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A New Integral Formulation for Eddy Current Computation in Thin
Conductive Shells

T. Le-Duc, G. Meunier, O. Chadebec, and J.-M. Guichon

Grenoble Electrical Engineering Laboratory, University of Grenoble, Grenoble-INP/Université Joseph Fourier,
CNRS UMR 5269, Grenoble, France

In order to compute eddy current distributions in thin conductive nonmagnetic shells, a new integral formulation is proposed. The
method is based on a surface impedance condition which takes into account the field variation through depth due to skin effect. It is
general and enables the modeling of various problems whatever their skin-depth and avoiding the meshing of the air region.

Index Terms—Integral equation method, quasi-static problems, surface impedance condition, thin conductive shells.

1. INTRODUCTION

NTEGRAL formulations dedicated to the computation of
I eddy currents in thin shells for the case of a skin depth ¢
much greater than the thickness e (§ > ¢) has already been
proposed by many authors [1]-[5]. In this case, the eddy current
distribution is supposed to be uniform across the thickness and
surface elements are used avoiding the meshing of the shell’s
thickness. Such formulations are currently well-known and have
shown good accuracy with a few numbers of elements in com-
parison with finite element methods where the air region needs
to be meshed.

However, the computation of eddy currents in thin shells in
the general case (§ < e or § = e for instance) is still a difficulty
and has only been studied by few authors.

In [6], a general shell element formulation has been pro-
posed. Based on a pseudo-analytical solution (solution of the
1D problem) and a nodal approximation of the scalar magnetic
potential, the field variation across the thickness of the shell
(i.e., the skin depth) is taken into account with a quite good
accuracy. In this formulation, the air region is modeled by
boundary integral equations and the coupling is realized at the
interface on both sides of the shell.

In [7], a very similar shell element for modeling thin con-
ducting regions has been proposed. Like in [6], this element
takes into account the field variation through depth due to skin
effect but in this paper the outside regions are modeled with fi-
nite elements method. However, the approach presented in [7]
leads to the mesh of the air region. If shielding devices are mod-
eled, this task is complex and can lead to inaccuracies.

This paper presents a new integral formulation which allows
the modeling of nonmagnetic conductive thin shells in the case
general (§ > eor§ =~ e or § < e). Based on a simple surface
discretization, the number of unknowns considerably reduces,
the depth of the shell being not meshed. Moreover, like in [6], it
does not require the meshing of the air region. An advantage of
our new formulation in comparison with existing integral ones
is its compactness and its generality. Indeed, it can be applied
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Fig. 1. Thin conductive and nonmagnetic region and associated notations.

easily to every shell geometry, either delimited by closed sur-
face or not. Moreover, we will see that the formulation is less
consuming in terms of degrees of freedom than [6].

In the second part of the paper, a surface impedance condition
for the shell will be presented. In the third part, this surface
condition will be coupled with an integro-differential approach.
Finally, two numerical examples will be proposed in the last
part. Results obtained with our formulation will be compared
by those given by the Finite Element Method (FEM).

II. SURFACE IMPEDANCE CONDITION FOR THE SHELL

We consider a nonmagnetic shell with a thickness e with a
skin depth 6 (Fig. 1). Both thin shell and surrounding regions
are nonmagnetic (1 = p), the conductivity is o.

In our approach, the tangential component variation of the
magnetic field across the thickness of the shell is approximated
by the analytical solution of the problem obtained for an infinite
plane. For such problem, we get [6], [7]:

H.(z)= ﬁ [Hlssh (%—I—az) +Hoy,sh (% —az)} (1

ae)
where, a = (1 + j)/6 and H;, and Hy; are the tangential
field values on both sides of the shell. The volume eddy curent
density being tangential, thus by applying Ampere’s law, we get:

OHg(2)

J =curlH = —n; x 5, 2)
z
By introducing (1) in (2), we get:

J(z) = —ﬁnlx [Hlsch (%+az) —Hs,ch (% —az)} .
Expression of electric field on side “1” of the shell is: 3

J(e/2
E, = B(e/2) = 22 J/ ). 4

Equations (4) and (3) are combined to get:
E; = n; x (fHzs — aHy,) Q)
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with a a

othae’ oshae’
In a second step, Faraday’s law is projected normally to the
shell:

n-curlE = —n - jwB. (6)

Applying Galerkin method to (6) on side 1 of the shell surface
I'; leads to:

jw / w-B-ndl= - / w(curlE) - ndl @)
T, T
where w is a set of nodal surface weighting functions, the shell
being limited to T'.
Applying curl(mU) = mcurlU + (gradm) x U property
in the second term of (7), we get following expression:

jw/W-B-ndF:/(gradswxE)-ndf

r T
— /curl(w -E)-ndl. (8)
Y
We switch terms in the mixed product of the second integral of
(8) and apply Stokes theorem to the third one to get:

j;u/w-B-ndl":/(EXn)-gradsw-dl“—/W-E-d)\ ©)]

Ty Ty A1

where A; is the line region delimiting the I'; surface. Using (5)
and (9), we finally have:

