
HAL Id: hal-00727805
https://hal.science/hal-00727805v1

Submitted on 4 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Widgets to facilitate service integration in a pervasive
environment

Nassim Laga, Emmanuel Bertin, Noel Crespi

To cite this version:
Nassim Laga, Emmanuel Bertin, Noel Crespi. Widgets to facilitate service integration in a pervasive
environment. ICC ’10 : IEEE International Conference on Communications, May 2010, Capetown,
South Africa. pp.1-5, �10.1109/ICC.2010.5502398�. �hal-00727805�

https://hal.science/hal-00727805v1
https://hal.archives-ouvertes.fr

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— In pervasive environments, end-users have

heterogeneous devices to access their different services. These
services are usually distributed over different devices and each
service should be able to run in the most appropriate device.
However, current technologies do not address the integration
between these services and as a consequence the end user does not
have the possibility to access the services in an optimal way. In
this paper, we define and implement new mechanisms that enable
a seamless integration of a service in the end-user pervasive
environment. First, these mechanisms enable the end-user to
personalize his/her pervasive environment by running each
functionality in the most suited (preferred) device, and then to
make these services communicate with each other. The specificity
of our approach is that we split each application into independent
functionalities, and then, we define and implement on the end-
user devices a distributed mechanism that detects automatically
semantic compatibilities between these functionalities.

Index Terms— pervasive environments, personalization, Web
2.0, Widgets, inter-service communication.

I. INTRODUCTION

HE emergence of pervasive environments in end-users
daily life [1] raises new challenges in service development
technologies. One of them is how to integrate a new

service among existing ones; services that might be scattered
among several devices (IPhone, PDA, Laptop, and TV). For
instance, let’s rethink a mailing service design in current
pervasive environment. Ideally, this mailing service should
interact with the mobile phone contact list in order to enable
the end-user to initiate a send email functionality from his
mobile, with the laptop video player as well as the TV video
player in order to enable the end-user to play attached
multimedia files, and finally, with document readers such as
Microsoft word and Adobe PDF reader on the laptop in order
to read attached files. In this paper we propose a new widget
[12] based approach that enables such integration. It consists
in developing end-users applications as independent widgets;
each widget implements a single functionality of an
application. This separation between different functionalities
enables the end-user to assign to each of them the most suited

Manuscript received September 27th, 2009.
Nassim Laga is with Orange Labs, 42 Rue des couture, 14000 Caen,

France (phone: +33(0)231759005; e-mail: nassim.laga@orange-ftgroup.com).
Emmanuel Bertin, is with Orange Labs, 42 Rue des couture, 14000 Caen,

France (e-mail: emmanuel.bertin@orange-ftgroup.com).
Noel Crespi is with Institut Telecom, Telecom SudParis, 9 rue Charles

Fourier, 91011, Evry Cedex, France, (e-mail: noel.crespi@it-sudparis.eu).

(preferred) device. After that, we define and implement a new
mechanism that creates automatically links between
compatible functionalities even if they are running on different
devices. This mechanism is implemented at the end-user
device and distributed among end-user widgets.

II. RELATED WORK

Currently, there are mainly two approaches that enable
integration of services into the end-user environment:
developer centric approach and end-user centric approach. The
developer centric approach consists in specifying development
tools, such programming languages (e.g. AmbientTalk [2] and
[3]) and integration architectures (e.g. Windows OLE
automation [4], CORBA[5], and SOA[6]), that enable the
developer to create a distributed application where
independent entities might communicate each others. Such
mechanisms enable well the implementation of distributed
applications where independent entities run together in a loose
coupled way. However, the end-user can not customize the
created application. For example, consider an advanced
mailing service, which uses an existing laptop video player to
play an attached movie. Such service can not be customized by
the end-user himself. He can not, for example, use another,
more attractive, video player.

End-user centric approach however consists in developing
an application with a predefined API so that, at the runtime,
the end-user can choose to make them communicate each
others or not. There are several mechanisms that handle such
integration. We classify them into desktop environment-based
mechanisms and dynamic service composition mechanisms.
The former includes for instance Windows OLE clipboard,
Windows OLE drag&drop, and Macintosh openDoc systems,
and the later consists in automatic [7], and semi-automatic
service composition tools [7].

