temperatures up to about 30 000 K. More refined calculations of functions h 2 (β) and h 4 (β) would be required at higher temperatures, in particular for state points where recombination into hydrogen molecules or ions give a significant contribution.

In Section V, within previous simple representations of the h k (β)'s, we study the importance of the various non-ideal corrections to Saha pressure and internal energy along various isotherms and isochores. The predictions of our analytical SLT formulae are compared to the OPAL tables which, up to now, are expected to provide the most reliable numerical data in the considered regimes. A very good agreement is found at low densities, for all temperatures, if one corrects the OPAL tables by using the exact ground-state energy of the hydrogen atom with the reduced mass m in place of m e [36]. When the density is increased, our predictions differ somewhat from those of the OPAL tables. We compare also our predictions to data of quantum Monte Carlo simulations [START_REF] Militzer | Path integral Monte Carlo simulation of the low-density hydrogen plasma[END_REF]. These comparisons, together with a simple semi-empirical criterion, allow us to determine the validity domain of the SLT expansion in the temperature-density plane (see Fig. 12). Final comments and possible extensions are given in Section VI.

II. THE SCALED LOW TEMPERATURE EXPANSION

A. The Saha regime in the grand-canonical ensemble Within the physical picture, a hydrogen gas is viewed as a system of quantum point particles which are either protons or electrons, interacting via the instantaneous Coulomb potential v(r) = 1/r. Protons and electrons have respective charges, masses, and spins, e p = e and e e = -e, m p and m e , σ p = σ e = 1/2. In the present non-relativistic limit, the corresponding Hamiltonian for N = N p + N e particles reads

H Np,Ne = - N i=1 2 2m αi ∆ i + 1 2 i =j e αi e αj v(|x i -x j |) (4) 
where α i = p, e is the species of the ith particle and ∆ i is the Laplacian with respect to its position x i . The system is enclosed in a box with volume Λ, in contact with a thermostat at temperature T and a reservoir of particles that fixes the chemical potentials equal to µ p and µ e for protons and electrons respectively. Because the infinite system maintains local neutrality ρ p = ρ e in any fluid phase, the bulk equilibrium quantities depend in fact solely on the mean

µ = (µ p + µ e )/2, ( 5 
)
while the difference ν = (µ e -µ p )/2 is not relevant, as rigorously proved in Ref. [START_REF] Lieb | The constitution of matter: existence of thermodynamics for systems composed of electrons and nuclei[END_REF]. Consequently, the common particle density ρ = ρ p = ρ e depends only on T and µ.

In the present framework, EOS (3) has been proved to become exact in some limit introduced by Macris and Martin, who extended Fefferman's work on the atomic phase of the hydrogen plasma [START_REF] Fefferman | The atomic and molecular nature of matter[END_REF] to a partially ionized phase [START_REF] Macris | Ionization equilibrium in the proton-electron gas[END_REF]. In that limit, the temperature T goes to zero while the average chemical potential µ of protons and electrons approaches the value E H with a definite slope [START_REF] Macris | Ionization equilibrium in the proton-electron gas[END_REF]. More precisely, let γ be the dimensionless parameter defined through the parametrization

µ = E H + k B T [ln(γ) + ln((m/M ) 3/4 /4)] (6) 
with M = m p + m e . Then, the state of the system is equivalently defined by either the usual set (T, µ) of thermodynamical parameters in the grand-canonical ensemble, or the set (T, γ), since both sets are univocally related. As proved in ref. [START_REF] Macris | Ionization equilibrium in the proton-electron gas[END_REF], in the limit T → 0 at fixed γ, density ρ and pressure P behave as (c > 0)

ρ = (ρ id p + ρ id at )(1 + O(e -cβ )) = (ρ id e + ρ id at )(1 + O(e -cβ )) (7) 
and

βP = (ρ id p + ρ id e + ρ id at )(1 + O(e -cβ )), (8) 
where ideal densities reduce to

ρ id p = ρ id e = ρ * γ (9) 
and

ρ id at = ρ * γ 2 2 . ( 10 
)
Notice that ideal densities ( 9) and ( 10) do satisfy the Saha ionization equation (1) for the total proton/electron density ρ = ρ * γ(1+γ/2). Moreover the leading contribution to pressure in formula (8) indeed describes an ideal mixture of free protons, free electrons and hydrogen atoms in their groundstate, which can be rewritten in the form (3). Thus, discarding exponentially vanishing terms embedded in O(e -cβ ), Saha predictions are rigorously recovered in the scaling limit of Macris and Martin T → 0 at fixed γ. The parameter γ may be fixed at an arbitrary positive value; it controls the density and also the ionization ratio since ρ id p /ρ = 1/(1 + γ/2). Contrary to the zero-temperature limit at fixed chemical potential used in the atomic and molecular limit theorem [START_REF] Brydges | Coulomb systems at low density: a review[END_REF][START_REF] Fefferman | The atomic and molecular nature of matter[END_REF]39] (see also Ref. [START_REF] Iosilevskiy | Thermodynamics properties of gaseous plasmas in the zero-temperature limit[END_REF] for further physical considerations around that limit), we consider γ fixed and a chemical potential that varies as T → 0 according to [START_REF] Rogers | Occupation numbers for reacting plasmas-The role of the Planck-Larkin function[END_REF] so that the e-p plasma tends in the limit T → 0 to a partially ionized hydrogen gas with a well defined ionization ratio.

The Saha regime corresponds to quite diluted conditions, since the densities of ionized particles and of atoms vanish exponentially fast when β → ∞, with a rate determined by the groundstate energy of the hydrogen atom E H -13.6 eV. The low-temperature condition, namely kT |E H |, ensures that atoms can form, while they maintain their individuality thanks to a a B , where a = (3/(4πρ)) 1/3 is the mean inter-particle distance and a B = 2 /(2me 2 ) is the Bohr radius. Because of the high dilution, the system is both weakly coupled and weakly degenerate. In particular, the ionized charges are almost classical, and the corresponding screening length reduces to its Debye expression κ -1 = (4πβe 2 (ρ id p + ρ id e )) -1/2 . According to the above rigorous derivation, corrections to Saha theory decay exponentially fast in the scaled limit T → 0 at fixed γ. Nevertheless, they cannot be explicitly computed within the corresponding mathematical techniques, so one has to use different tools as described further.

B. About the interplay between recombination and screening

In the Saha regime, in addition to atoms, recombination processes lead to the formation of molecules H 2 , ions H -and H + 2 , and also more complex entities like H - 2 , H + 3 , H 3 , etc... A controlled analysis of the corresponding contributions is the central problem for deriving systematic corrections to Saha theory. The well-known difficulty lies in a suitable account of the individual contribution of a single chemical species at finite temperature, which is free from the divergences arising from Rydberg states. In the literature, in general, that problem has been tackled within phenomenological prescriptions, in particular those leading to the so-called Brillouin-Planck-Larkin formula for atomic contributions [START_REF] Brillouin | Les Statistiques Quantiques et leurs Applications[END_REF], [START_REF] Larkin | [END_REF]. The physical idea underlying that phenomenological approach, is that the divergent contributions of Rydberg states are in fact screened by the free charges present in the system. Accordingly, the estimation of contributions from recombined entities cannot be disentangled from that of screened interactions between ionized charges.

A systematic procedure for dealing simultaneously with recombination and screening has been constructed through the combination of path integral and diagrammatical methods [START_REF] Alastuey | Screened cluster expansions for partially ionized gases[END_REF]. This provided some kind of cluster representation for equilibrium quantities in the grand canonical ensemble. In the quite diluted Saha regime, the statistical weight of a given cluster made with N p protons and N e electrons, involves the cluster partition function

Z(N p , N e ) = 2πλ 2 Np,Ne lim Λ→∞ 1 Λ Tr[exp(-βH Np,Ne )] T Mayer , (11) 
which is a truncated trace of Gibbs operator exp(-βH Np,Ne ) built with bare Coulomb Hamiltonians, while λ Np,Ne = (β 2 /(N p m p + N e m e )) 1/2 is the thermal de Broglie wave length of the cluster. The trace in [START_REF] Morita | Equation of State of High Temperature Plasma[END_REF] converges despite the long range of the Coulomb interaction, thanks to a systematic truncation procedure which accounts for the screening by ionized charges [START_REF] Alastuey | Screened cluster expansions for partially ionized gases[END_REF]. Roughly speaking, that procedure amounts to subtract and add counter-terms to the genuine Gibbs operators, which involve non-traceable operators built with the Coulomb potential. The Gibbs operator and the subtracted counter-terms give rise to the finite partition function [START_REF] Morita | Equation of State of High Temperature Plasma[END_REF] which only depends on T and no longer on γ. The added counter-terms are recombined together with other divergent contributions via chain resummations, which ultimately provide finite contributions involving the screening length κ -1 associated with the ionized charges present in the medium.

Remarkably, the familiar chemical species naturally emerge from cluster partition function Z(N p , N e ), which is intrinsic to the considered cluster in the vacuum. A given chemical species made with N p protons and N e electrons, is associated with bound states of bare Hamiltonian H Np,Ne . In the zero-temperature limit, it provides the leading contribution to Z(N p , N e ) which behaves as exp(-βE

(0) Np,Ne ) (12) 
apart from possible integer degeneracy factors, and where

E (0)
Np,Ne is the groundstate energy of Hamiltonian H Np,Ne . At finite temperatures, Z(N p , N e ) involves not only contributions from thermally excited bound states, but also contributions from diffusive states describing the dissociation of the considered chemical species.

Cluster partition functions Z(N p , N e ) can be viewed as generalizations of Ebeling virial coefficients [12] introduced for dealing with contributions from two-particle clusters. The contributions of interactions between chemical species can be expressed also in terms of cluster functions similar to Z(N p , N e ), so all contributions related to the formation of complex entities are properly taken into account. We stress that, as far as thermodynamical properties are concerned, only the full contribution of Z(N p , N e ) and of its related screened counter terms makes an unambiguous sense. The considered formalism [START_REF] Alastuey | Screened cluster expansions for partially ionized gases[END_REF] avoids both arbitrary and uncontrolled definitions of internal partition functions for chemical species, which are key ingredients in phenomenological chemical approaches [1].