/gradsw- (aHis — SHas)dI

Iy

+jw/W-Bl-nl-dr+/xv-E-(lA:0. (10)
T X

On the side 2 of the shell, we get a similar equation:

/gradsw - (aHas — fH15)dT
I
+Jw/WB2n2dF+ /WEd)\ZO (1
Ty Ao

Equations (10) and (11) represent the electromagnetic behavior
of the conductive shell itself. In order to take into account the
surrounding region, it remains to couple the two formulations.
In [7], the authors choose to use the Finite Element Method
(FEM), thus they need to mesh the air region. In [6], a Boundary
Equation Method (BEM) is preferred but the authors have to
manage the coupling on both sides of the shell and have to de-
termine if both sides of the shell are interfaced with a single
region or with two different ones. This leads to the development
of quite sophisticated geometrical analysis tools if the method
has to be applied to general geometry. Moreover, four unknowns
per node are needed. We have preferred a new approach, based
on the coupling of (10) and (11) with an integral volume equa-
tion. The obtained formulation presents an interesting compact-
ness treating different air volumes as the single physical region.
Moreover two unknowns per node are needed (two potentials on
both sides of the shell).
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Fig. 2. Magnetic field created by eddy current distribution and associated
notations.

III. VOLUME INTEGRAL FORMULATION

Let us now assume that the shell is placed in an inductor field
Hj. On the side “1” of the shell, the total magnetic field H; is
the sum of Hy; and Hy,, the reaction of the eddy current in thin
shell. Thanks to the law of Biot and Savart, we can write:

i e/2
H1:H0+(1/47r)/ / J(2) x (r/r*)dzdll (12)
f‘l —e/2

where r is the vector linking the integration point to the point
where the field is expressed (Fig. 2). Additional expressions can
be given:

r=r,—(e/2—2) nyandr® = (r] + (e/2 — z)2)3/2. (13)
Using (3), (12) and (13), we get

H1 :H0+<1/4’/T)/<R1-HlS—RQ'Hgs)dF (14)

I
with:
a
Ri= ~ sh(ae)
e/2
ch(ae/2 + az) -ny x (rs — (/2 — 2) -ny)
X 3/3 dz
J, 02+ (e/2-2)?)
(15)
a
R:= ~ sh(ae)
e/2
ch(ae/2 —az) -ny X (rs — (e/2 — 2) -ny)
X 3/2 dz.
p (r: +(e/2 = 2)?)
(16)
Using (15), (10) becomes:
/gradsw - (aHys — fHa.)dT + /W -E-d)
Iy A1
1
o [w(Ho+ o [ (RiH - Rt dr
Ty r
.ny -dl = 0. (17)

A reduced magnetic scalar potential is now introduced for
each side of the shell. Since there is a jump of the tangential
component of the magnetic field through the element, a double
layer node surface element is needed (Fig. 3) [7]. Let us notice
that if two potential values are associated to each node, only
surface elements are needed in order to discretized the shell.
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Fig. 3. Shell element representation with associated potential jump.

Expressions of tangential magnetic fields on both sides and out-
side of the shell are:

H;, = Hy, — grad, ¢ (18)
Hy, = Hy; — grad oo (19)

where Hy; is the inductor field limited to its tangential compo-
nent (same value on both sides of the shell, the thickness being
small) and ¢1, ¢ stand for magnetic scalar potentials on both
sides. Using (17), (18) and (19), we obtain the final formulation
corresponding to the side “1” of the shell:

— a/gradsw -grad ¢ - dT’
'y

+ ﬂ/gradsw -grad ¢s - dT" + (jwpug/47) /W
1N ry

X /—R1 grad ¢,dl" + /R2 grad ¢odl' | AT’
1 1;1

+/W-E~d/\:—(jw~u0/47r)/w

A1 I

/ (Ry — Ry)Hoy dT'| dT

1

+ (—a+p) /gradsw -Ho,dl' — jwpg /w -Hg - n.dI".
fl 1;1
(20)

The equation on the side “2” of shell is obtained by permuting
the subscripts “1”” and “2”. Both equations are solved simulta-
neously in order to get both potential ¢, and ¢, distributions.
It should be pointed out that on A line, delimiting the external
border of the shell, the potential jump is set to zeros (conti-
nuity of the potential ensuring that the current is tangential to
the edge) so both integral terms [, w - E - d\ vanish so are not
taken into account in the final resolution.

These equations have to be discretized. The easiest way is to
mesh the average surface I, situated halfway between bound-
aries of the shells (Fig. 1), into n triangular elements associ-
ated with a uniform tangential component of the eddy current
(meaning 1-order shape functions for the potential). The ob-
tained algebraic linear system has size 2p (two complex mag-
netic scalar potentials per node; the mesh is being composed of
p nodes). Let us notice that shape functions with higher orders
can be used.