Desktop environment-based mechanisms address well the
need of making an application X communicates with an
application Y. However, systems like OLE clipboard and OLE
drag&drop suffer essentially from two limitations. The first
one is that the communication aspect is limited to services that
are loaded on the same device, and the second limitation
consists in the late failure detection; in other words, the system
does not detect compatible applications for a copied or
dragged data in order to propose them automatically to the
end-user. Instead, the end-user should paste or drop the data to
a destination application, which is in charge of controlling the
compatibility of the transmitted data (i.e. if it can handle such
data or not).

Widgets to facilitate service integration in a
pervasive environment

Nassim Laga, Emmanuel Bertin, and Noel Crespi

T

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

Concerning automatic and semi-automatic service
composition tools, they focus essentially on creating a new
composite service running on a single end-user device.
Automatic service composition consists in enabling the end-
user to create a new composite service from a simple request
(e.g. using his natural language), and semi-automatic
composition consists in providing to the end-user intuitive
tools that enable him to define an execution sequence of
services, a composite service. However, in the best of our
knowledge, existing tools do not enable the service requestor
to personalize the created application so that different software
entities that compose the application will run on different
(most suited) devices.

In [8] and [9] we have proposed a widget-based virtual
desktop empowered with innovative inter-service
communication mechanisms called respectively drag&drop
and communication manager. These mechanisms enable a
seamless integration of a new service within existing end-user
services. They create dynamically and automatically
communicating links between each others. Because the links
are created according to semantic matching between services,
these frameworks [8, 9] anticipate chaining failures and
consequently respond to the second limitation (late failure
detection) of desktop environment-based service integration.
However, the first limitation still uncovered yet; the defined
mechanisms enable only communication between services that
are loaded on the same web page; the same device.
Consequently we propose in this paper to extend those
mechanisms and create links not only between services of the
same device but also between services loaded on different
devices. This extension enables the end-user to easily
configure his pervasive environment so that, for example, he
reads emails on his mobile, plays attached movies on his TV,
and reads joined documents on his laptop. The peculiarities of
our proposal are: intuitiveness and scalability. It is intuitive
because compatible services are proposed automatically to the
end-user according to the generated data of the current running
service, and it is scalable, because the semantic reasoning is
implemented at the end-user devices and distributed over the
different services.

III. SCENARIOS AND REQUIREMENTS

In this section we will illustrate through a concrete example
the benefits that come from linking different services that are
loaded on different devices. Different scenarios are illustrated
in order to come out with requirements that a new platform of
services should satisfy in current pervasive environments.

A. Scenarios

To illustrate some typical scenarios of our contribution, let’s
consider an end-user environment configured as depicted in
Figure 1. The end-user has already several basic services
scattered all over several devices. He has on his mobile phone
a contact list service, a phoning capability, an agenda, and
reading email service. He has a video player, a PDF viewer, a
conference call manager, an instant messaging, a send email
service, and a read email service on his laptop. Finally, He has
another video player and a presence service on his television.

Figure 1 illustrates these independent services scattered by the
end-user himself on different devices. It shows also several
relevant interactions between services loaded on different
devices.

As a first illustrative scenario, consider that the end-user
have organized and booked a conference call meeting in his
mobile phone’s agenda; a meeting which is about to start. An
alert is generated, and as the organizer of the meeting, the user
wants to start the conference and invites automatically the
attendees. However, the conference call manager service is
loaded on his laptop. So, instead of letting the end-user to
enter manually the conference call bridge phone number and
each attendee reachable address (email or phone numbers), it
might be interesting to connect the agenda of the mobile phone
with the conference call manager service on the laptop so that
the data will be transmitted automatically.

A second scenario is connecting automatically different
agendas of the end-user. Indeed, it might be interesting to
connect the outlook agenda, which is usually loaded on the
laptop, with mobile phone’s agenda of the end-user. This
connection enables for instance to display the reminder of a
meeting on both terminals (mobile and laptop).

A third and last scenario consists in connecting email inbox
service, send email service, video player service, and PDF file
reader service. Consider that the end-user is browsing the
email inbox on his mobile. He has received an email with an
attached video. Instead of playing the video on the mobile, it
might be interesting to propose to the end-user other video
players that are available in his surroundings such as his TV
video player and laptop video player. Such inter-service
interactions include also reading joined PDF files on the
laptop, responding to emails using the laptop send-email
service, and playing an audio file on HI-FI player or TV video
player.

