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Abstract—This paper describes an original approach for determining
independent loops needed for mesh-current analysis in order to solve
circuit equation system arising in inductive Partial Element Equivalent
Circuit (PEEC) approach. Based on the combined used of several
simple algorithms, it considerably speed-up the loops search and
enables the building of an associated matrix system with an improved
condition number. The approach is so well-suited for large degrees
of freedom problems, saving significantly memory and decreasing the
time of resolution.

1. INTRODUCTION

Partial element equivalent circuit (PEEC) approach [1] is known to be
very suitable for the modeling of combined circuit and electromagnetic
field problems. For low frequency applications, capacitive effects
can be neglected and the method can be restricted to its inductive
formulation [2]. With such approach, arbitrarily shaped 3D conducting
devices can be represented by equivalent circuits combining resistors,
partial/mutual inductances and current and/or voltage sources. The
circuit-based model of electromagnetic devices makes its interface with
SPICE-like circuit solvers possible. The approach is known to be very
efficient for the electromagnetic modeling of power electronic modules
for instance [2].

In order to solve circuit equations obtained by PEEC approach,
node-voltage and mesh-current analysis are two well-known methods
which allow the circuit analysis. For circuits with many mutual
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inductances such as those provided here, nodal analysis (based on
standard Kirchhoff’s equations) is known to be unsuitable, leading to a
higher degrees of freedom and to a matrix system with a bad condition
number. On the other hand, the use of independent loops — current
analysis (based on independent loop search) could reduce significantly
the number of circuit equations and therefore leads to fewer unknowns
and also provides a much better condition number for the system [3].

Despite this clear advantage, this approach requires to identify a
set of independent loops, which is well known to be an uneasy task
especially in large problems. Many strategies has been proposed to
determine these independent loops, such as general algebraic matrix
solution by inspection of the circuit [4] or graph algorithms [5, 6].
Method proposed in [4] is general but extremely time and memory
consuming for 3D structures meshed with a high density. Recently, a
new method [6] has been proposed and shown more efficient than the
generic graph solution presented in [5].

In this paper, an alternative novel strategy coupling a general
loop matrix method with a simple graph algorithm is proposed. The
method is a generic circuit solution such as [4, 5] and requires a similar
computational complexity than [6]. From numerical point of view, it
leads to a reliable set of equations leading to a matrix system with most
important terms located mainly close to the diagonal. Therefore, the
convergence of iterative linear solvers is improved. Let us notice that
this method is also compliant with the use of Adaptative Multi-Level
Fast Multipole Method (AMLFMM) [7] which improved the speed of
the algorithm. An industrial example meshed with more than ten
thousands branches has been solved with this approach.

2. INDUCTIVE PEEC METHOD

2.1. Equivalent Circuit Formulation

Let us consider Nb volume conductors fed with alternative sources
placed in a surrounding air region without any magnetic materials.
PEEC method is based on the determination of partial voltage
generated on each conductor by electromagnetic sources. To compute
these voltages, volume integration on the considered conductor of
the magnetic vector potential created by all the others conductor is
provided [1]. Let us assume that the current density in each conductor
is uniform. The expression of the magnetic vector potential Aj created
by conductor j is:
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where r is the distance between the integration point and the point
P , Ij is the current in the conductor j, Sj is the cross-section of the
current flow and Vj is the conductor volume and lj is the unit vector
oriented in the direction of current Ij . The flux created by Ij through
the conductor k is calculated with:
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The mutual inductance between the two conductors is defined by:
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The partial mutual inductance mkj only depends on the dimensions
and the positions of conductor k and j and can be calculated
by analytic formulas or numerical procedures. Thus, the voltage
appearing on the conductor k is given by:

Uk = Ik ·Rk + jω

Nb∑

j=1

Ijmkj (4)

where ω is the angular frequency, Rk is the DC resistance of k-th
conductor. Equation (4) links partial voltages of conductors to currents
flowing in them. It must be pointed out that this approach can also be
generalized for the modeling of bi-directional conductors (conductive
plates), representing them by a grid of unidirectional perpendicular
conductors in order to create orthogonal bases for currents.

2.2. Independent Loop Analysis

If the current flowing into each elementary conductor (or branch) is
Ib and associated voltage is Vb, we get a system of equations linking
currents vector to voltages vector.

ZbIb = (Rb + jωLb)Ib = Vb (5)

where Zb is called branch impedance matrix, Rb is a diagonal matrix
and Lb is a fully dense matrix of partial inductances. These matrices
are square and have Nb ×Nb elements.