It must be pointed out that this formulation looks like a mix
between finite element method and integral volume one. In (20),
both first terms leads to sparse matrices (similar to which given
by a FEM standard integration process) but the last one in-
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Fig. 4. Hollow sphere, notations and path where the external magnetic field is
computed.

volving R; and Ry is associated to an integral method. The
matrix system obtained is so fully populated and thus the in-
tegration time and the memory needed could quickly become
prohibitive. Compression algorithms must be used if problems
with large numbers of elements are addressed. The use of the
well-known «Fast Multipole Method» (FMM) [8], [9] to com-
press law of Biot and Savart is well-known to be very efficient
in such configuration. Moreover, integrals (15) and (16) can be
singular if we consider the influence of the element on itself. The
integral is computed thank the use of an adaptive quadrature.

IV. NUMERICAL EXAMPLES

The new formulation has been implemented for a 3-D geom-
etry and has been validated with two different academic exam-
ples. A comparison with FEM method using FLUX software [8]
is made.

A. Hollow Sphere

Our formulation is based on the infinite plane assumption for
the analytical computation of skin effect across the shell thick-
ness. Even if this assumption has already demonstrated its effi-
ciency, some inaccuracies can appear especially closed to shells
edges or corners. Our first validation case deals with geometry
without this kind of configuration: A conductive hollow sphere
R =0.1m,e = 2mm, o = 6E7 S/m) placed in a uniform
axial magnetic field Ho = [0 0 1] (A/m) (Fig. 4) is considered.
Three configurations have been tested:
—case 1: f = 50 Hz, skin depth § greater than the thickness
e (6 =92mm,8 > e)

—case 2: f = 1000 Hz, skin depth is comparable to the
thickness e (6 = 2.1 mm, 6 = e)

—case 3: f = 4000 Hz, skin depth § smaller than the thick-
nesse (6 = 1 mm, 6 < e)

For each case, eddy current losses (Joule losses) in the sphere
have been calculated and compared with results given by ax-
isymmetric FEM (Table I). The shell has been meshed with
volume elements. In a second step, we have computed the mag-
netic field in the air region close to the device (calculated on the
path AB in Fig. 3) with both methods for two cases: f = 50 Hz
and f = 4000 Hz (Fig. 5).

We can see small differences between computed values with
our formulation and the reference (axisymmetric FEM). These
differences can be explained by the infinite plane assumption
and certainly by the use of a l-order triangular coarse mesh.
A good solution would be to refine it but matrix compression
algorithms have not been implemented yet.

B. Thin Conductive Disk

The second test case is a thin conductive disk (R = 1 m,
e = 20E — 3 m, 0 = 6E7 S/m) placed in a magnetic field
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Fig. 5. Magnetic field in the path AB calculated by 2 methods with f = 50 Hz
and f = 4000 Hz.

TABLE I
JOULE LOSSES OF THE HOLLOW SPHERE

Loss Joule (W) Loss Joule (W)
e/d computed by our computed by Diff.
method axisymmetric FEM
0.22 1.16E-6 1.14E-6 1.74%
0.97 1.75E-6 1.71E-6 2.34%
2.00 2.79E-6 2.90E-6 3.71%
I=1A —
@ )
S~

Fig. 6. Thin conductive disk, exciting coil and notations. Disk characteristics:
R =1m,e = 20E — 3 m, ¢ = 6E7 S/m. Coils characteristics: Rco;; = 0.5
m, located 1 m high above the disk, I = 1 A.

f=1 Hz

=50 Hz

Fig. 7. Surface distribution of current (A/m) in the disk.

H,, created by a loop fed with I = 1 A (Fig. 6). This example
is modeled by three different methods. The first one is the ax-
isymmetric FEM. The second one is a shell element formula-
tion implemented in 3-D FEM code [7], [10]. The last one is
the considered integral method. We still focus on the computed
eddy current distribution and Joule losses in the disk at different
frequencies (see Table II, Figs. 7 and 8).

If we consider that axisymmetric FEM method as our refer-
ence, the integral method leads to an error of 2.7% for the Joule
losses at f = 50 Hz (Fig. 8). The lower the skin depth is, the
lower the error is. These errors can be explained by the mod-
eling of the geometry with a strong edge effect where the infi-
nite plane assumption leads to inaccuracies. Let us notice that
our integral formulation seems to lead to more accurate results
than the same implementation of the shell element but with the
air region treated with a 3-D FEM. Maybe a more precise nu-
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Fig. 8. Difference in % with the axisymmetric FEM solution for the Joule
losses computation versus e/ 6.

TABLE II
JOULE LOSSES OF THE DISK (W)
f (Hz) e/d| Axisymmetric Our vsifill:/lsggl
FEM method method
elements
1 0.30 7.10E-7 7.31E-7 6.84E-7
10 0.97 1.15E-6 1.18E-6 1.07E-6
50 2.17 2.21E-6 2.26E-6 2.05E-5

merical study should be made in order to better understand this
difference.
V. CONCLUSION

In this paper, we have presented an original integral formula-
tion using shell elements in order to model thin conductive non-
magnetic regions. The formulation is general and various skin
effects across thickness (6 > eord = eor§ < e) are taken into
account. The coupling of this formulation with compression al-
gorithm seems to be promising in order to model real shielding
applications. In further work, similar formulations enabling the
modeling of thin conductive magnetic shells will be focused.
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