B. Requirements

From the above illustrative scenarios we can already deduce
the main requirements which are personalization and inter-
service communication capability.

Personalization enables essentially end-users to configure
their pervasive environment with most preferred services.
This consists at first in defining preferred services of the end-
user and then assigning most preferred device for each service.

Fig. 1. End-user devices, services, and inter-service interactions.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

By “service” we refer to a single basic functionality instead of
a whole application that embeds several functionalities.
Indeed, we think that we should enable end-users to define
which functionality to use and which device is more suited for
running this functionality. For instance, it is more appropriate
to put video player functionality on the TV and file explorer
functionality on the laptop.

Inter-service communication capability aims to enable these
services to collaborate each others in order to provide end-
users with a coherent environment; an environment where
compatible services are linked each others to enable for
instance to connect a contact list service on the mobile with
send email service on the laptop. One approach for doing that
is enabling directly the end-user to map an output of a service
with an input of another. This is for instance the approach that
has been taken in current service creation environments like
YAHOOPIPES1 and EzWeb [10], where graphical tools are
provided to end-users and enable them to do such mapping
intuitively. However, because ordinary users do not really
know what are an input of a service and an output of another,
these tools are more designed for advanced users; users that
are familiar with services and computing technologies.
Therefore, a more intuitive tool that enables the end-user to
define communicating services should be investigated.

IV. THE OVERALL APPROACH

To reach the above listed requirements, and thus enable the
end-user to personalize his pervasive environment, we propose
two contributions in this paper: a widget-based service
development, and an inter-widget communication mechanism.

Widget-based service development consists in developing
an application as a set of independent widgets. We define a
widget as “small client-side web applications for offering
atomic functionalities of an application, packaged in a way
to allow a single download and installation on a client
machine, mobile phone, or mobile Internet device”. This
definition of a widget and widget-based service development
enables us to split an application into independent
functionalities. Consequently, using widget containers such as
[11], iGoogle2, and Netvibes3, end-users can easily personalize
their environment at the functional level as depicted in Figure
2. In addition, the end-user can associate a preferred device for
each functionality (Widget). As illustrated in Figure 2, the end-
user can assign for instance a mobile phone as the device for
making call and displaying Maps, the laptop as the device for
reading PDF and word files, sending emails, sending IM, and
editing documents, and finally the TV as the device for playing
movies and checking presence.

The second contribution of this paper is the definition and
the implementation of an inter-widget communication
mechanism. This will enable for example to browse email
inbox on the laptop, select an email, and read an attached

1 http://pipes.yahoo.com/pipes/
2 http://www.google.com/ig
3 http://www.netvibes.com/

video using the TV video player. We enable such scenario by
creating automatically, without any user involvement, links
between compatible widgets. Two widgets are compatible if,
and only if, an output of one widget might be an input of
another. In other words, to detect compatible services we
should detect semantic matching between different inputs and
outputs of the user loaded services. To do that, we have used
microformats4 as the basis for incorporating semantic into the
widgets, and we have defined and implemented, at the end-
user devices, a distributed matching detection mechanism.
This distributed mechanism is incorporated into each widget of
each device. In section 5, we will detail the whole architecture
as well as this distributed mechanism that aims to link different
widgets each others.

V. ARCHITECTURE DESCRIPTION

In this section we will start by enumerating and describing
involved components in our architecture. Thereafter, we will
go in depth of component through a process view of widgets
lifecycle in the environment.

A. Component view of the end-user environment

The mechanism described in this paper aims essentially to
connect different widgets, of the end-user, loaded on different
devices. To do that, we incorporate in our environment three
components illustrated in Figure 3.

The first component is named publish/subscribe component
which aims to connect different devices according to a logic
implemented at the end-user device.

The second component is named Local Widget Linking
(LWL) which is a distributed mechanism that enables each
widget to detect compatible widgets loaded in the same device
and create links automatically between them. This component
is included automatically to each widget during the widget
loading phase.