C. Systematic corrections to Saha theory

Within the combination of path integral and diagrammatical methods evoked above [START_REF] Alastuey | Screened cluster expansions for partially ionized gases[END_REF], systematic corrections to Saha theory have been explicitly computed in Ref. [START_REF] Alastuey | Exact results for thermodynamics of the hydrogen plasma: low-temperature expansions beyond Saha theory[END_REF]. A pedagogical summary of both rather long papers is given in Ref. [START_REF] Alastuey | Exact asymptotic expansions for the thermodynamics of hydrogen gas in the Saha regime[END_REF]. Here, leaving aside the tedious technical details involved in the derivation, we can guess and explain the mathematical structure of the corresponding expansion through simple arguments based on the considerations exposed just ealier.

In the so-called screened cluster representation of particle density ρ [START_REF] Alastuey | Screened cluster expansions for partially ionized gases[END_REF], any contribution reduces to a graph made with particle clusters connected by screened bonds. The statistical weight of a cluster made with N p protons and N e electrons, reduces to, roughly speaking, the product exp(β(N p + N e )µ) of the particle fugacity factors, times the cluster partition function Z(N p , N e ), and times some dressing factor which accounts for collective polarization effects. The integration over the relative distances between particle clusters generate powers of the Debye screening wavenumber κ, while dressing factors can be also expanded in powers of κ. Since exp(βµ) is proportional to both γ and exp(-β|E H |), while κ is proportional to both γ 1/2 and exp(-β|E H |/2), any contribution reduces to some integer or half-integer power of γ times a temperature-dependent function. The low-temperature behavior of that function results from the competition between factors varying exponentially fast, namely positive powers of exp(-β|E H |) arising from fugacity factors, positive or negative powers of exp(-β|E H |/2) arising from screened interactions and polarization effects, and exploding Boltzmann factors exp(-βE (0) Np,Ne ) arising from the contribution of bound entities with groundstate energy E (0) Np,Ne < 0 in cluster partition functions. In the Saha regime, namely T → 0 with γ fixed, the order of a given contribution is determined by subtle inequalities involving E (0) Np,Ne and E H . The leading contributions to density ρ are easily identified as arising from graphs made with single clusters carrying either one particle (one proton or one electron) or two particles (one proton and one electron), and they are of order exp(-β|E H |). All the other contributions decay exponentially faster in agreement with the rigorous estimation of order O(e -cβ ) for the full deviation to Saha theory. Accordingly, the corresponding scaled low temperature (SLT) expansion for the dimensionless density ρ/ρ * takes the following mathematical form [START_REF] Alastuey | Exact results for thermodynamics of the hydrogen plasma: low-temperature expansions beyond Saha theory[END_REF] 

ρ/ρ * = γ + γ 2 2 + ∞ k=1 γ n k h k (β) . (13) 
In eq. ( 13), the leading first two terms are the ideal contributions predicted by Saha theory, while the sum accounts for the corrections. In each correction with order k, power n k is integer or half-integer while γ n k may be multiplied by logarithmic terms. Furthermore function h k (β) decays exponentially fast in the zero-temperature limit, h k (β) ∼ exp(-βδ k ) when β → ∞, except for possible multiplicative powers of β. We stress that expansion ( 13) is not ordered with respect to powers of γ, i.e. the n k 's do not necessarily increase with k, but is is ordered with respect to increasing decay rates, 0 < δ 1 < δ 2 < ..., of functions h k (β). In other words, instead of γ which is kept fixed here, the small parameter is built with the temperature which is sent to zero. That small parameter may be identified with exp(-β|E H |), so the leading low-temperature behavior of each correction of order k reduces to some positive real power δ k /|E H | of that parameter. Notice that each function h k (β) does not reduce to its leading low-temperature form in general, but it also involves contributions which decay exponentially faster than exp(-βδ k ).

The SLT expansion [START_REF] Dewitt | Low density expansion of the equation of state for a quantum electron gas[END_REF] provides an exact relationship between the density and the chemical potential [recall definition [START_REF] Rogers | Occupation numbers for reacting plasmas-The role of the Planck-Larkin function[END_REF] of γ] that is very useful in the Saha regime because the series converges then rapidly and can be safely truncated. We comment the mathematical form and the physical content of the first four corrections h k (β) in the next subsection. It will then be shown in Sct. III how eq. ( 13) can be used to compute explicitly in the Saha regime any thermodynamical quantity as function of the natural physical variables ρ and T .

D. First corrections and their physical content

The first four functions h k (β) as well as the corresponding n k 's, k = 1, 2, 3, 4, are explicitely computed in Ref. [START_REF] Alastuey | Exact results for thermodynamics of the hydrogen plasma: low-temperature expansions beyond Saha theory[END_REF], where it is also shown that all other h k 's with k ≥ 5 decay faster than exp(βE H ), i.e. δ k > |E H | for k ≥ 5. Thus, if we truncate expansion (13) up to order exp(βE H ) included, it is consistent to only retain contributions which are at most of that order, in the first four h k 's. In the following, we recall the corresponding expressions and we discuss their physical content.

Term k = 1 : plasma polarization around ionized charges

That correction arises from a single cluster with one proton (electron) where dressing many-body effects on its statistical weight are computed at leading order. This provides the fugacity factor exp(βµ) multiplied by the Debye screening factor κ. Accordingly, we find n 1 = 1 + 1/2 = 3/2 and

δ 1 = -(E H + E H /2 -E H ) = |E H |/2, once ρ has been expressed in units of temperature-dependent density ρ * ∼ exp(-β|E H |). The precise form of function h 1 (β) reads h 1 (β) = (β|E H |) 3/4 π 1/4 exp(βE H /2) , (14) 
since Z(1, 0) = Z(0, 1) = 2 for a single proton or a single electron, for which no truncation occurs, namely [exp(-βH 1,0 )] T Mayer = exp(-βH 1,0 ) and [exp(-βH 0,1 )] T Mayer = exp(-βH 0,1 ).

The present correction accounts for the familiar polarization of the plasma surrounding an ionized charge. In the litterature, that mechanism was taken into account for the first time in Ref. [START_REF] Kremp | Equation of state and ionization equilibrium for non-ideal plasmas[END_REF] through a suitable modification of Saha ionization equilibrium (1). We have checked that the corresponding correction to Saha theory can be exactly recovered by keeping only the first term k = 1 in SLT expansion [START_REF] Dewitt | Low density expansion of the equation of state for a quantum electron gas[END_REF].

Term k = 2 : formation of molecules and atom-atom interactions

That correction arises from a single cluster made with two protons and two electrons, and from two interacting neutral clusters where each of them is made with one proton and one electron. At leading order, dressing collective effects in statistical weights can be neglected, while screening of interactions between neutral clusters can be also omitted since the corresponding bare interactions are integrable. Then, power n 2 is merely determined by the product of four fugacity factors exp(βµ), which provides n 2 = 4. Function h 2 (β) reduces to

h 2 (β) = 1 64 ( 2m M ) 3/2 Z(2, 2) exp(3βE H ) + W (1, 1|1, 1) exp(3βE H ) , (15) 
where W (1, 1|1, 1) is a suitable trace analogous to expression [START_REF] Morita | Equation of State of High Temperature Plasma[END_REF] which now involves two Gibbs operators exp(-βH 1,1 ) associated with two proton-electron pairs, as well as their bare Coulomb interactions. Factors exp(3βE H ) arise from the product of the four fugacity factors exp(βµ) and the rewriting of ρ in units of ρ * . In the zero-temperature limit, the leading contribution in expression [START_REF] Alastuey | [END_REF] is that of the molecular groundstate in Z(2, 2) with energy

E H2 = E (0)
2,2 . Notice that, because of inequality 3E H < E H2 < 2E H , function h 2 (β) indeed decays exponentially fast with the rate δ 2 = |3E H -E H2 | 9.1 eV. That inequality ensures that molecules H 2 are very scarce in the Saha regime compared to atoms H, despite they are more stable energetically, Moreover, δ 2 is indeed larger than δ 1 = |E H |/2 6.8 eV.

Molecular contributions are embedded in Z(2, 2) which is indeed finite thanks to the truncation procedure inherited from screening, as well as the short-range part of atom-atom interactions. Long-range atom-atom interactions, including familiar van der Waals interactions, appear in W (1, 1|1, 1). Notice that, the screened counter terms related to the truncations involved here, provide contributions to expansion [START_REF] Dewitt | Low density expansion of the equation of state for a quantum electron gas[END_REF] which decay faster than exp(βE H ), and they arise in terms with k ≥ 5. We stress that both molecular formation and atom-atom interactions are properly taken into account, without any a priori modelizations like in usual chemical approaches.

Here the corresponding contributions are expressed in terms of the associated few-body Coulomb Hamiltonians, and they naturally emerge through the fundamental quantum mechanisms at work. In particular, the quantum mechanical operators involved in both Z(2, 2) and W (1, 1|1, 1) automatically and correctly take care of the unavoidable mixing between the contributions from two interacting atoms on the one hand, and from a single molecule on the other hand.

Term k = 3 : atomic excitations and charge-charge interactions

That correction arises from single clusters made with either one or two particles. Contributions of two-particle clusters are controlled by the product of two fugacity factors exp(βµ) and of twobody cluster partition functions Z(2, 0), Z(0, 2) and Z(1, 1), while contributions from the oneparticle clusters reduce to one fugacity factor exp(βµ) multiplied by a factor κ 2 which accounts for polarization effects beyond the Debye mean-field result of order κ. This leads to n

3 = 1 + 1 = 1 + 2 × 1/2 = 2 and h 3 (β) = - 1 2 + [1 + 1 12 ln( 4m M )] (β|E H |) 3/2 π 1/2 exp(βE H ) + 1 8π 1/2 {2Q(x pe ) + ( 2m m p ) 3/2 [Q(-x pp ) - 1 2 E(-x pp )] + ( 2m m e ) 3/2 [Q(-x ee )] - 1 2 E(-x ee )]} exp(βE H ), ( 16 
)
where the two-particle partition functions, Z(2, 0), Z(0, 2) and Z(1, 1) have been rewritten in terms of Ebeling's functions Q(x) and E(x) [12] with The present correction involves contributions of the atomic excited states, as well as of interactions between two ionized charges. The screened long-range part of such interactions are precisely the counter terms related to the truncations ensuring the finiteness of Z(2, 0), Z(0, 2) and Z(1, 1), or equivalently of Ebeling function Q.

x pe = 2(β|E H |) 1/2 , x pp = (2m p /m) 1/2 (β|E H |) 1/2 and x ee = (2m e /m) 1/2 (β|E H |) 1/2 .

