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Inversion improvement of a corrosion diagnosis thanks to an
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This article presents a direct application of a Tikhonov inversion with a quadratic
constraint applied in the case of a corrosion diagnosis. The main originality of
this method is to inject physical information during the inversion to automatically
restrict the Tikhonov parameter space. This application is then tested on a real
case of corrosion diagnosis from electrical measurements in the water.
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1. Introduction

During its operating life, an underwater steel structure needs to be protected from
corrosion. With an adapted painting, an effective way to passivate defects is the cathodic
protection. This system creates currents in the water circulating from anodes to cathodes
and noble parts. This induces a varying electromagnetic field in the conducting media
which can be measured and used to make a corrosion diagnosis of the structure. Such a
diagnosis tool requires a modelling of the structural physical behaviour leading to a
numerical system which is then inversed. This system is unfortunately often ill posed and
different inversion techniques have been tested. Tikhonov method has been finally used,
which provides good results in simulations. Some of them have been presented in another
article [1] and we propose here to give a main improvement by constraining the Tikhonov
parameter choice, thanks to an inequality constraint. After having described the case
studied in forward modelling, the improved inverse method and some results are
described. In the final part, some experimental achievements are presented.

2. Description of the case studied

To develop a diagnosis tool, first, an interest in modelling the electromagnetic field is
necessary. It is called Forward modelling. The first part of this article deals with its matrix
formulation and its use in inversion.
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2.1. Green identity

Let us consider an underwater domain, where water is supposed to be linear, homogeneous
and isotropic. Working in a static case, the electric potential ’ distribution satisfies the
Laplace’s equation in the domain �:

D’ ¼ 0: ð1Þ

Using Green’s third identity, a general expression is obtained:
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In this last equation, h is the solid angle seen by M0 and S(�) the whole surface of �

with a normal vector n. This equation will be frequently used to build numerical methods
of inversion. The normal derivative of the electric potential can be expressed with normal
current density and domain conductivity �.
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ð3Þ

2.2. Writing an interaction system

The two unknowns of Equation (2) are the electric potential and its normal derivative on
the surface S. It is necessary to define those quantities in corrosion protection: to prevent
an underwater structure from corrosion, two main methods exist, which are the Sacrificial
Anode Cathodic Protection (adding of a less noble metal to be corroded instead of the one
to be protected) and the Impressed Current Cathodic Protection (ICCP) [2]. We will only
focus on ICCP, in which currents are injected in the water through noble anodes
(in platinum), placing cathodes in their passivation area. This is done by decreasing their
electrochemical potential ’M (depending on the current quantity injected) to a desired
smaller value.

An important hypothesis admitted is the binary behaviour of the structure: its surface
can only be painted or corroded. This is not completely realistic but physically admissible
as a less corroded area behaves as a strongly corroded one. Three different boundary
conditions are finally available for underwater structure:

. Anodic parts (further subscripted A) inject currents in the water. Current densities
JA (and so @’A/@n) are known.

. Cathodic parts (further subscripted C) are the polarizable paint defects of the
structure. Their polarization law, linking JC (and so @’C/@n) to ’C is well known,
but most of the time non-linear, which will further lead to numerical difficulties.
This law can be expressed as @’C/@n ¼ f(’C�’M).

. Isolated parts (further subscripted I) which are not corroded and do not let current
enter. Their current density is null and so is @’I/@n.

A last remark concerns the evaluation of electrical potentials here: indeed, a reference
has to be chosen. Potentials involved in Equation (5) are contained into the conductive
media (water); so it is interesting to compare them towards the metallic one of cathodes ’M



(cathodic protection target). Moreover, a polarization law defines the relation of current

densities crossing a cathode towards its potential gap between metal and water (’C�’M).