The third component is the connection logic component.
Activated at the end-user initiative in one or several devices, it
is in charge of extending the communication area into several
devices according to a given logic. The logic might be, for
instance, connecting devices of the same user, or connecting

4 Microformat : http://microformats.org/

Fig. 2. Personalized end-user environment.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

devices of a group of users. This logic is defined and enabled
in the Inter-Terminal Linking Logic (ITLL) component.
According to this logic, this component might request
additional information from the end-user such as login,
password, and group name.

B. Process view of the end-user environment

To illustrate the role of each component of Figure 3 we will
review, in this sub-section, different steps of widgets inside the
environment of the end-user. For the sake of simplicity, we
consider that:

• the logic of “connection logic” component aims to
connect different devices of the same user,

• and the end-user have already activated in his
personal computer and in his mobile phone the
“connection logic” component. This activation
includes at first the authentication (step 1 and 2 in
Figure 3) of the end-user on each device, and the
creation (step 3) and subscription (step 3’) of each of
them into a channel dedicated for that specific end-
user inside the “publish/subscribe” component.

Now, consider that the end-user have already loaded a set of
widgets in each terminal, and he is about to load a new widget
in his personal computer. So let’s see the different steps
covered by this widget inside the environment.

1) Widget initialization
The initialization phase aims to exchange widgets capabilities
and create links between compatible ones. Thus, several
actions are performed during this phase. The first action is the
detection of the widget (W1) capabilities (i.e. operations,
inputs and outputs) (step 4 in Figure 4). The second action is
the transmission of these capabilities to other widgets loaded
in the same device (step 5). Notice that “connection logic”
component is considered as a normal widget, and receives as
well each widget capabilities. The “connection logic”, when
receiving capabilities of a widget which is loaded in the same
device, transmits them to other “connection logic” components
loaded in other devices through the “publish/subscribe”
component (step 6 and 7). Thereafter, each “connection logic”
component that receives capabilities of other widgets loaded in
other devices transmits them to “LWL” component of each
widget of the same device (Step 8). Then, the “LWL”
component detects the semantic matching between its
capabilities and the received ones, and optionally creates links
between the widget and the distant widget (step 9). If a
semantic matching is detected, the “LWL” component retrieves
his widget capabilities and transmits them to the initial widget

through the “connection logic” and the “publish/subscribe”
components (step 10, 11, 12, and 13). Finally, the “LWL”
component of widget (W1) optionally creates a link (step 14)
after checking the semantic matching between the received
capabilities and those of widget W1.

2) Inter-widget communication
To illustrate this phase let’s consider that widget W1

generates outputs that are compatible with inputs of widget
W3. This implies that during the initialization phase a link has
been created between them, and a user interface (UI) element
has been created to enable the end-user to launch an action in
widget W3 from W1.

This phase gets started when the user activates a created
link; in other words, when he clicks on a generated UI element
that actually represents a link that launches another widget.
Figure 5 summarizes the whole process. First of all, the
inserted UI element transmits the event (user click) to the
“LWL” component (step 15). If the destination widget is inside
the same device (for example W2), the “LWL” component will
just inform the corresponding “LWL” component of the
destination widget, otherwise it informs the “LWL” of the

“connection logic” component (step 16). The “connection
logic” component detects from the destination widget
identifier, the corresponding device identifier, and it transmits
to the corresponding “connection logic” component the
necessary and required information to launch the destination
widget (step 17, 18, 19, and 20). The “connection logic”
component which receives such information will transmit them
to the corresponding “LWL” component which launches the
corresponding action in the widget with the received data as
input parameters (step 21 and 22).

Fig. 4. Process view of the initialization phase.

Fig. 3. Connection logic component initialization.

Fig. 5. Process view of the inter-widget communication phase.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

3) Widget disconnection
This phase gets started when the end-user deletes a widget

from his environment. To illustrate the different actions
performed during this phase, let’s consider Figure 6, and
suppose the end-user deletes widget W3. The aim of this phase
is to widgets that have a common link with widget W3 about
its unavailability. The list of these widgets is created during
the initialization phase and stored in “LWL” component.
Therefore, “LWL” component loops over this list and for each
widget:

• it informs the corresponding “LWL” component if it
is running on the same device (step 23),

• or, it informs the “LWL” component of the
“connection logic” if it is running on a different
device (step 23).