Term k = 4 : formation of ions and atom-charge interactions

That correction arises from single three-particle clusters, a two-particle cluster interacting with a one-particle cluster, and a single two-particle cluster dressed by many-body effects. All contributions provide the same power n 4 = 3 of γ, as resulting from either the product of three fugacity factors exp(βµ) or the product of two fugacity factors exp(βµ) times a factor κ 2 arising from polarization effects, namely n 4 = 1 + 1 + 1 = 1 + 1 + 2 × 1/2 = 3. The corresponding function h 4 (β) reads

h 4 (β) = 3 64 [( m e (M + m p ) M 2 ) 3/2 Z(2, 1) + ( m p (M + m e ) M 2 ) 3/2 Z(1, 2)] exp(2βE H ) + S 3 (1, 1) exp(2βE H ) + 3 2 [W (1, 1|1, 0) + W (1, 1|0, 1)] exp(2βE H ). ( 17 
)
The leading low-temperature behavior of h 4 (β) arises from the groundstate contribution of ion H + 2 in Z(2, 1), so

δ 4 = E H + 2 -2E H 11.0 eV which is indeed larger than δ 3 10.2 eV.
Several phenomena contribute to the present correction. First, formation of ions H + 2 and H - are embedded in partition functions Z(2, 1) and Z(1, 2) respectively. Second, contributions of bare interactions between an atom H and a single ionized charge are described by functions W (1, 1|1, 0) and W (1, 1|0, 1). Third, function S 3 (1, 1) accounts for modifications of the atomic groundstate due to the polarization of the surrounding plasma, beyond the familiar Debye shift.

III. THERMODYNAMICAL FUNCTIONS A. Chemical potential as a function of density

In physical systems, the natural thermodynamical parameters are the temperature and the density. Thus, it is quite useful to invert the SLT expansion [START_REF] Dewitt | Low density expansion of the equation of state for a quantum electron gas[END_REF], namely to determine γ(ρ, T ). Then, by using standard thermodynamical identities, we are able to compute consistently all thermodynamical quantities as functions of T and ρ. In the present low-temperature limit, the inversion can be performed in a perturbative way as follows. First, if we neglect all the exponentially small corrections embedded in the h k 's, the density reduces to its Saha expression

ρ/ρ * = γ + γ 2 2 . ( 18 
)
The inversion of that relation, which amounts here to solve a simple second order equation for γ, gives

γ Saha (ρ, T ) = γ S (ξ) = 1 + 2ξ -1 with ξ = ρ/ρ * , (19) 
which is the leading form of γ(ρ, T ) in the Saha regime. The inversion of the full relation ( 13) is then achieved by writing γ(ρ, T ) = γ Saha (ρ, T ) plus a small correction which is treated perturbatively. This leads to

γ(ρ, T ) = 1 + 2ρ/ρ * -1 + ∞ k=1 a k (ρ/ρ * )g k (β) , (20) 
where a k depends only on ξ = ρ/ρ * , while g k depends only on temperature. The a k 's can be determined in terms of γ S (ξ) and of its derivatives with respect to ξ. Each g k reduces to a polynomial in the h l 's with 1 ≤ l ≤ k. Thus, the g k 's decay exponentially fast when β → ∞, and they are ordered with respect to increasing decay rates. The first five terms in (20) are

a 1 = - γ 3/2 S 1+γS ; a 2 = - γ 4 S 1+γS ; a 3 = - γ 2 S 1+γS ; a 4 = - γ 3 S 1+γS ; a 5 = γ 2 S (2γS+3) 2(1+γS) 3 (21) 
g 1 = h 1 ; g 2 = h 2 ; g 3 = h 3 ; g 4 = h 4 ; g 5 = h 2 1 ( 22 
)
where γ S is given by the simple algebraic function (19) of ρ/ρ * . All g k 's with k ≥ 6 decay exponentially faster than exp(βE H ).

Similarly to SLT expansion [START_REF] Dewitt | Low density expansion of the equation of state for a quantum electron gas[END_REF], the small parameter in series (20) is the temperature, or equivalently the exponentially small factor exp(-β|E H |). Now, the fixed parameter is the ratio ξ = ρ/ρ * which can take arbitrary values. The corresponding expansion of chemical potential µ straightforwardly follows by inserting series (20) into relation [START_REF] Rogers | Occupation numbers for reacting plasmas-The role of the Planck-Larkin function[END_REF]. Other thermodynamical functions can be expanded in a similar way by using thermodynamical identities, as explicited further for pressure and internal energy.

B. Pressure

We start from the standard relation in the grand canonical ensemble which expresses the density as the derivative of the pressure with respect to the fugacity z = exp(βµ). According to the variable change defined through relation [START_REF] Rogers | Occupation numbers for reacting plasmas-The role of the Planck-Larkin function[END_REF], that identity can be rewritten as

ρ = γ 2 ∂βP ∂γ (23) 
where the partial derivative is taken at fixed β. Replacing ρ by its SLT expansion (13) into the r.h.s. of identity (23), we easily obtain

βP/ρ * = 2γ + γ 2 2 + ∞ k=1 2γ n k n k h k (β) , (24) 
where we have used that ρ * depends only on β, while βP/ρ * vanishes for infinite dilution, namely for γ = 0. Replacing each factor γ by the SLT inverted series (20), we recast expression (24) as the SLT expansion of the pressure at fixed ratio ρ/ρ * , namely

βP/ρ * = βP Saha /ρ * + ∞ k=1 βP k /ρ * . ( 25 
)
The leading term is nothing but we the well-known Saha pressure (3) in units of ρ * . The general structure of the k th correction reads

βP k /ρ * = b k (ρ/ρ * )α k (β) . ( 26 
)
where α k is a polynomial in the h l (β)'s with l ≤ k. Therefore, for a fixed ratio ρ/ρ * , corrections βP k /ρ * decay exponentially fast when β → ∞, while the corresponding decay rates increase with k. The functions (b k (ρ/ρ * ), α k (β)) involved in the first five corrections read

b 1 = γ 3/2 S (γS-2) 3(1+γS) ; b 2 = - γ 4 S (γS+3) 2(1+γS) ; b 3 = - γ 2 S 1+γS ; b 4 = - γ 3 S (γS+4) 3(1+γS) ; b 5 = γ 2 S (2-γ 2 S ) 2(1+γS) 3 (27) α 1 = h 1 ; α 2 = h 2 ; α 3 = h 3 ; α 4 = h 4 ; α 5 = h 2 1 , (28) 
while next correction βP 6 /ρ * decays faster than exp(βE H ).

C. Internal energy

In the grand canonical ensemble and for a finite volume Λ, we set N = ( N p + N e )/2 for the average common number of protons and electrons. Then we define in the thermodynamic limit, the internal energy per particles pair u = lim T L U/ N . Standard thermodynamical identities provide the relation

u = ∂ ∂β (2βµ - βP ρ ) , (29) 
where the partial derivative with respect to β is taken at fixed density ρ. Inserting into identity (29) the expression ( 6) of the chemical potential in terms of γ and β, we find

u = 2 - βP ρ E H + 3P 2ρ + 2 ∂ ∂β ln γ - ρ * ρ ∂ ∂β βP ρ * , (30) 
where we have also used

∂ ∂β ρ * = (E H -3k B T /2)ρ * (31) 
inferred from definition (2) of ρ * . The insertion of expansions ( 20) and ( 25) of γ and βP/ρ * into relation (30) provide the corresponding SLT expansion of u. The partial derivatives with respect to β give rise to functions h k (β) = dh k /dβ, which decay exponentially fast at low temperatures with the same decay rates as the h k (β)'s. Moreover, since ρ * depends on β, coefficients a k (ρ/ρ * ) and b k (ρ/ρ * ) also provide contributions to the partial derivatives with respect to β at fixed ρ. After straightforward algebraic calculations, we eventually obtain

u = u Saha + ∞ k=1 u k (32) 
with

u Saha = (1 + γ S ξ -1 )3k B T /2 + (1 -γ S ξ -1 )E H , (33) 
and

u 1 = -γ 1/2 S (1 + γ S ) -1 (1 + γ S ξ -1 )k B T + 2(1 -γ S ξ -1 )E H h 1 (β), (34) 
u 2 = -γ 4 S ξ -1 h 2 (β)/2 + γ 3 S (1 + γ S ) -1 (1 + γ S ξ -1 /2)(E H -3 2 k B T )h 2 (β), (35) 
u 3 = -γ 2 S ξ -1 h 3 (β) + γ 2 S ξ -1 (1 + γ S ) -1 (E H -3 2 k B T )h 3 (β), (36) 
u 4 = -2γ 3 S ξ -1 h 4 (β)/3 + 2(1 + γ S ξ -1 )γ 2 S (1 + γ S ) -1 (E H -3 2 k B T )h 4 (β)/3, (37) 
u 5 = (1 + γ S ) -3 3ξ k B T + γ 2 S (3γ S + 4)(2 + γ S ) -1 E H [h 1 (β)] 2 . ( 38 
)
Expression (33) of Saha internal energy can be easily interpreted as follows. Let x id p = ρ id p /ρ, x id e = ρ id e /ρ and x id at = ρ id at /ρ be the respective molar fractions of ionized protons, ionized electrons and hydrogen atoms. We can rewrite formula (33) as

u Saha = (x id p + x id e )3k B T /2 + x id at (E H + 3k B T /2), (39) 
so each ionized charge does provide a classical kinetic contribution 3k B T /2, while each atom does provide the kinetic contribution 3k B T /2 associated with motion of its mass center plus the groundstate energy E H , as it should. Notice that the low-temperature behavior of corrections ( 35) and ( 37) can be similarly interpreted in terms of the contributions of molecules H 2 and ions H -, H + 2 respectively.

Other equilibrium quantities can also be derived from previous expansions via thermodynamical identities, like the specific heats, or the isentropic compressibility which determines the sound speed. Such derivations are of course consistent within the general framework of thermodynamics: a given quantity can be computed following different routes which all do lead to the same expression.

IV. REPRESENTATIONS OF TEMPERATURE-DEPENDENT FUNCTIONS

For practical applications of SLT expansions, we need simple representations of functions h k (β) at finite temperatures. Though asymptotic low-temperature behaviors of such functions are exactly known for k = 1, 2, 3, 4, explicit analytic expressions at finite temperature are available only for h 1 (β) and h 3 (β), thanks to our exact knowledge of the whole spectrum of two-body Coulomb Hamiltonians (see Section IV A). For functions h 2 (β) and h 4 (β), we construct simple approximations which are expected to be sufficiently accurate for temperatures up to 30000 K (see Section IV B). Eventually, we provide the corresponding numerical tables and plots for all those functions.