Setting this common metallic cathodic potential ’M as a reference is a good way to only

keep ’C as the cathodic potential unknown in the water. Final polarization laws represent

@’C/@n¼ f(’C) and often have such a shape (Figure 1).
Equation (2) is too complicated to be analytically solved; so it is turned to a numerical

one with a structure meshing into N surface elements. The behaviour of the both quantities

introduced (’ and @’C/@n) has to be defined on an element: a zero-order approximation is

considered, meaning that ’ and @’/@n are supposed to be constant per element. This

hypothesis is not physically acceptable but will be further sufficient for a corrosion

diagnosis. Moreover, those quantities will be expressed at the geometric centre of each

element, and Equation (2) becomes (for the i-geometric centre Qi):
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Finally, the global interaction system needs 2N integral computations and can be

written [3]:
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This step of coefficients calculation, not described here for concision reasons, is made

thanks to the well-known Gauss method (choosing an adapted Gauss points number to
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Figure 1. Typical polarization law of marine steel.



replace analytical integrals by steady sums). However, singularities occur when computing
Hii and Tii (influence of an element on itself). In this case, rii and ni are always
perpendicular: Hii is set null. To compute Tii, each triangle is divided into six right-angled
triangles which have the geometric centre in common. An analytical formula exists to
compute T at the geometric centre of the former triangle for each new triangle [4]. The sum
of those six new quantities is Tii.

2.3. Resolution and post-processing

Once System 5 is obtained, a resolution step has to be made to find the missing ’A, ’C,
@’C/@n and ’I. As mentioned before, the main problem stands in the non-linearity of the
polarization law linking ’C and @’C/@n. A Newton–Raphson iterative solver is used for its
ease of both implementation and parameterization. Its residual norm R is composed of
two quantities (based on BEM and Polarization law) and a varying parameter ’NR

C :
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Finally, all ’ and @’/@n are obtained on the whole surface of � with few iterations (five
or six in most cases). A qualitative remark for corrosion diagnosis is that cathodic areas
(paint defects) have the lowest potentials and positive current densities (as we have defined
current injection with negative current densities).

Once all the boundary conditions have been computed, the electric potential is
available everywhere in � with Equation (2). With the previous meshing, potential at an
inner P point can be computed with 2N integrals:
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This post-processing step is completely linear, avoiding the use of an iterative solver. It
has to be kept in mind while building the inverse problem.

2.4. A simulation case

Let consider an application of the previous method, with a parallelepipedic and isolated
bowl. An isolated mock-up is immerged at the centre bottom of the bowl, with two
rectangular paint defects and one centred anode. Both the meshed bowl and mock-up are
represented in Figure 2.

Figure 2. Meshed bowl (a) and mock-up (b), with two green defects and one red anode.



This example of meshing leads to 612 surface elements (2 anodic, 12 cathodic, 598
isolated). After building System 5, resolution step is run and the following boundary
conditions are obtained (for �¼ 0.1 Sm�1, JA¼ 5Am�2, non-linear polarization law) on
the mock-up (with a residual norm precision fixed to 10�4, algorithm convergence in five
iterations; Figure 3).

As mentioned before, corroded areas have the lowest potentials and highest positive
current densities (from the definition of normal vectors). An important remark is that
quantities considered here (polarization law, conductivity and current densities) have been
chosen from real marine cases. Let us now consider a calculation grid in the water, near the
mock-up, where 400 electric potentials will be computed. System 7 allows the computation
of the electric potential on this grid.

Some additional contents about magnetic computation can be found in a previous
communication [5]. We have presented here a prediction method of the electric potential in
the water from the knowledge of a part of boundary conditions (location of corroded
parts, etc.). An interesting idea is now to develop an inverse method for the corrosion
diagnosis of immerged structures under cathodic protection, from a set of electric
measurements in the water.

3. Inverse method

3.1. Defining the problem

As mentioned before, the main interest of the inverse method is to find back the corrosion
state of an underwater structure from a set of electrical measurements in the water.
Remembering linear Equation (7), it consists, from a ’m vector (all measurement quantities
will further be subscripted m), of finding the boundary conditions vector X (’ and @’/@n)
on the structure.

In this part, the study will be illustrated with the case presented in the previous
paragraph. With the same structure (presented in Figure 2), the aim is, from Figure 4
measurements, to obtain boundary conditions of Figure 3. As mentioned before, boundary
conditions point out the corroded areas with lowest potentials and/or highest positive
current densities. Three new surface regions are considered: an anodic one (again
subscripted A), the bowl region (subscripted B) whose current density is null and the
structure region (subscripted S) where the corroded areas are searched.

