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We report on the first quantitative test of acoustic orbital angular momentum transfer to a sound absorbing

object immersed in a viscous liquid. This is done by realizing an original experiment that is to spin a

millimeter-size target disk using an ultrasonic vortex beam. We demonstrate the balance between the

acoustic radiation torque calculated from the Brillouin stress tensor and the viscous torque evaluated from

the steady state spinning frequency. Moreover, we unveil a rotational acoustic streaming phenomenon that

results from the acoustic angular momentum transfer to the host fluid. We show that it lowers the viscous

torque, thereby restoring the torque balance.

DOI: 10.1103/PhysRevLett.109.034301 PACS numbers: 43.25.+y, 47.15.G�

Light and sound are known to have mechanical effects
on matter that are related to two of their fundamental
properties, namely their linear and angular momentum
[1]. On the one hand, the transfer of the linear momentum
of waves to matter results in a radiation force that enables
us to control the position of objects and possibly deform
them. On the other hand, the transfer of angular momentum
results in a radiation torque that can be used to rotate
material systems [4,5].

In optics, these two kinds of mechanical effects have been
thoroughly studied from the theoretical, experimental, and
applicative point of view. This has led to mature technolo-
gies such as optical trapping, tweezing, sorting, chromatog-
raphy, and rheology [6]. In contrast, in acoustics, the transfer
of angular momentum from sound to matter is still in its
inception. Nevertheless, the transfer of linear momentum
has been extensively studied and is now routinely used, for
instance, to manipulate objects or fractionate suspensions.

The identification of acoustic orbital angular momentum
(OAM) flux associated to acoustic vortex (AV) beams that
bear on-axis phase singularity of the screw-dislocation type
started in the 1990s. Such a singularity is locally described
by a phase dependence of the pressure field of the form
expði‘�Þ, where ‘ is an integer called the topological
charge [7], and� is the azimuthal angle. Since then, several
works were dedicated to the production of AVs [7–11], their
description [2,12], and the study of their propagation prop-
erties [2,9,13]. A few experiments that demonstrate acoustic
OAM transfer from AVs to matter have been reported,
which exploit either the finite angular deviation of absorbing
torsional pendulums immersed in air [14–16] or the tran-
sient angular deviation of an absorbing fisk immersed in
water [17]. Only recently, several theoretical contributions
that aim at describing acoustic OAM absorption have been
reported [18–21], though restricted to the case of objects
immersed in inviscid fluids [22].

Up to now the practical use of acoustic OAM transfer to
matter, among them contactless rheology, remain only

speculative [21] despite a significant application potential
that is related to the very nature of acoustic waves that
makes the comparison to optical fields relevant. Indeed, for
a given power P , the radiation torque experienced by an
absorbing target scales as P=!, where ! is the angular
frequency of the wave [19]. This leads to ultrasonic radia-
tion torques that are typically 109 times larger than optical
ones given their respective typical frequencies 106 and
1015 Hz. Moreover, considering the generic situation of
angular momentum transfer by absorption, the ratio be-
tween the heat power deposited in a target and the radiation
torque scales as !. For a given radiation torque, the use of
sound instead of light therefore reduces heating by a typi-
cal factor of 109. Such assets of acoustic waves clearly
motivate the development of rotational manipulation of
matter based on acoustic OAM. Importantly, a quantitative
experimental test of existing predictions of acoustic OAM
transfer to matter, which would be of a fundamental inter-
est, is still missing.
In this Letter, we report on the first quantitative test of

acoustic OAM transfer to a sound absorbing object im-
mersed in a Newtonian viscous liquid. This is done by real-
izing an original experiment that is to spin a millimeter-size
disk using an AV. The steady spinning frequency is used to
analyze the balance of the radiation torque exerted by the AV
beam and of the viscous torque exerted by the host fluid.
Setup.—As illustrated in Fig. 1, a disk (D) made of sound-