A. Analytical expressions for one-and two-body functions

Function h 1 (β) is given by the simple formula [START_REF] Kremp | Quantum Statistics of Nonideal Plasmas[END_REF] which reduces to an elementary function of dimensionless parameter βE H . Function h 3 (β) is given by expression [START_REF] Brydges | Coulomb systems at low density: a review[END_REF] in terms of Ebeling virial functions Q(x) and E(x), which have been widely studied in the literature. In particular, entire series expansions in powers of x have been derived [START_REF] Kraeft | Quantum Statistics of Charged Particle Systems[END_REF], [START_REF] Ebeling | The exact free energy of low density quantum plasmas[END_REF],

Q(x) = - 1 6 x - √ π 8 x 2 - 1 6 ( C 2 + ln 3 - 1 2 )x 3 + ∞ n=4 q n x n , q n = √ π ζ(n -2) 2 n Γ( n 2 + 1) (40) 
where C = 0.57721... is the Euler-Mascheroni constant and ζ(s) is Riemann's function, while

E(x) = 1 2 + √ π ln 2 4 x 2 + π 2 72 x 3 + ∞ n=4 e n x n , e n = √ π(1 -2 2-n ) ζ(n -1) 2 n Γ( n 2 + 1) (41) 
with x replaced by either

x pe = 2(β|E H |) 1/2 , -x pp = -(2m p /m) 1/2 (β|E H |) 1/2 or -x ee = -(2m e /m) 1/2 (β|E H |) 1/2
. Since x is proportional to 1/ √ T , such series can be viewed as hightemperature expansions. A controversy has arisen recently on eq. ( 40), with Kraeft [48] and Kremp, Schlanges and Kraeft [START_REF] Kremp | Quantum Statistics of Nonideal Plasmas[END_REF] maintaining that no linear term -x/6 should be present. Starting from the definition of function Q(x) [see for instance eq. (7.1) in ref. [24]], one can calculate quite easily its high-temperature behavior by using the Feynman-Kac representation [START_REF] Kleinert | Path Integrals in Quantum Mechanics[END_REF] of the density matrix

r|e -βh |r = 1 (2πλ 2 ) 3/2 D(ξ) e βe 2 1 0 ds v(|r+λξ(s)|) , ( 42 
)
where h is the Hamiltonian of a particle of mass m in the attractive Coulomb potential -e 2 /r and ξ(s) is a Brownian bridge distributed according to the Wiener measure D W (ξ). At high temperatures, the exponential can be linearized, and a straightforward calculation confirms that the leading behavior is indeed given by Ebeling's result -x/6. Asymptotic large-x, i.e. lowtemperature, expansions read

Q(x) = 2 √ π ∞ n=1 n 2 e x 2 /(4n 2 ) -1 - x 2 4n 2 - x 2 8 - x 3 6 (ln x + 2C + ln 3 - 11 6 ) - x 12 - 1 60x + O( 1 x 3 ) (43) 
for x > 0 (attractive case), and

Q(x) = - x 3 6 (ln |x| + 2C + ln 3 - 11 6 ) - x 12 - 1 60x + O( 1 x 3 ) ( 44 
)
for x < 0 (repulsive case). When x → -∞, a semi-classical calculation [START_REF] Jancovici | [END_REF] shows that exchange function E(x) decays exponentially fast as

E(x) 4 √ 3π |x| exp - 3 2 (π 2 x 2 2 ) 1/3 . ( 45 
)
As far as numerical calculations are concerned, high-temperature series [START_REF] Iosilevskiy | Thermodynamics properties of gaseous plasmas in the zero-temperature limit[END_REF] and ( 41) are quite useful because their radius of convergence is infinite. When x becomes very large, calculations using large-x expansions ( 43), ( 44) and ( 45) are of course faster. Those low-temperature expansions can be used in fact to compute h 3 (T ) from formula [START_REF] Brydges | Coulomb systems at low density: a review[END_REF], up to the Rydberg temperature |E H |/k 157 800 K since |x ab |, for ab = ep, pp, ee, remains larger than 1. Fig. 1 shows a plot of functions Q(x) and E(x).

Notice that the first sum in the r.h.s. of expression ( 43) is nothing but the so-called Brillouin-Planck-Larkin partition function

Z BPL (T ) = ∞ n=1 n 2 e -βEH/n 2 -1 + βE H n 2 , ( 46 
)
which was introduced in the 30's on the basis of heuristic arguments as discussed in Refs. [START_REF] Ebeling | On the quantum statistics of bound states within the Rutherford model of matter[END_REF], [START_REF] Ballenegger | The divergent atomic partition function or how to assign correct statistical weights to bound states[END_REF].

It turns out that Q(x pe ) = Q(T ) may be approximated by Z BPL (T ) if the temperature is not too high [START_REF] Ebeling | On the quantum statistics of bound states within the Rutherford model of matter[END_REF]53]. Notice that the leading asymptotic behavior of Q(T ) and Z BPL (T ) are identical as T → 0, whereas one has Q(T ) ∼ 1/ √ T versus Z BPL (T ) ∼ 1/T 2 at high temperatures. The quality of that approximation, and of two even simpler approximations, is shown in Fig. 2. The relative error when approximating Q(T ) by Z BPL (T ) is less than 3% for T ≤ 25 000 K, while it reaches 30% at 50 000 K. Truncating the sum in Z BPL (T ) at n = 1 provides actually a better approximation that exhibits an accuracy of 8% at 50 000 K (see Fig. 2). The latter approximation is quite successful because contributions from diffusive states and from terms associated with screening effects in Q(T ), more or less cancel out the contributions from excited bound states at the considered temperatures. We stress that our further calculations do not use those approximations, but the exact expressions for Q(x) recalled earlier.

B. Simple approximations for three-and four-body functions

Because of our rather poor knowledge of the whole spectrum of three-and four-body Coulomb Hamiltonians, closed analytical expressions for h 2 (β) and h 4 (β) cannot be derived at the moment. So here, we proceed to simple estimations of those functions, inspired by the above considerations on Z(1, 1), which should work reasonably well in the temperature range considered here.

Case of h2(β)

The relative importance of the contributions of the various operators involved in [exp(-βH 2,2 )] T Mayer , the trace of which defines partition function Z(2, 2), can be readily estimated by using the ground state energies of Hamiltonians H 2,2 , H 2,1 , H 1,2 , H 1,1 , H 1,0 and H 0,1 . Up to 30000 K, it is sufficient to retain only contributions from exp(-βH 2,2 ) and from subtracted operators involving exp(-βH 1,1 ) exp(-βH 1,1 ). All other combinations of Gibbs operators associated with products of molecular dissociation different from two atoms, like exp(-βH 1,0 ) exp(-βH 1,2 ) associated with (p, H -) or exp(-βH 0,1 ) exp(-βH 2,1 ) associated with (e, H + 2 ), can be safely neglected. After adding to Z(2, 2) the contribution of W (1, 1|1, 1) in the expression (15) of h 2 (β), we find that terms which involve imaginary-time evolutions of V at,at , V 2 at,at and V 3 at,at cancel out. This provides a simple estimation of h 2 (β) as arising entirely from operator [exp(-βH 2,2 ) -exp(-βH 1,1 ) exp(-βH 1,1 )].

Similarly to the case of Z(1, 1), in the considered temperature range, the main contributions from [exp(-βH 2,2 ) -exp(-βH 1,1 ) exp(-βH 1,1 )] can be reasonably expected to arise from the lowestenergy molecular boundstates. In addition, we describe such states within the familiar picture where the electrons are in their groundstate, while global rotations and vibrations of the molecule are taken into account within a rigid-rotator model and an harmonic oscillator respectively. This a for the ro-vibrational partition function of H + 3 , see Ref. [START_REF] Neale | A high-temperature partition function for H3+[END_REF]. b calculated by V. Robert using a Coupled Cluster (CCSD(T)) approach including an extended basis set for hydrogen atoms (4s3p2d1f ).

TABLE I. Spectroscopic data of some hydrogen bound states: ground-state energy E (0) (in atomic units) and rotational/vibrational temperatures (in K). The values do not include relativistic nor radiative corrections.

leads to the approximation

h 2 (β) √ 2m 3/2 32M 3/2 Z H2 exp(3βE H ) , (47) 
where the molecular partition function Z H2 factorizes into [START_REF] Landau | the course of Theoretical Physics[END_REF] Z H2 = exp(-βE H2 )Z

(rot) H2 Z (vib) H2 (48) 
with the vibrational part

Z (vib) H2 = 1 1 -exp(-β (vib) H2 ) (49) 
and the rotational part In formula [START_REF] Jancovici | [END_REF], the first sum runs over rotational states of para-hydrogen and the second sum over rotational states of ortho-hydrogen. The energy quanta

(vib) H2 = k B T (vib) H2
and

(rot) H2 = k B T (rot) H2
associated to proton vibrations and global rotations are listed in Table I. We recall that the rotational partition function reduces to the classical result

Z (rot) H2 ∼ 2T T (rot) H2 (51) 
when T T

H2 . Notice that more precise descriptions of the lowest-energy excited states of H 2 , which do not neglect rotation-vibration coupling as the rigid rotor approximation (48), are available in the literature [START_REF] Irwin | Refined diatomic partition functions[END_REF], but are not required for our purpose. Approximation (47) can be viewed as a suitable extrapolation of the the exact low-temperature behaviour of h 2 (β), which includes both leading and sub-leading terms. Up to 30000 K, contributions of electronic excitations can be omitted because the corresponding energy gaps are of order 10 eV at least. Moreover, and similarly to the case of Z(1, 1), either diffusive states like those associated with the dissociation of the molecule into two atoms, or substracted terms involved in the truncated operator [exp(-βH 2,2 )] T Mayer like exp(-βH 1,1 ) exp(-βH 1,1 ), provide contributions which can be safely neglected in that relatively low-temperature range. As detailed in Appendix A, this has been checked within a simplified model which is oftenly used for describing the energy levels of the molecule H 2 [? ].