Finally, this problem can be summarized with the following general system:

Am½ � � X½ � ¼ um

� �
ð8Þ
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Figure 3. Boundary conditions obtained on the mock-up: potential in V (a) and current density in
Am�2 (b).



This problem is hard to solve because several difficulties are encountered:

. The only information we have on the structure is the current density injected in
the water (and so @’A/@n) which represents few clues about the state of the system.

. ’m is a vector that contains measurement errors.

. Matrix Am is built from calculation of integral terms (Equation (10)), containing
rounding errors.

. Vector X has two kinds of unknowns which are potentials and their normal
derivative. They may not have the same range, which also interfere in the
coefficient of A (the two kinds of integrals terms in Equation (7) will not have the
same range, due to decreased rates at different orders: 1/r and 1/r2).

. Last but not least, the number of equations (that is to say measurements) and
unknowns are in most of the cases different. A is rarely a square matrix, which
leads to the main difficulty of this inverse problem.

Finally, when evaluating the condition number of System 8, it appears that we face a
very ill-posed problem. To illustrate this, it is possible to solve the inverse problem with a
direct method, like the Singular Value Decomposition (SVD) or minimization of the
normal equation. The last one consists of:

Minimizing the quantity Am � X� um



 

2
2

ð9Þ

It leads to a pseudo-solution X0 of the form:

X0 ¼ At
m � Am

� ��1
�At

m � um
ð10Þ

From a finer meshing of the structure (1576 total unknowns) and 1600 measurements,
the huge condition number obtained is about 1.48� 1019. Inversing the problem gives the
following boundary conditions (Figure 5).
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Figure 4. Calculation grid in the bowl (a) and transversal view of the bowl (b) and electric
potential (V) (c).



These results are mathematically right (it fits Equation (7)) but it is obvious that they

are physically wrong, with huge range of values and no convenient behaviour. First, work

has to be previously done on the system for avoiding this kind of results.

3.2. Adding equations

In the previous paragraph, we have presented the main reasons leading to inversion

difficulties. We cannot do anything for most of those, such as measurement and

calculation errors. But let us focus on the fourth one, concerning the two ranges of

unknowns. Indeed, a direct inversion leads to a non-physical solution, especially because

unknowns are not linked to each other, but only with measurements [6]. One smart idea

may be introducing the third Green equation system expressed in Equation (5), which is

newly written here:
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This new writing has two main advantages: solution values further obtained may be

huge but will fit the Laplace equation and so have a more correct physical behaviour.

Moreover, the system can be simplified by removing one kind of unknown, which will be

post-calculated thanks to a forward modelling. The current density injected in the water

(@’A/@n) will be conserved as unknown, leading to the following system:

AmA AmS AmB
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As we know the values of @’A/@n and @’B/@n (null), the final system becomes:

AmS½ � � @uS=@n
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Figure 5. Boundary conditions obtained on the structure: potential in V (a) and current densities in
Am�2 (b).



A numerical analysis of AmS may now impact the inversion process: As a defined set of
measurements is the starting point of the inversion, it is possible to properly choose the
structure meshing:

. From a structure with more meshing elements (and so unknowns) than equations
(called underdetermined), we get a global diagnosis with local corrosion clues. It
may be interesting to quickly check the state of an underwater structure.

. With more equations than unknowns (called over determined), a corrosion
evaluation on each meshing element can be obtained. Accurate information, and
especially gradient between meshing elements, can be obtained.

The objective is to locate corroded areas of a structure; so the second case will be
considered in the following sections. Thus, the structure studied is meshed with fewer
elements than measurements. Unfortunately, it algebraically leads to an infinite number of
solutions. A proof of this is the condition number, which is not significantly better. This is
also due to rounding in AmS computation and measurement approximations. A
regularization technique has to be used to find an acceptable solution.

3.3. Choosing a regularization technique

Different regularization techniques exist, such as the Truncated SVD (TSVD) or recent
non-linear regularization. However, in this study, the chosen one is the well-known
Tikhonov regularization. It can be applied to different systems, depending on the
information physically provided (a priori solution known, physical behaviour of the
solution, etc.). In our case, a priori information about the physical behaviour of
the solution can be guessed. Thus, two new quantities are introduced:

. A regularization matrix L representing the physical behaviour guessed on the
further solution. It should be remarked that TSVD is a Tikhonov regularization
taking L as the identity matrix.