absorbing material (Aptflex 28 from Precision Acoustics),
with diameter 2R ¼ 3:15 mm and thickness e ¼ 0:51 mm,
is positioned at the interface between two immiscible
liquids, namely a glycerol aqueous solution (fluid 1) and
silicone oil (fluid 2), whose characteristics relevant for our
experiment are summarized in Table I. The disk is irradiated
from below by an AV beam produced by an immersed,
spherical, piezoelectric transducer with radius of curvature
F ¼ 38:4 mm, diameter 2a ¼ 38 mm, central frequency
fac ¼ !=ð2�Þ ¼ 2:25 MHz, and bandwidth 600 kHz. In
the same spirit as in [14–16], its axisymmetric active surface
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is equally divided into eight sectors that are independently
supplied in parallel by a source that periodically emits
sinusoidal wave trains of 200 cycles duration at carrier
frequency fac, 1.5 kHz repetition rate, and voltage ampli-
tude U. An ‘ ¼ 1 AV is produced by using eight different
electrical phase delay and impedance-matching quadrupoles
inserted between the source and each sector that ensures an
ð8facÞ�1 time delay increase between two adjacent sectors
while the radiated acoustic power is the same for all sectors.
Hereafter, (r, �, z) are cylindrical coordinates where the
transducer symmetry axis defines the z axis, the altitude
z ¼ 0 being located at the transducer focal plane, see Fig. 1.

The characterization of the AV beam is done by using an
85 �m diameter active element hydrophone. The mea-
sured magnitude and phase of the harmonic acoustic pres-
sure field in the focal plane along the x axis (i.e., at z ¼ 0
and � ¼ 0), are displayed in Figs. 2(a) and 2(b) [see
markers] versus the reduced coordinate k1x, k1 ¼ !=c1
being the wave number and c1 the sound speed in fluid 1.
The obtained doughnut-shaped field profile is checked to
be axisymmetric. This is shown in Fig. 2(c) that displays
the pressure magnitude along the circle C of maximal
magnitude found to be located at r ¼ 0:55 mm in the
focal plane, which corresponds to k1x ’ �5 in Fig. 2(a).
Moreover, the single charge phase singularity is clearly
identified from the phase measurement along C, see
markers on Fig. 2(d), where the solid line refers to the
expected behavior argðpmaxÞ ¼ �.

These experimental data are accurately described by a
paraxial modeling [24,25] for the acoustic pressure field
produced by our eight-element transducer under assump-
tion of linear, nondissipative propagation, see solid curves
in Fig. 2. It turns out that a Laguerre-Gauss (LG) beamwith
azimuthal index ‘ ¼ 1 and radial index n ¼ 0 [26], whose
approximate expression of the acoustic pressure pLG close
to the focal plane (i.e., for jzj � z0 with z0 ¼ k1w

2
0=2) is

pLGðr;�; z; tÞ ¼ p0ðr=w0Þe�r2=w2
0
þiðk1z�!tþ�Þ; (1)

accurately fits both the magnitude and phase of the acoustic
pressure field measured in the focal plane over the whole
disk surface (i.e., r < R), see dashed curves in Fig. 2, pro-

vided that w0 ¼ 1:025c1=fac and p0 ¼
ffiffiffi
2

p
expð1=2Þpmax,

where pmax is the acoustic pressure magnitude measured
along C, with pmax=U ¼ 29:2 kPa=V. The amount of

incident beam power intercepted by the disk is estimated
to be more than 99% of the total power P of our LG beam
approximation. According to [7], the total acoustic OAM
flux along the z axis of the incident AV beam is Li ¼
ð‘P=!Þez, with ez the unit vector along the z axis and
‘ ¼ 1 here.
Acoustic rotation experiment.—As sketched in Fig. 1(b),

the meniscus is always found to be pinned at the bottom
edge of the disk. As a consequence, both the lateral and top
surface of the disk are always in contact with fluid 2.
Moreover, the disk always remains within the beam focal
zone of axial extension 2z0 ¼ 5:4 mm within the inves-
tigated acoustic power range. This results from the balance
of the upward axial acoustic radiation force due to
the partial absorption of the linear momentum carried
by the incident AV beam, of the interfacial force exerted
on the disk by the meniscus and of buoyancy. In addition,
the center of the disk is kept along the beam axis owing to a
fixed needle that coincides with the z axis and ends into an
axial hole drilled through the disk, see Fig. 1(c).
Upon starting the AVemission, the disk slightly rises and

starts to spin around the z axis, and finally spins at fixed
altitude and frequency, fdisk. The rotation frequency de-
pends on the AV power, as shown in Fig. 3(a) where fdisk is
plotted versus U2 in log-log scales, which unambiguously
demonstrates the scaling of fdisk as U