The “connection logic” component informs the
corresponding “connection logic” component of the
destination widget through the “publish/subscribe” component
(step 25 and 26). Finally, the “connection logic” component
transmits W3 disconnection information to “LWL” of the
destination widget (in our case its W1), which updates the
created links accordingly.

VI. FRAMEWORK ILLUSTRATION

In order to illustrate the benefits of the implemented
mechanisms let’s consider that the end-user has two devices: a
laptop, and a mobile phone. Both are customized by loading a
set of services as widgets. We retrieve for example in the
laptop a send email widget, a conference management widget,
and a video player widget. And we retrieve on the mobile
phone a contact list widget, a make call widget, and a read
emails widget. The aim of the defined and implemented
mechanisms is to detect dynamically and automatically all
compatible widgets inside this environment and connect them
each others. Consequently, as illustrated in Figure 7, when the
end-user reads an email on his mobile, a “clickToPlay” button
is automatically added by the framework on each attached
movie. This “clickToPlay” button enables the end-user to play
an attached movie using the laptop video player.

VII. CONCLUSION

In this paper, we have defined and implemented new
mechanisms that enable the end-user to easily personalize his
pervasive environment. Our approach consists in developing

applications as a set of independent functionalities that are
able to run on all devices, and then, the end-user can easily
assign each functionality to the most suited (preferred) device.
The peculiarity of our approach is that we have defined, and
implemented at the end-user device, a distributed mechanism
that automatically detects compatible functionalities and link
them each others even if they are running on different devices.
Consequently, end-users can for instance read emails on the
mobile and play attached movies on the Laptop, or they can
search addresses on the a directory on a laptop and display the
locations of the results on a Map service on the mobile.

REFERENCES

[1] Want, R.; Borriello, G., "Survey on information appliances," Computer
Graphics and Applications, IEEE , vol.20, no.3, pp.24-31, May/Jun
2000

[2] Van Cutsem, T.; Mostinckx, S.; Boix, E.G.; Dedecker, J.; De Meuter,
W., "AmbientTalk: Object-oriented Event-driven Programming in
Mobile Ad hoc Networks," Chilean Society of Computer Science, 2007.
SCCC '07. XXVI International Conference of the , vol., no., pp.3-12, 8-
9 Nov. 2007

[3] Mamei, M.; Zambonelli, F., "Programming pervasive and mobile
computing applications with the TOTA middleware," Pervasive
Computing and Communications, 2004. PerCom 2004. Proceedings of
the Second IEEE Annual Conference on , vol., no., pp. 263-273, 14-17
March 2004

[4] Microsoft Press, and Microsoft Corporation, “Automation
Programmer's Reference: Using Activex Technology to Create
Programmable Applications”.

[5] Vinoski, S., "CORBA: integrating diverse applications within
distributed heterogeneous environments," Communications Magazine,
IEEE , vol.35, no.2, pp.46-55, Feb 1997

[6] E. Newcomer, "Understanding Web Services: XML, Wsdl, Soap, and
UDDI" Addison, Wesley, Boston, Mass., May 2002.

[7] N. Laga, E. Bertin, and N. Crespi, "User-centric services and service
composition, a survey", to appear in SEW 2008, Kassandra, Greece,
October 2008.

[8] N. Laga, E. Bertin, N. Crespi, " A web based framework for rapid
integration of Enterprise applications," To appear in the ACM
International Conference on Pervasive Services, Imperial College,
London, UK, July 13-17, 2009.

[9] N. Laga, E. Bertin, N. Crespi, "Building a user friendly service
dashboard: Automatic and non-intrusive chaining between widgets," To
appear in the 2009 IEEE congress on Services, Los Angeles, California,
USA, July 6-10, 2009.3

[10] J. Soriano, "Fostering Innovation in a Mashup-oriented Enterprise 2.0
Collaboration Environment." UK, sai: sisn.2007.07.024, Vol 1, No 1,
Jul 2007, pp 62-68.

[11] N. Laga, E. Bertin, N. Crespi, "A unique interface for web and telecom
services: From feeds aggregator to services aggregator," in ICIN 2008,
Bordeaux, France, 20-23 October 2008.

[12] W3C, http://www.w3.org/TR/widgets/

Fig. 6. Process view of the disconnection phase.

Fig. 7. Framework illustration.