. A regularization parameter � settling the compromise between solution accuracy
and regularization effect.

With these new parameters, regularization aims to minimize the following residual S
term:

S @uS=@n,B2

� �
¼ AmS � @uS=@n� B2
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2 ð15Þ

The new solution of the normal equation is the following:

@uS=@n
� �

Th
�ð Þ ¼ At

mS � AmS þ � � L
t � L

� ��1
�At

mS � B2 ð16Þ

It must be mentioned that Equation (16) is not exactly used to compute the solution:
using At

mS � AmS deteriorates the condition number deeper. Using the Generalized SVD
(decomposing AmS, B2 and L) does not affect the inversion. This new writing does not add
visible information; so, it is not presented here for reasons regarding concision, but will be
further used during numerical steps.

To summarize, Tikhonov technique consists of, from an L matrix choice, finding the
best � parameter, a compromise between solution precision (meaning mathematical
precision) and preferred physical behaviour. One common way to evaluate this



compromise is to draw the L-curve, representing residual norm towards regularization one

for different � values [7]. Its name comes from the form it often has in this case (Figure 6).

3.4. Choice of the L matrix

The first step of regularization concerns the L matrix choice, which is the representation of
the preferred physical behaviour of the solution. Different kinds exist:

. Order 0: it is the identity matrix, whose dimension is the same as the number of
unknowns. Minimizing the regularization norm gives the minimum norm
solution. It is the basic one with lowest amplitudes.

. Order 1: this matrix helps in minimizing the difference of the solution gradient,

that is to say the value difference between an element and its neighbour.
. Order 2: this time, it leads to the minimization if the Laplacian of the quantity on

the meshing.
. Many other kinds of regularization matrixes could be imagined, etc.

First, let us have a look at those different kinds of matrixes; order 0 one appears the
most fitted, especially because current density can vary much from one element to its

neighbour. But when using this, many errors appear on the boundaries, like negative
current densities (corresponding to injection ones). That is why an order 2 is preferred:

some amplitude errors can occur but they globally smoothe the result. As the result
required is more qualitative than quantitative (indeed, clues of corroded areas are positive
current densities, ‘no matter’ the amplitude, etc.), it fits our philosophy more.

To build this matrix, it is first necessary to find all the neighbours of each element.

Considering a p element with v neighbours, the corresponding row in the L matrix will be:

Lp ¼ 0 � � � 0
1

v
� � �

1

v
�1

1

v
� � �

1

v
0 � � � 0

� 	
ð17Þ

Figure 6. Example of an L-curve.



3.5. Application to the previous example

Let us use the previous example in simulation: We first consider the potential values of
Figure 4 as entries. To fit more realistic cases, it is decided to add random noise to those
values (up to 10% of the maximum value). Then, a realistic meshing is built without
defect delimitation. The number of meshing elements must be carefully chosen to stay in
an over-determined case (less M-elements than measurements). The new meshing
contains:

. 2 Anodic elements.

. 372 Mock-up elements.

. 386 Bowl elements (not represented in Figure 7).

Before inversing the system, it is important to discuss how results are analyzed. Indeed,
quantitative results give clues about the mathematical aspects of the solution towards the
expected one. But it can be difficult in those cases to clearly differentiate corroded areas.
Actually, it is more interesting to strongly regularize solutions and obtain false amplitudes
to see the cathodes better. That is why a qualitative observation is more relevant than a
quantitative one.

When building System (14), 372 normal derivatives of potential are unknowns. Then, L
matrix is built and the L-curve can be drawn. As we face a simulated case, L-curve has a
quite ‘L’ shape and � choice is made easier (5� 10�4 is kept). For more visibility of the
results, we decide to keep only the 50% upper values of positive current densities and the
5% lowest values of the potentials (Figure 8).

Comparing those results to the target ones of Figure 3, we observe that the
corroded areas are found back. As the meshing is no more adapted to the defects,
those are not completely recovered. Let us see how it works with a more meshed
structure and the creation of another set of 1296 measurements (1182 S-elements;
Figure 9).