2 over more than one
decade, see linear fit (solid line). This is expected since
fdisk is determined from the balance between (i) the acous-
tic radiation torque, �rad, that results from the partially
absorbed AV and (ii) the viscous torque, �visc, exerted by
the fluid surrounding the disk. Indeed, since �rad / P /
U2 [7] and �visc / fdisk for creeping flows, we get fdisk /
U2. Towards a quantitative analysis, next we accurately
evaluate both �rad and �visc.

TABLE I. Density �, sound speed c, and viscosity � of the
materials involved in the experiment.

Aqueous glycerol

solution 79 wt.%

Silicone oil

1 cSt Aptflex 28

(Fluid 1) (Fluid 2) (Disk)

� (kg �m�3) 1204 856 1020

c (m � s�1) 1860 913 1456

� (10�3 Pa � s) 48 0.86

FIG. 1 (color online). (a) Sketch of the experimental setup. (b) Zoom on the acoustic target, a sound absorbing millimeter-size disk.
(c) Zoom on the central part of the disk where the needle is inserted into the hole (see text for details).
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Model.—According to Refs. [18,19,27], the radiation
torque, i.e., the time-averaged mechanical torque exerted
on the irradiated disk by the surrounding fluid considered
as perfect, has the following expression, which is valid to
second order in the wave amplitude:

�rad ¼
Z
SD

r� ð�hpiI� �hu � uiÞ � dS; (2)

where SD is the disk surface, r the position vector, dS the
outward pointing surface element vector, p being the fluid
acoustic pressure, � its density at rest, and u the acoustic

velocity related to p through Euler equation � @u
@t ¼ �rp,

I denoting the identity tensor, h�i the time average, and �
the dyadic product. Since SD is axisymmetric and hpi ¼
1
2�hu2i � ð2�c2Þ�1hp2i does not depend on � along Sdisk,R
SD

r� hpidS ¼ 0. For the same symmetry reason, �rad is

axial and can be written as �rad ¼ �R
SD

�rhu�u � dSiez.
Its quantitative determination obviously requires the
knowledge of the acoustic field around the disk.
For this purpose, we assume the propagation through the

disk to obey ray acoustics and we neglect refraction at the
liquid-liquid interface. In addition, we, respectively, label by
i ¼ 1, 2, D, the density �i, the sound speed ci, the acoustic
impedance Zi ¼ �ici, the wave number ki ¼ !=ci, and the
acoustic attenuation �i of fluid 1, fluid 2, and disk D. The
pressure field of the AV beam reflected in fluid 1 (pr) and of
the AV beam transmitted in fluid 2 (pt) thus express as

prðr < R;�; z < 0; tÞ ¼ rtotp0ðr=w0Þeð�r2=w2
0
Þþið�k1z�!tþ�Þ;

(3)

ptðr < R;�; z > e; tÞ ¼ ttotp0ðr=w0Þeð�r2=w2
0
Þþiðk2z�!tþ�Þ;

(4)

ptðr > R;�; z > 0; tÞ ¼ t12p0ðr=w0Þeð�r2=w2
0
Þþiðk2z�!tþ�Þ;