Case of h4(β)

Function h 4 (β), defined by formula [START_REF] Ballenegger | Quantum Mayer graphs for Coulomb systems and the analog of the Debye potential[END_REF], can be approximated within a construction similar to the above derivation for h 2 (β). This provides [START_REF] Ballenegger | The divergent atomic partition function or how to assign correct statistical weights to bound states[END_REF] which is the analog of expression (47) for h 2 (β). Here, internal partition functions for ions H + 2 and H -, which arise from Z(2, 1) and Z(1, 2), read

h 4 (β) 3m 3/2 e (M + m p ) 3/2 64M 3 Z H + 2 exp(2βE H ) + 3m 3/2 p (M + m e ) 3/2 64M 3 Z H -exp(2βE H ) + c at 8π 3/2 (β|E H |) 1/2 exp(2βE H ) ,
Z H + 2 = 2 exp(-βE H + 2 )Z (rot) H + 2 Z (vib) H + 2 (53)
and

Z H -= 2 exp(-βE H -) , (54) 
where the required spectroscopic data are given in Table I, while the contribution of S 3 (1, 1) exp(2βE H ) has been replaced by its low-temperature form with constant c at 10.065 [START_REF] Alastuey | Exact results for thermodynamics of the hydrogen plasma: low-temperature expansions beyond Saha theory[END_REF].

Similarly to formula (47), approximate expression (52) incorporates both leading and sub-leading contibutions to the low-temperature representation of h 4 (β). A similar accuracy for that approximation can be reasonable expected up to a few thousands Kelvins, where ionic groundstate contributions dominate. However, when temperature is increased up to 30000 K, approximation [START_REF] Ballenegger | The divergent atomic partition function or how to assign correct statistical weights to bound states[END_REF] becomes surely less accurate than its counterpart (47) for h 2 (β). Indeed, the binding energies of ions H + 2 and H -are of order 2.6 eV and 0.7 eV respectively, so contributions of all terms which arise either from diffusive states, or truncations defining Z(2, 1) and Z(1, 2), or interactions involved in W (1, 1|1, 0) and W (1, 1|0, 1), can no longer be neglected for T > 10000 K. Nevertheless, the accuracy of approximation (52) should be sufficient for our purpose, because contributions to thermodynamics associated with h 4 (β), remain quite small in the considered density-temperature range.

C. Numerical values and plots

Using the exact representations for h 1 (β) and h 3 (β), as well as the approximate forms of h 2 (β) and h 4 (β), we can compute those functions easily and quickly. The corresponding plots, in logarithmic units, are shown in Fig. 3, while numerical values at some specific temperatures are given in Table II. Functions h 2 (β) and h 4 (β) are computed only up to 30000 K, because their approximate expressions introduced in Sct. IV B are expected to become inaccurate at higher temperatures. At low temperatures, all functions are positive and increase monotonously with T up to 30 000 K. Function h 3 changes sign near 90 000 K, while a change of sign in functions h 2 and h 4 might also happen at temperatures above 30 000 K. In function h 4 , the contributions arising from ions H + 2 and H -have the same order of magnitude, and are much larger than the third contribution in eq. ( 52) which accounts for a shift in the atomic ground state. For T < 30 000 K, all functions remain quite small in relation with their exponential decay in the zero-temperature limit. The hierarchy h 1 (β) h 2 (β) h 3 (β) h 4 (β) is satisfied at very low temperature, in agreement with the ordering of the corresponding low-temperature decay rates δ 1 < δ 2 < δ 3 < δ 4 . When the temperature is increased, the relative differences between those functions are reduced. In particular, h 3 overcomes h 2 near 1000 K, and h 4 overcomes h 2 near 5900 K.

T [K] h1(β) h2(β) h3(β) h4 ( 
The ordering of the h k functions is connected to the relative importance of the corresponding corrections to the ideal Saha equation in the SLT limit T → 0. At finite temperature and density, the ordering of the various corrections can differ from the low-temperature ordering, not only due to the temperature dependence of the h k functions, but also because those corrections involve also functions of ratio ρ/ρ * which depends on both temperature and density as shown by formula (26). For instance, the corrections associated with h 2 describing molecular formation and atom-atom interactions, will dominate in a sufficiently dense atomic phase, despite that function h 2 is much smaller than h 1 (see section V A).

V. COMPARISONS TO OPAL TABLES AND PIMC DATA

We compute numerically the various corrections to the ideal Saha equation of state that appear in the SLT expansion of the pressure [eq. ( 25)] and of the internal energy [eq. ( 32)], and compare the predictions to the most accurate current tabulations of those thermodynamical functions. The present calculations correct[2] and complement the initial results for the pressure published in ref. [61].

A. General properties of the isotherms

We start by studying general properties of isotherms that follow from the structure of the terms in SLT expansion (25). Along a given isotherm, the various corrections to Saha pressure depend on the ratio ρ/ρ * where the crossover density ρ * is kept fixed. Because of the non-linear dependence in ρ/ρ * of coefficients b k (ρ/ρ * ), their relative importance changes drasticaly from low densities ρ ρ * to high densities ρ ρ * . For ρ ρ * , each b k (ρ/ρ * ) can be expanded in powers of ρ/ρ * , as well as Saha pressure (3) itself. This leads to the well-kown virial expansion of βP in powers of ρ at fixed T [12,24,[START_REF] Kraeft | Quantum Statistics of Charged Particle Systems[END_REF][START_REF] Alastuey | Virial expansion of the equation of state of a quantum plasma[END_REF][START_REF] Kahlbaum | The quantum-diffraction term in the free energy for Coulomb plasma and the effectivepotential approach[END_REF], as shown in Ref. [64]. The corresponding leading term entirely arises from Saha pressure and describes full ionization of the plasma. First correction of order ρ 3/2 , entirely provided by βP 1 , is the familiar Debye contribution for a classical plasma of ionized protons and electrons with density ρ. Saha pressure (3), βP 3 and βP 5 contribute to second correction of order ρ 2 , which accounts for atomic recombination as well as two-body interactions between ionized charges. Ionic contributions embedded in βP 4 are of order ρ 3 , while molecular ones embedded in βP 2 are of order ρ 4 , in agreement with the numbers of protons and electrons involved in ions H + 2 , H -and molecule H 2 .

For ρ of order ρ * , beyond the leading contribution of Saha pressure (3), the ranking of the various corrections is essentially that of temperature-dependent functions h k (β). However, notice that the a priori first correction βP 1 vanishes at ρ = 4ρ * and becomes positive for ρ > 4ρ * . Therefore, βP 1 reduces to the familiar Debye contribution βP Debye = -κ 3 /(24π) only in the fully ionized region ρ ρ * , while its structure becomes quite different in the atomic region ρ > ρ * as a subtle consequence of recombination processes. In the region close to ρ = 4ρ * , the first correction to Saha pressure is then given by βP 3 as illustrated below.

For ρ ρ * , Saha pressure reduces to the ideal pressure of an atomic gas with density ρ since almost all charges are recombined. According to the large-ρ/ρ * behavior of coefficients b k (ρ/ρ * ), the first correction to Saha pressure is now given by βP 2 which describes both molecular recombination and atom-atom interactions. Since it increases as ρ 2 , that correction would overcome Saha pressure at sufficiently high densities. In fact, and as discussed further, this provides an upper density for the validity of SLT expansion. Notice that if βP 4 also increases faster than βP Saha ∼ ρ, i.e. as ρ 3/2 , all other considered corrections increase slower than ρ. This can be easily interpreted by noting that such corrections, namely βP 1 , βP 3 and βP 5 are related to the presence of ionized protons and electrons which tend to disappear at high densities.

The previous analysis of the behavior of the pressure along a given isotherm is summarized in Table III. Similar results hold for the behavior of the internal energy per particle given by its SLT expansion (32) together with the expressions (33)[START_REF] Saha | On Ionization in the Solar Chromosphere[END_REF][START_REF] Macris | Ionization equilibrium in the proton-electron gas[END_REF](36)[START_REF] Lieb | The constitution of matter: existence of thermodynamics for systems composed of electrons and nuclei[END_REF][START_REF] Fefferman | The atomic and molecular nature of matter[END_REF]. In particular, at low densities, we find that the first correction to the classical thermal energy 3k B T of the fully ionized plasma is indeed the Debye contribution which arises entirely from u 1 . For densities ρ ρ * , u 2 becomes the leading correction to u Saha , since it increases as ρ while u 4 grows only as ρ 1/2 , u 3 tends to a constant and both u 1 and u 5 vanish. If we replace h 2 (β) by its low-temperature form (3E H -E H2 )h 2 (β), while we introduce the molar fraction of molecules H 2 defined by x id H2 = ρ id H2 /ρ, the sum of leading and subleading contributions in (32) can then be rewritten as

(x at + x id H2 ) 3k B T 2 + x at E H + x id H2 E H2 , (55) 
where molar fraction x at of atoms H accounts for the partial recombination of protons and electrons into molecules H 2 , i.e x at = x id at -2x id H2 . Expression [START_REF] Irwin | Refined diatomic partition functions[END_REF] shows that, for k B T |E H | and ρ ρ * , the system reduces to an ideal mixture, made of a small fraction of molecules H 2 diluted in a gas of atoms H, in their molecular and atomic groundstates respectively. III. First correction to ideal Saha pressure along a low-temperature isotherm.

B. Isotherms at a few thousands Kelvins

Because of the relatively large value of temperature scale |E H |/k B 150000K and of the occurrence of exponentially decaying factors, crossover density ρ * is extremely small below a few thousand Kelvins. For instance, at T = 300K, we find ρ * 3.4 × 10 -204 m -3 , which corresponds to tremendously diluted conditions that are not physically accessible. This means that a stable partially ionized atomic phase, which exists when ρ is of the order of ρ * , cannot be realized in practice for hydrogen at such low temperatures. For instance, under the standard conditions of Earth atmosphere, density ρ 10 26 m -3 is so large with respect to ρ * that SLT expansion breaks down, due to correction βP 2 being too large, in agreement with the emergence of molecules H 2 as the most important species. Even at T = 2000 K, ρ * = 6.1 × 10 -9 m -3 still corresponds to quite diluted conditions. Interesting physical systems with similar temperatures in the range 1000 K < T < 2000 K are the atmospheres of Brown Dwarfs. The corresponding densities lie in the range 10 25 m -3 < ρ < 10 27 m -3 , so they are too large compared to the corresponding ρ * 's for using SLT expansions. In fact, like for Earth atmosphere, hydrogen is there essentially recombined into molecules. Thus, we will not consider isotherms below T = 2000 K within SLT expansions, because the corresponding density ranges of validity do not correspond to known physical systems of interest. We note that the standard virial expansion cannot provide as well any useful information on the hydrogen gas when T < 2000 K, for the very same reason that the fully ionized phase is not thermodynamically stable at low temperatures for physically accessible densities.