In order to solve the problem, it remains to add circuit equations
(Kirchhoff’s circuit law) ensuring the current conservation. Using an
independent loop analysis in the graph representing the circuit, we can
transform (5) into a new equations system:

MZbMtIm = ZmIm = MVb = Vm (6)



where Im is an independent loops-based current vector (MtIm =
Ib), matrix M is the branches/independent loops transition matrix
(populated by −1, 0 or 1), Zm is an independent loop-based impedance
matrix and Vm is the vector of source voltages (most part of vector
equal to 0). Let us notice that one loop may be composed of meshed
PEEC elements and external electric component. In this approach,
unknowns are independent loop current Im and their number are
reduced (the number of loops being less important than the number of
conductors). It leads to a better condition number in comparison with
nodal analysis [3].

2.3. Introduction of Compression Algorithm

Matrix Lb, as well as Lm, is fully dense. It leads to a prohibitive
time of computation and memory storage if problem with industrial
complexity are considered. The coupling with a compression algorithm
is then needed. The introduction of “Adaptative Multi-Level Fast
Multipole Method” (AMLFMM) in the solving process leads to
the storage of the Zb part corresponding to near field interactions
whereas the far field interactions are compressed thanks to multipole
expansions [7]. As a consequence, the matrix Zb is split into a near-field
matrix (still fully dense but really smaller) and a far-field compression:

Zb = Zb near + Zb far (7)

Let us notice that to compute the Zm · Im product (needed in
the iterative solving process), (7) is simply multiplied by M transition
sparse matrix and Im current. In order to ensure the convergence of
the solving process, a preconditioning technique using a partial LU
decomposition of Zm near is applied [8].

3. FUNDAMENTAL LOOPS IDENTIFICATION
ALGORITHM

From this section, we will explain how to identifier matrix M in the
Equation (6) of large systems from the global circuit of PEEC method.
In order to make it easier to understand, we introduce some simple
graph theory which considerer the PEEC global circuit as an initial
undirected connected graph.

3.1. Basic Graph Theory for Independent Loops
Identification

The global graph is composed of many independents loops. A sub-
circuit can be defined as a set of independent loops related to each



Figure 1. Union of three set of loops (sub-circuits in red, blue and
green) in PEEC network. Super-circuit appears in purple.

other. The surrounding circuit connecting a set of sub-circuits between
each other will be called super-circuit (the rest of initial circuit except
all sub-circuit). It is also composed of independent loops. The initial
circuit is then composed of a set of sub-circuits and a super-circuit.
The union of these both sets of independent loops is the complete
set of independent loops (see Figure 1). Therefore if m denotes an
independent loop, we get:

minitial circuit = msuper circuit +
∑

all sub circuit

msub circuit (8)

Keep these considerations in mind; we can propose a strategy to
identify all of fundamental loops:

Step 1 : Partition initial circuit into several sub-circuits and
detects all fundamental loops in each of them.

Step 2 : Create the super-circuit from initial circuit and sub-
circuits and then search all fundamental loops in it.

In the case of nontrivial graphs (multiple connected domains),
each connected graph becomes an initial circuit and the total number
of independent loops is the sum of all connected graphs. We get:

mmultiple connected domains =
∑

all connected domain

meach domain (9)
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3.2. Sub-circuit Determination and Independent Loop
Search

In order to search fundamental loops, we propose the following
algorithm (see Figure 2).

Step 1a: If we have no idea about the number of branches in a
fundamental loop, a general method [4] can be used but remains very
expensive in term of computation time. On the other hand, a very
efficient way which speeds-up the algorithm is to focus on the search
of independent loops with at most k branches. In common applications,
surface conductors are under study. The typical PEEC discretization
is then mainly composed by a grid of bi-directional inductances (see

Figure 2. Principle of independent loops search algorithm. Six
different steps are proposed.

Figure 3. Example of some small loops detected on a standard PEEC
conductor mesh.



Figure 3), with obvious small independent loops of 4 conductors. The
number k = 4 is then chosen to ensure a partial but very quick
detection of the largest number of loops as possible. The search is
based on a classical graph search algorithm but limited to the detection
of obvious solutions. More complex loops will be treated in a future
step in order to reduce the algorithm complexity.

Step 1b: From the set of small loops get in Step 1a, it remains
to create the set of sub-circuit. In order to create a sub-circuit, we
propose to aggregate all the small independent loops which share at
least one branch. This process is illustrated in Figure 4(a), where we
see that all small loops are grouped to create a sub-circuit. However,
the graph search algorithm being not complete, some loops can miss.
In Figure 4(a), according to formula:

msub circuit = b− n + 1 = 36− 24 + 1 = 13, 13 independent loops
are needed but only 12 small loops have been obtained (b branches
and n nodes attached to this sub-circuit). One fundamental loop in
the sub-circuit is still missing. It remains to identify it. This is the
purpose of the next algorithm step.