With this new example, some errors appear during the diagnosis, illustrating the limit
of refining too much of a meshing. Indeed, redundancy appears with too many
measurements. A compromise between the concentration of meshing elements and
precision (from the number of measurement to make) has to be considered. The main
drawback of this method stands in the manual choice of the � parameter, from numerical
considerations (L-curve). One smart improvement shall consist of using more a priori
information to avoid or constrain this choice.
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Figure 7. Meshing of the mock-up (a) and noisy values for ’m on the grid (b).



4. Improving the method with constraints

4.1. Introduction of error estimation

We have seen in inverse problem definition that measurement and calculation errors lead

to a degradation of the condition number. This first improvement deals with the

estimation of those errors to constrain the � parameter choice. Let us first consider the

measurement error e on B2 vector. This error may be evaluated and defines a maximal

measurement error parameter �e [8]. Thus, residual norm can be upper bounded. New goal

is now choosing �, whose solution (@’S/@n)� verifies the following equality:
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To go deeper into this philosophy, we may take into account the calculation error �E
of matrix AmS (depending on the precision of the computer, often negligible towards

others). It also contains errors introduced by the use of a meshing and especially
approximation hypothesis (zero-order and point matching approach). This leads to the

new writing of the previous equation (subscripted exact mean solution without

regularization):

AmS �
@uS

@n

� �
�

�B2










 ¼ �e þ �E � @uS
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� �
exact










 ð19Þ

Taking back the previous test case, random noise introduced is upper bounded by

10% of the maximum potential value (0.92V), which has 0.1V difference with the mean

value (0.82V). Finally, maximum noise introduced is 10mV. This is really more than the
recent computer precision and meshing approximation; so �E is negligible here. Finally,

we come back to Equation (18). Having evaluated error e, �e, has now to be chosen. It

induces a new problem: if we take � from the equality in Equation (23) with �e¼ (m.e),

the results are often too smoothed. Diagnosis fails, simply because random error cannot

be estimated but drastically upper bounded. So, it is chosen to use �e only as an
inequality constraint:

Minimizing L � Xk k with AmS �
@uS

@n

� �
� B2










 � �e ð20Þ

The � choice is still manual but the space of solutions shall be reduced. Practically, this

method is not much better than the previous one, as a too important search space remains

for � choice. Some tests with different � values have to be done to observe the smoothing
effect and precision level. With this method, we finally find � leading to the following

results on the fine meshed (Figure 10).
Corroded areas are found but the � choice, although easier, is still too difficult to make

and has a part of random behaviour. Let us try to develop other tools with no error

estimation.

4.2. Introduction without error estimation

4.2.1. General cross-validation

This method [9] allows us get to a solution without estimating the error. This is
done by tracing a new curve illustrating the residual norm towards the matrix gap
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Figure 10. Results with an error estimation: 50% upper positive current densities in Am�2 (a) and
5% lowest potentials in V (b).



due to regularization. Let us write the regularized solution in this way which is a

new one:

@uS

@n

� �
�

¼ A#
mS �ð Þ � B2 ð21Þ

A#
mS is the matrix modified due to regularization to get the same B2 vector. A new G

function is then introduced:

G �ð Þ ¼
AmS �

@uS

@n

� �
k
�B2
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trace Id� AmS � A

#
mS �ð Þ
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The trace function is a sum of diagonal coefficients from A �A# matrix. Numerator

represents the residual norm for the corresponding � and denominator the matrix gap

induced by this regularization. Finding the minimum of this function stands as the best

compromise between mathematical precision and numerical divergence limitation. Once

again, the General SVD is used, but here to introduce L matrix in the previous

definition of G. In our case, the G-curve has the following form with corresponding results

(Figure 11).
This method does not need a � choice anymore and guarantees good results. Its only

drawback is its sensitiveness to numerical approximation due to regularization. Practically,

a solution obtained can leave a part of its physical definition, with great amplitudes for

example. But once again, the aim of the diagnosis is more qualitative than quantitative; so
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this tool is very useful. Let us now try to inject more physical information to the � search
instead of doing numerical reasoning.