When T increases up to a few thousands Kelvins, atomic crossover density ρ * reaches higher values which are encountered in some systems. For fixing ideas, we consider isotherm T = 6000 K which is typical of Sun photosphere, and for which ρ * 2.12 × 10 15 m -3 . In Fig. 4, we plot deviation δP = P -P Saha along that isotherm in the range 10 9 m -3 < ρ < 10 27 m -3 , where δP does not exceed a few per cent of P Saha . When ρ/ρ * ≤ 10 5 , the dominant contribution is due to the polarization of the plasma around ionized charges, embedded in correction P 1 . For ρ/ρ * ≤ 10 -2 , that contribution is negative and reduces to the familiar Debye expression -κ 3 /(24π) that appears in the virial expansion. At ρ/ρ * = 4, correction P 1 changes sign, as seen on expression (28) for coefficient b 1 (ρ/ρ * ). The plasma-polarization correction is thus not given at high densities by the Debye formula with a modified Debye length computed with the density of ionized charges, as it could naively be expected in a phenomenological approach. At densities ρ/ρ * ≥ 10 5 , molecular contributions embedded in term P 2 become the most important correction, as expected at high densities. Since the formation of molecules reduces the pressure, δP then becomes again negative. When ρ/ρ * ≥ 10 11 , the SLT expansion fails to converge because molecular recombination cannot be treated perturbatively anymore.

Contributions of first excited atomic state, embedded in correction P 3 , and contributions of ions H + 2 , H -embedded in P 4 , are essentially negligible along the whole isotherm. For completeness, we mention that it's only near the special density 4ρ * that P 3 turns out to provide the dominant correction, while P 4 is the dominant correction near the density 10 5 ρ * where corrections P 1 and P 2 compensate each other and where P 3 is negligible since there are almost no ionized charges. At these special densities, the deviation to the Saha pressure is about 10 -9 .

We can compare our results to those of the OPAL tables [START_REF] Rogers | [END_REF], which are shown as crosses in Figs. 4. A very good agreement is found for densities ρ/ρ * > 10 4 . At lower densities, the discrepancies are certainly due to the fact that extracting a deviation to Saha pressure from the OPAL tables is a difficult task when the deviation is of the order of 10 -6 . Indeed, the values in the OPAL tables are given with at most six digits, and a slight difference in the values of the fundamental constants, like in the ground-state energy E H , can induce a small variation of the Saha pressure P Saha that is comparable to the deviation δP = P -P Saha itself.

A change of sign of δP is observed in the OPAL EOS around density ρ/ρ * 10 5 at 6 000 K, in agreement with our SLT EOS: this sign change is induced by negative contributions in P 2 associated with molecular recombination overcoming the plasma polarization correction P 1 . Notice that the non-trivial variations of δP with two sign changes are enlighten by simple physical interpretations within our approach. At the point with density ρ 1.47×10 23 m -3 typical of the Sun photosphere shown in Figs. [START_REF] Rogers | [END_REF], electrons and protons are almost fully recombined into hydrogen atoms since ρ ρ * , and the various corrections to Saha pressure, which is itself close to P (id) at

, are given in Table IV. The full pressure is below P (id) at because of molecular recombination. Moreover, contributions of ions H + 2 and H -are still smaller than the positive polarization contribution due to the ionized protons and electrons despite their dilution is quite large. Such subtle effects cannot be anticipated nor accurately described with phenomenological approaches. (ρ * = 2.12 × 10 15 m -3 ). Crosses correspond to tabulated points of the OPAL equation of state [START_REF] Rogers | [END_REF] (with corrected ground-state energy [36]). Pressure βP Saha /ρ 1 + 1.70 

C. Isotherms between ten and thirty thousands Kelvins

We consider various isotherms above T = 10000 K up to T = 30000 K. The corresponding δP 's are plotted in Fig. 5, while the respective values of ρ * are given in Table V. The OPAL values of δP are shown moreover on the plots with symbols. As discovered in ref. [36], the OPAL tables were computed using the value E H = 1 Ry -13.60569 corresponding to an infinitely heavy nucleus, instead of the correct value E H = -me 4 /(2 2 ) -13.59829 eV. That inaccuracy in E H induces variations of the Saha pressure that can be larger by an order of magnitude than the deviation δP itself for state points in the cross-over region between the ionized and atomic phases. The OPAL deviations δP shown in all figures of the present paper were determined by subtracting from the OPAL values the ideal pressure P Saha computed with E H = 1 Ry.

At the low temperatures 10 000 K and 15 000 K, we find excellent agreement between our analytical SLT EOS and the tabulated OPAL EOS in the considered density range. A small discrepancy is observed only for the last highest-density point on each of these two curves. This discrepancy at high density (massic density 0.1 g/cc) and low temperatures is due to the fact that the system is close to being in a molecular phase.

At low densities ρ/ρ * < 1, the agreement between both equations of state is also excellent, even at rather high temperatures. We note that the deviation δP is dominated in that region by the Debye plasma polarization correction P 1 . Although that correction changes sign at ρ/ρ * = 4, deviation δP changes sign, for isotherms with T > 10 000 K, at a density ρ/ρ * slightly higher than 4 because of negative contributions arising from correction P 3 , which describes excited atoms and charge-charge interactions.

We observe in Fig. 5 discrepancies in region ρ/ρ * 10 2 and T ≥ 20 000 K. Those discrepancies are due to the negative corrections P 2 and P 4 which shrinks more strongly, in our calculations, the region where deviation δP is positive than in the OPAL EOS. We note that those corrections may be somewhat overestimated since we computed in the present work an approximation to functions h 2 and h 4 in which only molecular and ionic bound state contributions are kept. The discarded truncation terms in h 2 can provide positive contributions at high temperatures, which describe in particular atom-atom interactions. An accurate calculation of functions h 2 and h 4 at temperatures higher than 20 000 K is needed to provide fully reliable results at such temperatures and densities. Tests have shown that the OPAL deviations δP around ρ/ρ * 10 2 are in fact fully explained by retaining solely the Debye plasma polarization effect P 1 . Deviations δu = u -u Saha of the internal energy per proton are shown along several isotherms in Fig. 6. The variations of δu at temperatures up to 10 000 K are fully controlled by the two terms u 1 and u 2 . At low densities (ρ/ρ * 1), the plasma polarization term u 1 is dominant and negative. That correction changes sign when the condition

ρ ρ * = 4 1 + (1 -) 2 , = kT 2|E H | (56) 
is met, as can be seen from eq. [START_REF] Saha | On Ionization in the Solar Chromosphere[END_REF]. At high densities (ρ/ρ * 10 4 ), δu becomes negative again because the term u 2 becomes dominant and the formation of molecules indeed lowers the energy. When T > 10 000 K, term u 3 comes into the game and has the effect of enlarging the domain where the deviations δu are positive, similarly to the case of the pressure deviations δP . 

D. Low density isochores

A plot of pressure deviations δP along two low-density isochores is displayed in Fig. 7 for temperatures between 2000 K and 100 000 K. The predictions of the OPAL tables, which are available for many temperature points, are also shown in those plots. At very low densities (isochore 10 -8 g/cc), our calculations agree very well with the OPAL tables. When the temperature is high, the system is fully ionized and the dominant correction to Saha pressure arises from the Debye plasma polarization correction P 1 which behaves as -κ 3 /(24π) ∝ T -3/2 when T → ∞. Upon decreasing the temperature, correction P 1 , and hence also δP , changes sign when the condition ρ/ρ * = 4 is met. The deviation δP displays a second change of sign at a lower temperature, because the correction P 2 becomes dominant due to the formation of hydrogen molecules in the system. That correction P 2 grows quickly when the temperature is further lowered, and a point is reached where P 2 is not a small correction anymore. This signals the formation of the molecular phase, which is outside the scope of the present calculations. Since the pressure of the ideal molecular gas is ρkT /2 and that of the ideal atomic gas is ρkT , the pressure deviation |P -P Saha |/(ρkT ) should tend to 0.5 at low temperatures and low densities, as is indeed observed for the OPAL deviations in Fig. 7.

Along isochore 10 -3 g/cc shown in Fig. 7, we can observe some discrepancies between our predictions for the deviations δP and those of the OPAL tables. When T < 10 000 K, the differences are due to the formation of the molecular phase. In region 20 000 < T < 30 000 K, deviation δP is positive and is somewhat larger in the OPAL tables than predicted by the SLT EOS. In that region, deviation δP is the result of the sum of the first four SLT terms, with P 2 and P 4 partially compensating P 1 and P 3 . While the latter two terms are known exactly, the former two terms are currently estimated in our calculations by keeping only molecular and ionic bound states (see Sct. IV.B). Not surprisingly, accurate calculations of the corresponding functions h 2 and h 4 in the temperature range 20 000-70 000 K, are required for a fully reliable description. When T ≥ 80 000 K, the SLT and OPAL predictions coincide. At such high temperatures, the deviation δP is due to the sum of the SLT terms P 1 , P 3 and P 5 associated with ionized protons and electrons, and it reduces to the predictions of the standard virial expansion. A low-density isochore of the internal energy is shown in Fig. 8, where the SLT EOS is compared to other equations of state. At high temperatures, the system is fully ionized and the variations of the internal energy per proton are mainly controlled by the average thermal kinetic energy 3kT /2 of the particles (dot-dashed line). When the temperature is reduced to 10 000 K, a sharp drop of the internal energy is observed due to the formation of the atomic phase. Reducing further the temperature, a second drop in the potential energy occurs when the molecular phase is formed. Since the SLT EOS accounts perturbatively for all deviations to the ideal Saha equation of state that describes the transition between the ionized and the atomic phase, its validity domain is limited at low temperature by the formation of the molecular phase, which is a non-perturbative effect (see deviations at low temperatures in Fig. 8). On the scale of Fig. 8, the deviations δu = u -u Saha between the SLT EOS or the OPAL EOS, and the ideal Saha values are almost indiscernible. Those deviations are shown in Fig. 9 for two isochores, 10 -8 and 10 -3 g/cc. The agreement on deviations δu between our analytical calculations and the OPAL tables is impressively good. As in the case of the pressure isotherms (see Fig. 5), δu changes sign twice: once in the ionized/atomic transition, when condition ( 56) is met, and once in the atomic/molecular crossover region. The only significant disagreement between the SLT and OPAL EOS along the very low density isochore (10 -8 g/cc) occurs at low temperatures due to the formation of the molecular phase, where the OPAL deviation δu tends to the difference in energy per proton between the atomic and the molecular phase [log 10 (E H2 /2 -E H ) 0.35. Along isochore 10 -3 g/cc, rather small differences are observed only near the two sign changes of δu, similarly to the deviations δP along the same isochore. Term u 5 contributes sensitively to δu only when T ≥ 30 000 K. 