(5)

where rtot¼r1Dþt1DrD2tD1X
2=ð1�rD1rD2X

2Þ and ttot¼
t1DtD2X=ð1�rD1rD2X

2Þ with rij ¼ ðZj � ZiÞ=ðZj þ ZiÞ
and tij ¼ 2Zj=ðZj þ ZiÞ being, respectively, the pressure

reflection and transmission coefficients at normal incidence
between media i and j, and X ¼ expðikDe� �DeÞ. Note
that pr and pt only weakly depend on fac, due to the large
absorption in the disk (�D ¼ 764 m�1) and to the small
absolute values of the reflection or transmission coefficients.
Using Eqs. (1) and (3)–(5), we obtain the following

expression for �rad

�rad ¼ ð‘=!Þð1�R�T ÞPez ¼ ð‘=!ÞP absez; (6)

where ‘ ¼ 1 here, R ¼ jrtotj2 and T ¼ jttotj2Z1=Z2 are,
respectively, the energy reflection and transmission coef-
ficients, and P abs is the power absorbed by the disk [28].
The calculated behavior of �rad versus U2 is plotted in
Fig. 3(b) (solid curve). Interestingly, we stress that Eq. (6)
can be rewritten in order to emphasize the acoustic OAM

flux balance. Namely, �rad ¼ Li �Lr �Lt, where Li ¼
‘
!Pez (respectively, Lr ¼ ‘

!RPez and Lt ¼ ‘
!TPez) is

the total OAM flux along associated to the incident
(respectively, reflected and transmitted) AV.
On the other hand, �visc can be accurately evaluated

by taking into account that fluid 1, which is 56 times
more viscous than fluid 2, is in contact with the circular
bottom of the disk only, and that the Reynolds number
Re1 ¼ �R2�1=�1 associated with the flow of fluid 1 is

FIG. 3 (color online). (a) Spinning disk frequency fdisk (markers)
and predicted average rotation frequency of the (partially sound-
absorbing) fluid 1 hfflowi (see text for details) versus U2. The solid
line is the best linear fit to the experimental data. (b) Magnitudes of
the radiation torque �rad evaluated using Eq. (2) (solid curve), of the
viscous torque �visc evaluated from fdisk measurements using Eq. (7)
(circles), and of the viscous torque �0

visc taking into account the fluid

rotation using Eq. (10) (squares).

FIG. 2 (color online). (a) Magnitude and (b) phase of the
acoustic pressure. Markers: experimental data; solid curves:
paraxial model simulations; dashed curves: Laguerre-Gauss
approximation of the acoustic vortex beam given by Eq. (1).
The disk radius R corresponds to k1R ¼ 12. (c) Dimensionless
magnitude and (d) phase of the acoustic pressure measured along
the circle C of maximal magnitude (markers) in the focal plane
corresponds to k1x ’ �5, the solid curves being the expected
values from the Laguerre-Gauss beam approximation.
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smaller than 0.2 in our experiment; i.e., the hypothesis of
creeping flow in fluid 1 is valid [29]. Therefore, we con-
sider the viscous torque to be half the one experienced by
an infinitely thin disk in the creeping flow limit [31]:

�visc ¼ �ð16=3Þ�1R
3�ez; (7)

where � ¼ 2�fdisk is the steady angular frequency of the
spinning disk [32]. The dependence of �visc on U2 is
therefore evaluated from the measured values of fdisk, see
Fig. 3(b) (circles).

The steady rotation of the disk implies the stationarity
of its angular momentum, hence �rad þ �visc ¼ 0.
However, from Fig. 3 we find that j�viscj is typically
15% larger than j�radj over the whole investigated range
of input AV beam power. Hereafter, we argue that such
an observation has a physical meaning and an attempt to
describe it is presented.

Acoustic rotational streaming.—Although acoustic
propagation in fluids has been up to now considered as
nondissipative, dissipation actually occurs as an un-
avoidable consequence of viscosity and heat conduction
[33]. Acoustic attenuation is well known to trigger an
axial steady flow usually called acoustic streaming due
to the transfer of linear momentum from a progressive
acoustic wave to a sound absorbing fluid [34]. In the
present experiment, the AV attenuation by the fluids
themselves is therefore expected to result not only in
usual acoustic axial streaming but also in its rotational
counterpart called hereafter ’’acoustic rotational stream-
ing,’’ triggered by the radiation torque exerted on the
fluid bulk as a result of acoustic OAM transfer to it. Such
an acoustic rotational streaming can indeed be observed
with naked eyes in the vicinity of the beam focus in
absence of the disk by looking at moving dust particles
lying on the liquid interface. Since the fluid and the
disk are corotating, we expect the fluid flow to lower
the viscous torque exerted by the fluid on the disk. This
issue is addressed hereafter.