4.2.2. Least square quadratic inequality constraint

The main goal of this method is to drastically limit the � search using physical
information. This is done by finding � or � parameter to apply one of the two following
least square quadratic inequality (LSQI) constraints:
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Once one constraint has been chosen, the resolution process consists of searching the
best � parameter in the truncated L-curve. Numerically speaking, we observe both residual
norms for a defined set of � and take the one fitting most Equation (24). This may appear
like an insufficient constraint but it works. Indeed, when choosing a smart � or �, the
search is clearly restricted to few values of �. Most of the results obtained with those � give
the same solution. The main advantage of the method with error estimation is the choice �
or �, which is clearly defined.

This article is based on Laplace equation and so on conservation of currents in the
water. As we know the quantity of currents injected in the water, we also know the
quantity expected to go back to the structure. Thus, it is possible to impose not only
positive currents on the structure but also bound the sum of those currents. This works
with Equation (23), taking an order 0 regularization and so an identity matrix for L. The
quadratic norm of L multiplied by ›wM/›n is the sum of currents going back to the
structure. The � coefficient is thus the sum of injected currents in the water. Empirically,
we see that it can be interesting to relax the current’s direction on each element and
underestimate this parameter: this avoids a global smoothing of the diagnosis. From a
reduction � equal to 50% of the currents injected, the following results are obtained
(Figure 12).

This reduction of � gives a less regularized solution, which can be a little bit noisy
instead of being smooth. But in all cases of tests, it works well to determine the corroded
areas. The only necessity to assure best results is to do previous simulations to observe the
sensibility solution towards � or � parameter. Without this, solutions obtained are precise
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Figure 12. Results with a LSQI with � equal to 50% of the injected currents: 50% upper positive
current densities in Am�2 (a) and 5% lowest potential in V (b).



enough but we often have to superpose current and potential diagnosis to find all the

corroded areas. We can imagine other improvements like both using order 0 and 2

regularizations to avoid this final noisy behaviour.
The last two methods give good results with efficiency, regarding imprecise

considerations made (graphical choice of �, errors estimation), and it may be complicated

to choose the best one. Actually, general cross validation (GCV) method is general and its

accuracy depends only on numerical approximations. This method will be kept when no

extra information can be taken from the physical context. On the other side, when having

unused information about solution behaviour or residual norm, it is more interesting to

use the LSQI. In general, this leads to same kind of results of the GCV with more physical

values.

5. Experimental validation

5.1. Measurement bowl

Throughout this article, a main example of underwater structure has been built, especially

to test the inverse method and its improvements. This simple structure choice comes from

a final wish of experimentally testing our algorithm in laboratory. Remembering the wish

of a structure immerged in the centre bottom of finite volume of water, a parallelepipedic

bowl is imagined. Its surface has to be an isolated part; so it will be made of PMMA

(Plexiglas). To realize the electric potential measurements, a mobile system on two sets of

rails is imagined, which can carry an electrochemical reference electrode. An illustration of

this system is presented below (Figure 13).

5.2. Mock-up studied

Then, an experimental structure is created, fitting the description made in the second part:

a metallic plate (in common steel, 0.2� 0.2� 0.02m3) is covered with an adapted painting,

except two rectangular areas which simulate defects. This painting should be carefully

chosen, as many of them are composed of zinc (to behave like a primary sacrificial

cathodic protection), which does not isolate the structure with an ICCP. This last anodic

protection is realized with a platinum mesh placed at the upper centre of the structure with

an adapted welding for electric connection (Figure 14).

Figure 13. Bowl design (a), bowl realized in measurement stage (b), reference electrode (c).



5.3. Performing measurements

To correctly realize the measurements, the conductive media has to be carefully chosen
and controlled. In the previous parts, the conductivity � has been set to 5.6 Sm�1, which is
a realistic case of seawater. Unfortunately, it makes the media too conductive and currents
do not expand enough in the bowl to be correctly measured. As we used marine range of
values, we have to make a scale modelling to better fit the bowl dimensions. Thus, a new
conductivity �¼ 0.1 Sm�1 is set, which corresponds to a particular salinity. Abacuses exist
to directly link salinity to conductivity at different temperatures. Checking the water
temperature (15�C) leads us to use a 5 gL�1 one. This concentration avoids quick
deposition of salt at the bottom side, which is a non-negligible advantage with regard to
the stability of measurements.

