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In order to compute eddy current distributions in thin conductive nonmagnetic shells, a new integral formulation is proposed. The method is based on a surface impedance condition which takes into account the field variation through depth due to skin effect. It is general and enables the modeling of various problems whatever their skin-depth and avoiding the meshing of the air region.

I. INTRODUCTION

I NTEGRAL formulations dedicated to the computation of eddy currents in thin shells for the case of a skin depth much greater than the thickness has already been proposed by many authors [START_REF] Salon | An intergro-differential approach to eddy currents in thin plates[END_REF]- [START_REF] Koch | Modeling thin conductive sheets using shell elements in magnetoquasistatic field simulations[END_REF]. In this case, the eddy current distribution is supposed to be uniform across the thickness and surface elements are used avoiding the meshing of the shell's thickness. Such formulations are currently well-known and have shown good accuracy with a few numbers of elements in comparison with finite element methods where the air region needs to be meshed.

However, the computation of eddy currents in thin shells in the general case ( or for instance) is still a difficulty and has only been studied by few authors.

In [START_REF] Krähenbühl | Thin layers in electrical engineering. Example of shell models in analyzing eddy-currents by boundary and finite element methods[END_REF], a general shell element formulation has been proposed. Based on a pseudo-analytical solution (solution of the 1D problem) and a nodal approximation of the scalar magnetic potential, the field variation across the thickness of the shell (i.e., the skin depth) is taken into account with a quite good accuracy. In this formulation, the air region is modeled by boundary integral equations and the coupling is realized at the interface on both sides of the shell.

In [START_REF] Guérin | A shell element for computing 3D eddy current-Application to transformers[END_REF], a very similar shell element for modeling thin conducting regions has been proposed. Like in [START_REF] Krähenbühl | Thin layers in electrical engineering. Example of shell models in analyzing eddy-currents by boundary and finite element methods[END_REF], this element takes into account the field variation through depth due to skin effect but in this paper the outside regions are modeled with finite elements method. However, the approach presented in [START_REF] Guérin | A shell element for computing 3D eddy current-Application to transformers[END_REF] leads to the mesh of the air region. If shielding devices are modeled, this task is complex and can lead to inaccuracies.

This paper presents a new integral formulation which allows the modeling of nonmagnetic conductive thin shells in the case general ( or or ). Based on a simple surface discretization, the number of unknowns considerably reduces, the depth of the shell being not meshed. Moreover, like in [START_REF] Krähenbühl | Thin layers in electrical engineering. Example of shell models in analyzing eddy-currents by boundary and finite element methods[END_REF], it does not require the meshing of the air region. An advantage of our new formulation in comparison with existing integral ones is its compactness and its generality. Indeed, it can be applied easily to every shell geometry, either delimited by closed surface or not. Moreover, we will see that the formulation is less consuming in terms of degrees of freedom than [START_REF] Krähenbühl | Thin layers in electrical engineering. Example of shell models in analyzing eddy-currents by boundary and finite element methods[END_REF].

In the second part of the paper, a surface impedance condition for the shell will be presented. In the third part, this surface condition will be coupled with an integro-differential approach. Finally, two numerical examples will be proposed in the last part. Results obtained with our formulation will be compared by those given by the Finite Element Method (FEM).

II. SURFACE IMPEDANCE CONDITION FOR THE SHELL

We consider a nonmagnetic shell with a thickness with a skin depth (Fig. 1). Both thin shell and surrounding regions are nonmagnetic , the conductivity is . In our approach, the tangential component variation of the magnetic field across the thickness of the shell is approximated by the analytical solution of the problem obtained for an infinite plane. For such problem, we get [START_REF] Krähenbühl | Thin layers in electrical engineering. Example of shell models in analyzing eddy-currents by boundary and finite element methods[END_REF], [START_REF] Guérin | A shell element for computing 3D eddy current-Application to transformers[END_REF]:

(1)
where, and and are the tangential field values on both sides of the shell. The volume eddy curent density being tangential, thus by applying Ampere's law, we get:

(2) By introducing (1) in (2), we get:

(3) Expression of electric field on side "1" of the shell is:

(4)
Equations ( 4) and ( 3) are combined to get:

(5) 0018-9464/$31.00 © 2012 IEEE with In a second step, Faraday's law is projected normally to the shell: [START_REF] Krähenbühl | Thin layers in electrical engineering. Example of shell models in analyzing eddy-currents by boundary and finite element methods[END_REF] Applying Galerkin method to (6) on side 1 of the shell surface leads to:

j! 0 w 1 B 1 n d0 = 0 0 w(curlE) 1 n d0 (7)
where is a set of nodal surface weighting functions, the shell being limited to . Applying property in the second term of ( 7), we get following expression:

j! 0 w 1 B 1 n d0 = 0 (grad s w 2 E) 1 n d0 0 0 curl(w 1 E) 1 nd0: (8)
We switch terms in the mixed product of the second integral of ( 8) and apply Stokes theorem to the third one to get:

j! 0 w 1 B1n d0= 0 (E 2 n) 1 grad s w 1 d00 w 1 E 1 d (9)
where is the line region delimiting the surface. Using ( 5) and ( 9), we finally have:

0 grad s w 1 (H 1s 0 H 2s )d0 +j! 0 w 1 B 1 1 n 1 1 d0 + w 1 E 1 d = 0: (10)
On the side 2 of the shell, we get a similar equation:

(11) Equations ( 10) and (11) represent the electromagnetic behavior of the conductive shell itself. In order to take into account the surrounding region, it remains to couple the two formulations. In [START_REF] Guérin | A shell element for computing 3D eddy current-Application to transformers[END_REF], the authors choose to use the Finite Element Method (FEM), thus they need to mesh the air region. In [START_REF] Krähenbühl | Thin layers in electrical engineering. Example of shell models in analyzing eddy-currents by boundary and finite element methods[END_REF], a Boundary Equation Method (BEM) is preferred but the authors have to manage the coupling on both sides of the shell and have to determine if both sides of the shell are interfaced with a single region or with two different ones. This leads to the development of quite sophisticated geometrical analysis tools if the method has to be applied to general geometry. Moreover, four unknowns per node are needed. We have preferred a new approach, based on the coupling of ( 10) and ( 11) with an integral volume equation. The obtained formulation presents an interesting compactness treating different air volumes as the single physical region. Moreover two unknowns per node are needed (two potentials on both sides of the shell). 

III. VOLUME INTEGRAL FORMULATION

Let us now assume that the shell is placed in an inductor field . On the side "1" of the shell, the total magnetic field is the sum of and , the reaction of the eddy current in thin shell. Thanks to the law of Biot and Savart, we can write:

(12)
where is the vector linking the integration point to the point where the field is expressed (Fig. 2). Additional expressions can be given: A reduced magnetic scalar potential is now introduced for each side of the shell. Since there is a jump of the tangential component of the magnetic field through the element, a double layer node surface element is needed (Fig. 3) [START_REF] Guérin | A shell element for computing 3D eddy current-Application to transformers[END_REF]. Let us notice that if two potential values are associated to each node, only surface elements are needed in order to discretized the shell. Expressions of tangential magnetic fields on both sides and outside of the shell are:

(18) (19) where is the inductor field limited to its tangential component (same value on both sides of the shell, the thickness being small) and stand for magnetic scalar potentials on both sides. Using (17), ( 18) and ( 19), we obtain the final formulation corresponding to the side "1" of the shell:

(20)

The equation on the side "2" of shell is obtained by permuting the subscripts "1" and "2". Both equations are solved simultaneously in order to get both potential and distributions. It should be pointed out that on line, delimiting the external border of the shell, the potential jump is set to zeros (continuity of the potential ensuring that the current is tangential to the edge) so both integral terms vanish so are not taken into account in the final resolution.

These equations have to be discretized. The easiest way is to mesh the average surface , situated halfway between boundaries of the shells (Fig. 1), into triangular elements associated with a uniform tangential component of the eddy current (meaning 1-order shape functions for the potential). The obtained algebraic linear system has size (two complex magnetic scalar potentials per node; the mesh is being composed of nodes). Let us notice that shape functions with higher orders can be used.

It must be pointed out that this formulation looks like a mix between finite element method and integral volume one. In (20), both first terms leads to sparse matrices (similar to which given by a FEM standard integration process) but the last one in- and is associated to an integral method. The matrix system obtained is so fully populated and thus the integration time and the memory needed could quickly become prohibitive. Compression algorithms must be used if problems with large numbers of elements are addressed. The use of the well-known «Fast Multipole Method» (FMM) [START_REF] Buchau | Parallelization of a fast multipole boundary element method with cluster openMP[END_REF], [START_REF] Banucu | Design and optimization of a contactless magnetically levitated actuator for 4-axis-machining[END_REF] to compress law of Biot and Savart is well-known to be very efficient in such configuration. Moreover, integrals (15) and ( 16) can be singular if we consider the influence of the element on itself. The integral is computed thank the use of an adaptive quadrature.