Step 1c: To get missing loops, a graph algorithm (minimal
spanning tree) is used to find larger loops (with more than k branches)
in the sub-circuit. Let us go back to our example. In Figure 4(b), a
sub-circuit divided into spanning-tree, incomplete co-tree and missing
co-tree is presented. Each considered branch is included in spanning-
tree if this branch is not already included in it and if both attached

(a) (b)

(c)

Figure 4. Sub-circuit loops analysis and detection of missing loops.
(a) Sub-circuit created from small loops. (b) Graph of sub-circuit. (c)
Search of missing loop.



nodes (there are only two nodes per branch) are not already included
in this list. Since co-tree list contained only one branch from each
small independent loop, the violet branch in Figure 4(b) is added in
the missing co-tree list. This point is confirmed by the fact that there
is a last independent loop with the union of the spanning tree list
and this branch as illustrated in Figure 4(c). A Breath First Search
(BFS) algorithm is used in order to find the shortest path between the
two nodes attached to this missing co-tree branch. After Step 1, all
independent loops of sub-circuits in all connected domains have been
found.

3.3. Super-circuit Main Loop Analysis

In Step 2a, we need to search a sub-circuit internal path linking its
connections with the super-circuit (see Figure 5). This task is also
achieved thanks to a BFS algorithm like the one used in Step 1c. At
the end of the Step 2b, branches have been included in a list which
composed of the sub-circuit internal path and the branches which have
been not included in sub-circuits. This list defines the super-circuit,
even if those branches belong to several multiple connected domains.
Since this circuit has been reduced, the general matrix solution [4] is
efficient to identify the last fundamentals loops (Step 2c).

3.4. Complexity of the Algorithm

In Step 1a, because of very small size of loop (at most 4 branches),
independent loops identification in sub-circuits requires O(|N |)
computational time (N being the number of nodes in the graph). The
creation of sub-circuit in Step 1b, BFS algorithm in Step 1c, requires
O(|N |) in worst configurations.

Figure 5. Reduction of general circuit to super-circuit.



In Step 2a, another BFS algorithm is used. Step 2b just creates
the super-circuit so both of them can not exceed O(|N |) operations.
The last task (Step 2c) is the most expensive in terms of complexity
(N3) but if many sub-circuits have already been found, the complexity
of this step remains the same but applied to a problem with a very
few number independent loops. N being small, the time needed for
this step is not prohibitive (this is the case for typical inductive PEEC
discretization).

4. NUMERICAL RESULT

Classical general matrix solution technique has been compared with
this new approach. Both techniques have been implemented in InCa3D
software [9]. We consider the modeling of a LED headlight PCB. The
geometry is meshed with 11,445 branches and 4,762 fundamental loops
have to be found (see Figure 6). An AMLFMM compression algorithm
is used in order to speed-up the integration and the resolution process
associated to iterative GMRES linear solver. To ensure the solving
process convergence, a preconditioning technique is needed, as already
mentioned in this paper; a partial LU decomposition of the near field
impedance matrix is used [8]. The problem is solved on standard
computer (PC Intel Core 2 Duo @2.66 GHz–2 GB memory).

In comparison with standard nodal analysis [3], the number of
unknowns is considerably reduced (about 4.700 versus 18.000). Our
approach considerably reduced the time needed for the search of
independent loops in comparison with [4] (see Table 1).

Figure 6. Car Headlight LED PCB modeling in InCa3D, general view
of the geometry and mesh details (courtesy of Valeo).

Table 1. Time for determining a set of independent loop.

Classical general matrix solution [3] New algorithm

Time (s) 2894 s 2.1 s



(a) (b)

Figure 7. Structure of near-field interaction Zm near matrix created
by (a) general matrix solution and (b) new algorithm.

Another interesting aspect of our method is illustrated if we
have a look to Zm near (let us remember that in the real numerical
process this matrix is never built, but it should give to the reader
a good idea of terms repartition). Matrix get with our method and
the one given by [4] are plot on Figure 7 (it must be pointed out
that in this representation white terms — equal to 0 — are treated
thanks to FMM). Let us remark that the matrix built thanks to our
method presents a good concentration of higher element close to its
diagonal. This positive structure facilitates the convergence of the
iterative solver. Thus, using [4], 85 iterations are needed to get the
solution with GMRES. Using our algorithm, only 39 iterations are
necessary to obtain the solution with the same accuracy.

Additional information about computation times can be given.
The total time for the current distribution computation is 85 s. 2.1 s
are needed to analyze the circuit, 7.5 s to compute the near interactions
and 75 s for the iterative solving process. The memory requirement
does not exceed 240 MB.

5. CONCLUSION

This paper proposes a new algorithm to detect fundamental loops in
inductive PEEC models. It is well-suited to treat large problems arising
in industrial application. The proposed numerical scheme provides a
very quick determination of a minimal number of unknowns and the
matrix system obtained is better conditioned. Thus, the convergence of
the solving process is improved. Its comparison with the new approach
proposed in [6] could be an interesting perspective.
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