E. Comparison to PIMC data

Results of quantum Path Integral Monte Carlo (PIMC) simulations of a dilute e-p gas are available at 6 densities between 10 -3 g/cc and 0.15 g/cc and 8 temperatures between 5000 K and 250 000 K [START_REF] Militzer | Path integral Monte Carlo simulation of the low-density hydrogen plasma[END_REF] (see state points in Fig. 12). Very low densities, such as 10 -6 g/cc as in the Sun photosphere, are not within reach of PIMC simulations because sufficient statistics cannot be collected in very diluted conditions. Fortunately, the SLT expansion converges quickly at such low densities, and it has been shown in the previous section that the predictions of the SLT EOS coincide in this regime with those of the (corrected) OPAL tables, if we exclude the molecular phase which is outside the validity domain of the SLT expansion.

Comparison of our results with the PIMC data is instructive along the moderate density isochore 10 -3 g/cc, see Fig. 10. The decrease of the pressure as the temperature is lowered is shown in plot (a) of Fig. 10, with P varying from 2ρkT at high temperature (fully ionized gas) to ρkT (atomic gas at around 15 000 K), and eventually down to ρkT /2 (molecular phase). A small plateau corresponding to the atomic phase can also be identified on plot (b) for the internal energy, though it is much less visible than on isochore 10 -8 g/cc (see Fig. 8). The deviations δP and δu from the ideal Saha values are shown in plots (a') and (b'). The various sign changes of these deviations predicted by the SLT formulae can indeed be observed in the simulations. The uncertainties of the simulation data at temperatures T ≤ 15 000 K are quite large, especially in the case of the pressure. Notice that δP/(ρkT ) tends trivially to -1/2 in a dilute molecular phase, so the simulation data do not contain much information in that regime. In the crossover region between the atomic phase and the fully ionized phase, the agreement on δP and δu between the simulation data and the SLT and OPAL equations of state is rather good. In temperature range 10 000-25 000 K, the predictions of the SLT EOS are within the error bars of the PIMC results. At very high temperatures T > 100 000 K, the PIMC results for the energy deviation δu do not agree fully with the SLT nor the OPAL EOS. The uncertainties in the simulation results are maybe underestimated. When T = 62 500 K, and to a lesser extent when T = 31 250 K, the OPAL EOS agrees slightly better with the PIMC data than the SLT EOS. This might be due to our inaccurate description of functions h 2 and h 4 for such temperatures. In Fig. 11, we compare our results along a denser isochore at massic density 0.0125 g/cc (for which r s = a/a B = 6), where significant differences between the predictions of the 3 approaches (SLT EOS, OPAL EOS and PIMC simulations) can be observed, especially in the case of the pressure deviations. Disregarding the molecular phase at low temperatures, deviations δP and δu remain small (less than 10%) along this isochore, so the SLT expansion should still apply. Since the OPAL EOS agrees quite well with the PIMC data for the energy deviations δu and the OPAL EOS is thermodynamically consistent, the disagreement on the OPAL pressures with the PIMC data when T ≤ 30 000 K, i.e. in the crossover region between the atomic and the molecular phase, indicates probably that the errors on the PIMC pressures are underestimated. Some disagreement between the OPAL (and SLT) equations of state and the PIMC results is also observed at 31 250 K and at high temperatures for T ≥ 100 000 K. As for the above lower-density isochore, some discrepancies between the SLT EOS and the other data might be due to inaccuracies in the calculation of functions h 2 (T ) and h 4 (T ) for temperatures above 30 000 K. 

F. Validity domain

As exemplified in the previous sections, truncation of the SLT expansion (25) at k = 5 gives accurate results as long as the corresponding deviations δP = 5 k=1 P k or δu = 5 k=1 u k remain small compared to their ideal Saha value. The validity of the SLT expansion is limited at high densities along an isotherm, respectively at low temperatures along an isochore, by the formation of the molecular phase, where βP 2 becomes then larger than P Saha itself. We can estimate the borderline of the validity domain by introducing the empirical criterion |δP (T v , ρ)| = P Saha /10. At high densities, or low temperatures, ρ ρ * so P 2 becomes the leading correction in δP . Criterion |P 2 |/P Saha = 0.1 then gives

ρ c (T ) = ρ * (T ) 20|h 2 (T )| (57) 
as a borderline for the validity domain in the (ρ, T ) plane. If the temperature is low, function h 2 (T ) behaves as

h 2 (T ) ∼ 1 64 ( 2m M ) 3/2 exp((3E H -E H2 )/(k B T )), (58) 
and ρ c (T ) reduces to a straight line in the (log ρ, β) plane (see Fig. 12). The curve ρ c (T ) defines quite precisely the borderline of the validity domain in a large part of the phase diagram, as checked by the comparison with the data of the PIMC simulations. In particular, this is illustrated by the plots in section IV.E and the state points denoted by crosses in Fig. 12. At a given density, the SLT expansion converges only for temperatures that are sufficiently high to avoid the formation of the molecular phase. Some of the lower-temperature state points in the PIMC simulations are for instance outside of the validity domain of the SLT expansion, while others, like those to the left of line ρ c (T ) in Fig. 12, are within the validity domain. When the density increases, the minimum temperature required for the SLT expansion to converge also increases. At density 0.1 g/cc, the temperature must be higher than 30 000 K. Since the precise behavior of function h 2 (T ) is currently not known exactly when T is greater than 30 000 K, the precise position of the borderline of the validity domain in the region of high densities and temperatures is not fully known yet.

The crossover density ρ * (T ) [eq. ( 2)] between the fully ionized and the atomic phase is also shown in Fig 12. That line gives essentially the borderline of the validity domain of the standard virial expansion, which holds only in the weakly coupled (Γ 1) fully ionized phase. The dashed line in Fig 12 shows state points where the coupling parameter Γ = β 2 /a is equal to 0.5. That line lies quite close to ρ * (T ). In the narrow strip at high densities and temperatures in-between the lines Γ = 0.5 and ρ * (T ), the SLT expansion is expected to converge only slowly because Γ is close to 1 (Γ ≤ 0.7 in that region). Fig. 12 shows that the SLT expansion provides an accurate analytical knowledge of the thermodynamics of the quantum e-p gas in a rather large range of densities and temperatures that includes the fully ionized phase (ρ ρ * ), the partially ionized phase (ρ ∼ ρ * ) and the atomic phase (ρ * ρ < ρ c ). 12. Phase diagram of a pure hydrogen gas at low densities. The crosses denote state points where simulation results are available [START_REF] Militzer | Path integral Monte Carlo simulation of the low-density hydrogen plasma[END_REF]. The crossover density ρ * (T ) between the plasma and the atomic phase (dot-dashed line) gives essentially the borderline of the validity domain of the standard virial expansion, which applies only in the plasma phase. The dashed line corresponds to a plasma coupling parameter Γ = 0.5. The SLT expansion is valid in both the plasma and atomic phases, up to the blue line ρc(T ) [eq. [START_REF]Handbook of Atomic, Molecular, and Optical Physics[END_REF]] which locates the cross-over to the molecular phase. The state point of the Sun photosphere, and the track of the Sun adiabat (dotted line) are also shown.

VI. CONCLUDING COMMENTS

In this work, we extend the exact analytical knowledge on the thermodynamics of hydrogen at low densities by deriving the first five terms in the SLT expansion of the internal energy [eq. ( 32)], a result that complements the corresponding expansions for the pressure [eq. ( 25)] and the chemical potential [eq. (20)]. Similar expansions for any thermodynamical quantity can be easily derived without any loss of thermodynamic consistency. We performed also extensive numerical calculations of isotherms and isochores, and compared in details the predictions of the SLT formulae with the numerical OPAL EOS and data of PIMC simulations. Our analytical SLT formulae for the deviations to the ideal Saha law can be evaluated numerically very easily and quickly. As applying the SLT EOS is straightforward, no extensive tabulation, with the associated loss of accuracy due to interpolation, is required. A plot and a tabulation of functions h k (β) (k = 1, 2, 3, 4) have been provided as guide to help the user in applying numerically our formulae.

We emphasize the following points:

The exact SLT expansion overcomes the restriction ρ ρ * (T ) of the standard virial expansion, and has a validity domain that extends up to the density ρ c (T ) in the atomic phase (see Fig. 12).

At low densities (ρ < 10 -5 g/cc), an excellent agreement is found between the predictions of the SLT EOS for the pressure and the internal energy and the values in the OPAL tables for pure hydrogen. Notice that if the density is very low, the OPAL tables need to be corrected as explained in ref. [START_REF] Ballenegger | The divergent atomic partition function or how to assign correct statistical weights to bound states[END_REF]. As several important ingredients in the OPAL EOS, which is available only in the form of pre-computed tables, are unknown, attempts have been made to emulate this equation of state [START_REF] Lin | A practical equation of state for the Sun and Sun-like Stars[END_REF]. It is very satisfactory to see that the OPAL EOS for pure hydrogen can be fully reproduced at low densities by our simple analytical formulae. Furthermore, the physical content of the various corrections of interest is enlighten, as well as subtle cancellations between some contributions. No PIMC simulation results are available at such low densities because the statistics becomes poor. At higher densities, some small discrepancies can be observed between the SLT EOS, the OPAL EOS and the simulation results. We plotted the pressure deviations δP = P -P Saha and the energy deviations δu = u -u Saha to the ideal Saha law to extract the variations of those thermodynamical quantities that are due to non-ideality. Those deviations δP and δu show two sign changes, which are also seen in the simulation data and which are fully explained by our analytical formulae. For densities up to 10 -3 g/cc and temperatures up to 30 000 K, the SLT EOS and the OPAL EOS are both within the error bars of the PIMC simulations.