The structure and magnitude of the steady velocity field,
Vðr;�; zÞ, of this rotational streaming flow can be pre-
dicted in the beam focal zone. This is done by noting
that the latter, incompressible, small Reynolds number
flow mainly develops in the focal zone, where the bulk
acoustic OAM transfer is the largest, and that the bottom of
the disk constitutes a stagnation surface for this flow.
Consequently, we consider Vz, hence Vr (which is of the
same magnitude as Vz as a consequence of mass conser-
vation), as negligible in the focal zone. Moreover, we
assume the purely rotational flow to be z invariant in the
focal zone. As a consequence, V ¼ V�ðrÞe� satisfies the

following form of the Stokes equation:

�

r2
@

@r

�
r3

@

@r

�
V�

r

��
¼ �

r
; (8)

where � is the radiation torque density exerted on the fluid
along z. Since the axial acoustic OAM flux density along
the z axis, Mzz, satisfies hMzzi ¼ ‘I=! where I ¼ hpuzi
is the time-averaged axial acoustic energy flux density
[19], the balance of angular momentum for an axisymmet-
ric fluid volume bounded by radii r and rþ dr and alti-
tudes z and zþ dz between times t and tþ dt gives
� ¼ �‘I=!where � is the acoustic attenuation coefficient
of the fluid. The solution of Eq. (8) in fluid 1 can therefore
be calculated using Eq. (1). One finds

V�ðrÞ ¼ 3�1p
2
0w

2
0

32!�1�1c1

1� exp½�2r2=w2
0�

r
: (9)

The corresponding fluid rotation frequency fflowðrÞ ¼
ð2�Þ�1V�ðrÞ=r exhibits a strong r dependence, as shown

in the inset of Fig. 3(b) where ~fflow ¼ fflowðrÞ=fflowð0Þ is
plotted versus r=R. In order to take account of the influ-
ence of the inhomogeneous fluid rotation on the viscous
torque exerted on the spinning disk, we consider the
disk to experience a modified viscous torque �0

visc ¼R
R
0 d�

0
visc, where d�

0
visc, defined as the elementary viscous

torque exerted on an axisymmetric disk surface element
bounded by radii r and rþ dr by the fluid located be-
tween r and rþ dr and rotating at angular frequency
�flowðrÞ ¼ 2�fflowðrÞ, is assumed to be proportional to
���flowðrÞ. Under this assumption,

�0
visc ¼ ð16=3Þ�1R

3ð�� h�flowiÞez; (10)

where h�flowi ¼ ð3=R3ÞRR
0 �flowðrÞr2dr. The best agree-

ment between j�radj and j�0
viscj [see square symbols in

Fig. 3(b)] is found with �1 ¼ 18m�1. This value can be
hardly compared with data from literature, which are
missing for the actual water-glycerol mixture used in our
experiment at fac ¼ 2:25 MHz and temperature 25 �C.
Nevertheless, we checked that the order of magnitude of
the latter value is consistent with the available data ob-
tained in experimental conditions that are the closest to
ours [35,36]. Consequently, this flow model supports our
claim that the acoustic rotational streaming of the host
fluid, whose average rotation frequency hfflowi ¼
h�flowi=ð2�Þ versus U2 is plotted in Fig. 3(a) (dashed
curve), does influence the spinning disk frequency.
We believe that these results have a broad application

potential. While acoustic OAM transfer to highly absorbing
targets could be applied to contactless, in situ rheology, in
a similar manner to optical microrheology [37,38], acoustic
rotational streaming could be originally applied to the
in situ measurement of the acoustic attenuation of fluids
by using weakly absorbing and/or highly reflecting targets.
Moreover, acoustic OAM transfer could be advantageously
used to trigger the rotation of trapped objects. Finally,
acoustic rotational streaming appears as a new tool for
the local actuation of fluids and soft solids, thus opening
new perspectives in acoustic microfluidics [39] and bio-
medical ultrasonic imaging.
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