IV. NUMERICAL EXAMPLES

The new formulation has been implemented for a 3-D geometry and has been validated with two different academic examples. A comparison with FEM method using FLUX software [START_REF] Buchau | Parallelization of a fast multipole boundary element method with cluster openMP[END_REF] is made.

A. Hollow Sphere

Our formulation is based on the infinite plane assumption for the analytical computation of skin effect across the shell thickness. Even if this assumption has already demonstrated its efficiency, some inaccuracies can appear especially closed to shells edges or corners. Our first validation case deals with geometry without this kind of configuration: A conductive hollow sphere ( m, mm, S/m) placed in a uniform axial magnetic field (A/m) (Fig. 4) is considered. Three configurations have been tested: -case 1:

Hz, skin depth greater than the thickness ( mm, ) -case 2:

Hz, skin depth is comparable to the thickness ( mm, ) -case 3:

Hz, skin depth smaller than the thickness ( mm, ) For each case, eddy current losses (Joule losses) in the sphere have been calculated and compared with results given by axisymmetric FEM (Table I). The shell has been meshed with volume elements. In a second step, we have computed the magnetic field in the air region close to the device (calculated on the path AB in Fig. 3) with both methods for two cases: Hz and Hz (Fig. 5). We can see small differences between computed values with our formulation and the reference (axisymmetric FEM). These differences can be explained by the infinite plane assumption and certainly by the use of a 1-order triangular coarse mesh. A good solution would be to refine it but matrix compression algorithms have not been implemented yet.

B. Thin Conductive Disk

The second test case is a thin conductive disk ( m, m, S/m) placed in a magnetic field created by a loop fed with A (Fig. 6). This example is modeled by three different methods. The first one is the axisymmetric FEM. The second one is a shell element formulation implemented in 3-D FEM code [START_REF] Guérin | A shell element for computing 3D eddy current-Application to transformers[END_REF], [10]. The last one is the considered integral method. We still focus on the computed eddy current distribution and Joule losses in the disk at different frequencies (see Table II, Figs. 7 and8).

If we consider that axisymmetric FEM method as our reference, the integral method leads to an error of 2.7% for the Joule losses at Hz (Fig. 8). The lower the skin depth is, the lower the error is. These errors can be explained by the modeling of the geometry with a strong edge effect where the infinite plane assumption leads to inaccuracies. Let us notice that our integral formulation seems to lead to more accurate results than the same implementation of the shell element but with the air region treated with a 3-D FEM. Maybe a more precise nu- merical study should be made in order to better understand this difference.

V. CONCLUSION

In this paper, we have presented an original integral formulation using shell elements in order to model thin conductive nonmagnetic regions. The formulation is general and various skin effects across thickness ( or or are taken into account. The coupling of this formulation with compression algorithm seems to be promising in order to model real shielding applications. In further work, similar formulations enabling the modeling of thin conductive magnetic shells will be focused.
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 1 Fig. 1. Thin conductive and nonmagnetic region and associated notations.
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 2 Fig. 2. Magnetic field created by eddy current distribution and associated notations.
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 3 Fig. 3. Shell element representation with associated potential jump.
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 4 Fig. 4. Hollow sphere, notations and path where the external magnetic field is computed.
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 5 Fig. 5. Magnetic field in the path AB calculated by 2 methods with f = 50 Hz and f = 4000 Hz.
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 6 Fig. 6. Thin conductive disk, exciting coil and notations. Disk characteristics: R = 1 m, e = 20E 0 3 m, = 6E7 S/m. Coils characteristics: R = 0:5 m, located 1 m high above the disk, I = 1 A.
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 7 Fig. 7. Surface distribution of current (A/m) in the disk.
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 8 Fig. 8. Difference in % with the axisymmetric FEM solution for the Joule losses computation versus e=.

TABLE I JOULE

 I LOSSES OF THE HOLLOW SPHERE

TABLE II JOULE

 II LOSSES OF THE DISK (W)