At densities around 10 -2 g/cc and above, and for temperatures above 30 000 K, there are some discrepancies between the deviations, especially δP , calculated from the PIMC data and those of the SLT and OPAL EOS. In that range of temperatures, our present approximate expressions for h 2 (β) and h 4 (β) are not reliable. Better estimations of those functions, based on a numerical evaluation of path integral formulae for the internal partition functions Z(2, 2), Z(2, 1), and Z(1, 2), would provide an interesting improvement of our calculations, in particular in the region ρ ≥ 10 -3 g/cc and T ≥ 30 000 K.

As shown in Ref. [36], expansion (13) of particle density in terms of chemical potential should remain valid in the molecular regime, i.e. for ρ ≥ ρ c , provided the density is not too high. The accurate knowledge of Z(2, 2), Z(2, 1) and Z(1, 2) within numerical path integration, together with a numerical inversion of eq. ( 13), should therefore provide a precise description of the crossover transition from the atomic gas to the molecular gas, much beyond the level of accuracy of current calculations, including PIMC simulations [36]. The accurate calculations of Z(2, 2), Z(2, 1) and Z(1, 2) via numerical path integrations would include in particular the contributions of atomatom interactions. Such contributions are not easy to determine within simple modelizations because of the difficulty, intrinsic to quantum mechanics, in separating them from purely molecular contributions [3]. The accurate knowledge of Z(2, 2), Z(2, 1) and Z(1, 2) might also be useful for improving chemical approaches, like the Saumon-Chabrier theory [START_REF] Saumon | Fluid hydrogen at high density: pressure ionization[END_REF], the MHD model [25] or the SAHA-S model [68].

The track of the Sun adiabat [START_REF] Christensen-Dalsgaard | The Current State of Solar Modeling[END_REF] stays well within the validity domain of the SLT expansion. The presents results are therefore of interest for astrophysics, where a very accurate EOS is needed for instance to interpret recent seismology measurements in the Sun [START_REF] Däppen | The equation of state for the solar interior[END_REF][START_REF] Christensen-Dalsgaard | The Current State of Solar Modeling[END_REF]. The SLT expansion 
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 1 FIG. 1. Plot of Ebeling direct and exchange functions Q(x) and E(x).

  FIG. 2. Comparison of the Brillouin-Planck-Larkin partition function (red dashed curve) to the exact virial function Q(xpe(T )) (black line) for temperatures up to 100 000 K. Truncating the sum in ZBPL after the first term yields a quite good approximation (dot-dashed curve). The dotted line (constant value 1) corresponds to keeping only the groundstate contribution exp(-EH/kT ).
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 3 FIG. 3. Plot of functions h k (β).The scale for β is in Rydberg.
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 4 FIG.[START_REF] Rogers | [END_REF]. Logarithmic plot of deviations to Saha pressure for pure hydrogen along isotherm T = 6 000 K. (ρ * = 2.12 × 10 15 m -3 ). Crosses correspond to tabulated points of the OPAL equation of state[START_REF] Rogers | [END_REF] (with corrected ground-state energy[36]).
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 5 FIG.5. Logarithmic plots of deviations to Saha pressure along isotherms from 10 000 K up to 30 000 K according to the SLT EOS (solid and dashed lines) and to the tabulated OPAL EOS (symbols).

FIG. 6 .

 6 FIG.6. Deviations to Saha internal energy for isotherms between 10 000 K and 30 000 K according to the SLT EOS. Points of the (corrected) OPAL EOS are shown by symbols (up to density 0.1 g/cc).

FIG. 7 .

 7 FIG. 7. Deviations to Saha pressure along isochores 10 -8 g/cc (black line) and 10 -3 g/cc (red solid line) according to the SLT EOS. Crosses correspond to values of the (corrected) OPAL EOS. The dashed line shows the effect of neglecting term P4 in the SLT EOS.

FIG. 8 .

 8 FIG.8. Internal energy per proton along isochore 10 -8 g/cc according to SLT EOS (black line), OPAL EOS (crosses) and Saha EOS (dashed line). For the difference between the two former and the latter curves, see Fig.9. All energies are shifted upwards by |EH 2 |/2. The plot shows also curves |EH 2 |/2 + 3kT (red dot-dashed line) and 3kT (dotted line).
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 9 FIG.9. Deviations to Saha internal energy for isochores 10 -8 g/cc (black line) and 10 -3 g/cc (red line) according to the SLT EOS. Crosses denote tabulated points of the (corrected) OPAL EOS.
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 10 FIG.10. Pressure (a) and internal energy (b) per electron-proton pair as a function of temperature along isochore 10 -3 g/cc, according to SLT EOS (red line), OPAL EOS (dashed line), and ideal Saha EOS (dotted line). Points are simulation results of Ref.[START_REF] Militzer | Path integral Monte Carlo simulation of the low-density hydrogen plasma[END_REF]. Plots (a') and (b') show deviations to the ideal Saha values along the isochore.
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 11 FIG.11. Deviations (with respect to ideal Saha values) of pressure (a) and internal energy per electronproton pair (b) as a function of temperature along isochore 0.0125 g/cc, according to SLT EOS (red line) and OPAL EOS (dashed line). Points are simulation results of Ref.[START_REF] Militzer | Path integral Monte Carlo simulation of the low-density hydrogen plasma[END_REF].
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 13 FIG.[START_REF] Dewitt | Low density expansion of the equation of state for a quantum electron gas[END_REF]. The truncated trace Z eff = Tr[exp(-βH eff ) -exp(-βH0)] for a quantum particle in the effective proton-proton potential of the H2 molecule (shown in the inset), as obtained from a numerically exact Path Integral Monte Carlo calculation (crosses), from the rigid rotor approximation (A4) (solid line) and from Irwin's partition function[START_REF] Irwin | Refined diatomic partition functions[END_REF] (dashed curve). The dissociation temperature of the H2 molecule is T diss = V0/k = 55 459 K.

  The groundstate contribution has been extracted from Z(1, 1) and it provides the leading atomic contribution γ 2 /2 in[START_REF] Dewitt | Low density expansion of the equation of state for a quantum electron gas[END_REF]. Consequently, the leading lowtemperature behavior of h 3 (β) arises from the contribution to Q(x pe ) of the first excited state of an atom H with energy E H /4, so δ 3 reduces to δ 3 = -E H /4 + E H = -3E H /4. That decay rate δ 3 10.2 eV is indeed larger than δ 2 9.1 eV.

TABLE II .

 II Numerical values of functions h k (β) (k = 1, 2, 3, 4) at different temperatures.

TABLE IV .

 IV Pressure at typical temperature and density of Sun photosphere.

TABLE V .

 V Atomic recombination density ρ * in m -3 and in g/cc at various temperatures.

of other thermodynamical properties, such the adiabatic exponent and the sound speed, can be derived along similar lines. For real applications to helioseismology, the present calculations must be generalized to the case of a hydrogen-helium mixture within similar tools, an a priori feasible task. The contributions of other heavier elements might be determined within simple ideal approximations since their dilution is very high. Notice that relativistic effects associated with the electrons should be also incorporated as discussed in Refs. [START_REF] Gryaznov | Equation-of-state and phase-transition issues in models of ordinary astrophysical matter[END_REF][START_REF] Starostin | Bound states in nonideal plasmas: formulation of the partition function and application to the solar interior[END_REF].

Let us consider a simple model which is often used for describing the H 2 molecule [72]. In that model, the two protons separated by a distance R interact via a potential V eff (R) which is inferred from the electronic groundstate wavefunction for that fixed protonic configuration. The potential V eff (R) is repulsive at short distances, attractive at large distances, and is minimum at R = R 0 with V eff (R 0 ) < 0. A plot of that potential, obtained by fitting the data of Ref. [72] to the formula

is shown in the inset of Fig. 13, while the values of the fitted coefficients are given in Table VI. The zero of energy corresponds here to the state with two hydrogen atoms infinitely far apart. The minimum of the potential is located R 0 = 1.3924 (in atomic units) with value V (R 0 ) = -V 0 = -0.175629 Hartree. The dissociation energy of the hydrogen molecule is T diss = V 0 /k = 55 459 K. For our purpose, it is sufficient to consider that the protons are spinless. A proper account of the spins would lead to the usual coupling between spin and position variables, which in turn induce a different counting of ortho-and para-hydrogen contributions, see for instance formula [START_REF] Jancovici | [END_REF]. The Hamiltonian of the relative particle with mass m * = m p /2 submitted to V eff (R) reads

Within that simplified model, the analog of the contribution of [exp(-βH 2,2 )-exp(-βH 1,1 ) exp(-βH 1,1 )] to h 2 (β) is the truncated trace

where H 0 is the kinetic part of H eff .

Let E 0 = E H2 -2E H -0.94188 V 0 be the groundstate energy of H eff . Instead of determining exactly all boundstate energies of H eff by solving the corresponding radial Schrodinger equation for various values of orbital number l, we consider the usual rigid-rotor and harmonic well approximations for describing global rotations and vibrations. Then, on the one hand, the approximation analoguous to (47) for h 2 (β) becomes here are the rotational and vibrational quanta which can be determined respectively from R 0 and from the shape of V eff (R) around its minimum at R = R 0 : T (rot) eff = 88.7 K and T (vib) eff = 6524 K. On the other hand, we have performed a numerical calculation of Z eff within path integral Monte Carlo methods applied to its Feynman-Kac path integral representation [START_REF] Kleinert | Path Integrals in Quantum Mechanics[END_REF] 

where ξ(s) is a Brownian bridge such that ξ(1) = ξ(0) = 0, D W (ξ) is the normalized Wiener measure and λ * = (β 2 /m * ) 1/2 . At low temperatures (T T diss ), the truncated trace Z eff is dominated by the contributions arising from bound states with negative energies since the corresponding contributions grow exponentially fast when β → ∞. Fig. 13 shows that the approximation (A4) (which amounts to keeping only bound state contributions evaluated within the rigid rotor model) represents quite well the Monte Carlo values for Z eff up to T 30000 K. Thus, we can reasonably expect a similar accuracy for approximation [START_REF] Ebeling | The exact free energy of low density quantum plasmas[END_REF]. We note that Irwin's partition function [START_REF] Irwin | Refined diatomic partition functions[END_REF], which accounts for rotational-vibration coupling in molecule H 2 by summing explicitly on calculated ro-vibrational energy levels, provides a better fit to the Monte Carlo data for this simplified model, but Irwin's partition function is available only up to 16 000 K. At high temperatures (30 000 K and above), a precise evaluation of the contributions besides those of the bound states, i.e. contributions arising from diffusive states as well as those due to the truncation terms in h 2 (β), becomes mandatory.