Remembering that the aim of those measurements is to obtain a set of electric
potentials on a grid in the water, the electrical scheme has to be considered. It can be easily
done using a voltmeter whose positive side is directly linked to the reference electrode and
the negative one to the steel mock-up. As mentioned in the definition of the interaction
system, the metallic potential of cathodes is numerically set to zero, which corresponds to
the way it is suited here.

Measurements are then done for a total injection of a 400mA current, thanks to the
platinum anode. Evaluation of the potential in the water stands in local variations around
a meaning value, set by the electrochemical context (polarization law, conductivity and
current density). The main problem is the small difference value between those potentials
and the meaning one, leading to redundancy. We have to let a security gap between
measurement points to distinguish the correct differences. Consequently, it is impossible to
perform as many measurements as used in the last parts of this article. Finally, 400
measurements are made, following the position illustrated in Figure 4. A last remark
concerns the reaction kinetic, as electrochemical reactions do not instantaneously stabilize.
A checking of injected currents permits the evaluation of this stability, which normally
needs more or less 1 h.

5.4. Meshing used and inversion results

Having those measurements, the structure meshing used is also the one shown in Figure 7,
leading to primary 372 values unknown in ›wM/›n. The final system (14) is then built from
the knowledge of all meshing positions. As anodic current is also set, it is possible to use

Figure 14. Steel mock-up created with two rectangular defects and one anodic protection.



the LSQI to perform the corrosion diagnosis on the structure. With the final definition of �
parameter made in the previous part, the following inverse results of current densities and

rebuild of potentials are obtained (Figure 15).
Considering only current density result helps us to find only one corroded area and it

needs the study of the potential result for corroboration. In this way, the diagnosis

succeeds in finding the corroded areas, with less accuracy due to the size of meshing
elements. Those results are very encouraging as this laboratory sample experimentation is

more numerically constrained than the real cases. Indeed, in Marine applications, for

example, anodic currents are in the range of 10V. Even in physical scale modelling, this
represents much more than ones used in this part. Relevant space of measurements is

increased and Marine sensors are at least as precise as the reference electrodes used. It
seems reasonable to think that measurements on real structures could give interesting

results.

6. Conclusions

This article has presented an efficient tool to complete a corrosion diagnosis of an

underwater structure under cathodic protection, from electric potential in the conductor.
It leads to a very ill-posed problem containing many unknowns and a huge condition

number. But from a smart way of simplifying the system and using well-adapted

regularization techniques, realistic clues about the position of corroded areas can be
found. This interesting methodology is finally tested on a real case in laboratory, with very

encouraging results. Many applications can be imagined, such as vessel hulls, pipe-lines,
off-shore oil-platforms and off-shore wind power plants.

Some other improvements could further be done regarding the numerical methods used

here. Using different orders for the potential evaluation on the meshing could improve the
diagnosis from close measurements. Some other regularization matrixes could be imagined

to improve the behaviour of the diagnosis solution. Those matrixes could also be used in

parallel with the classical ones during the constraining step of the inversion. Finally,
experimental tests have been found to be suitable only on small structures with a lack of
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relevant measuring space. Some new results obtained on more realistic mock-ups are being
prepared for further communications.

As a conclusion, we would say that this study has been realized with a corrosion
diagnosis goal. But it can be applied to any other kind of study where the Laplace equation
is verified (thermic, bioelectricity, etc.). This needs adapted adjustments, but opens many
ranges of work.
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[6] F.M. Duthoit, L. Krähenbühl, and A. Nicolas, The boundary integral equation method for the
extrapolation of field measurement, IEEE Trans. Magn. MAG-21(6) (1985), pp. 2439–2442.

[7] P.C. Hansen, Rank-deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear

Inversion (Monographs on Mathematical Modeling and Computation), SIAM Editions,
Philadelphia, 1997.

[8] G.H. Golub, M.T. Heath, and G. Whaba, Generalized cross-validation as a method for choosing a

good ridge parameter, Technometrics 21 (1979), pp. 215–223.
[9] V.A. Morozov, On the solution of functional equations by the method of regularization, Soviet

Math. Dokl. 7 (1966), pp. 414–417.




