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Abstract: The present work deals with the control and localization problem of wheeled-mobile
robots with nonholonomic constraints. In the proposed method a simple nonlinear control law,
composed of a position and heading direction controller, is designed to asymptotically stabilize
the position error. The control law takes into account the constraints on the control signals in
order to avoid saturation of the actuators. Furthermore, this paper considers a method of using
the dynamic vehicle model and vehicle’s nonholonomic constraints in order to aid position and
attitude estimates provided by an Inertial Navigation System (INS). It is shown that dynamic
model and vehicle’s nonholonomic constraints can reduce the error growth in robot position
estimates. Simulations are included to confirm the effectiveness of the proposed scheme.

Keywords: Posture stabilization, nonholonomic constraints, model-aided inertial navigation.

1. INTRODUCTION

Wheeled Mobile Robots (WMRs) are considered as the
most widely used class of mobile robots. This is due to
their fast manoeuvring, simple controllers and energy sav-
ing characteristics. These robots are increasingly present
in industrial and service robotics, particularly when au-
tonomous motion capabilities are required over reason-
ably smooth grounds and surfaces. Several mobility con-
figurations (wheel number and type, their location and
actuation, single or multi-body vehicle structure) can be
found in the applications, Bloch and Reyhanoglu (1991).
The most common for single-body robot is differential
drive which is kinematically equivalent to a unicycle, tri-
cycle or car-like drive, and omnidirectional steering. Many
studies have targeted different aspects of WMRs such as
kinematics, dynamics and controller design, Kolmanovsky
and McClamroch (1995). Also, WMRs have nonholonomic
constraints since they have restricted mobility in that the
wheels roll without slipping. In particular in Brockett et al.
(1983), a linearized mobile robot model is shown to have
deficiency in controllability and the linear control method
cannot be employed. Thus, nonlinear control for this class
of systems has been studied extensively from several points
of view, including setpoint stabilization, Campion et al.
(1991); Pomet and Campion (1992); Canudas de Wit and
Sordalen (1992); Park et al. (2000), trajectory-tracking,
path-fallowing and others, as depicted in Kanayama et al.
(1990); Aicardi et al. (1995); Lee et al. (2001); Jiang et al.
(2001); Sira-Ramirez et al. (2011).

On the other hand, localization is a key problem in au-
tonomous mobile robotics. Different techniques have been

developed to tackle this problem. They can be sorted into
two main categories: 1) Relative (local) localization
consists of evaluating the position and the orientation
through integration of information provided by encoders
or inertial sensors with knowledge of initial conditions;
2) Absolute (global) localization is the technique
that permits the vehicle to determine its position directly
using navigation beacons, active or passive landmarks,
map matching or a Global Position System (GPS) ( see
Borenstein et al. (1996) and references therein).
The Inertial Navigation System (INS) has commonly been
used as a mean of localisation for various autonomous
vehicles including land, underwater and aerial vehicles, see
Meyer-Hilberg and Jacob (1994). It consists of gyroscopes
(rate gyros) and accelerometers that provide angular rate
and velocity rate information. By integrating this informa-
tion, the position and orientation of the vehicle is calcu-
lated. The disadvantage in the use of an INS, particularly
when using low-cost sensors, is due to the unbounded error
in pose estimates due to the dead-reckoning nature of the
sensor. This was highlighted in Sukkarieh et al. (1999).
In order to limit the error growth, absolute localization
techniques using global sensors measurements have been
used. This can increase the accuracy of the estimate and
keep the uncertainty within certain bounds. However,
these external sensors have several practical disadvantages
mainly relating to a reliance on external information, such
as reception of satellite transmissions or reliably observ-
able terrain features. One source of information that can
be used to aid in the localisation of the vehicle, without
the need for external sensing, is the one from knowledge
of the vehicles motion. Such information can be repre-
sented in two ways: 1) Vehicle Model Constraints,



where specific constraints on the pose of the vehicle –
i.e. a wheeled vehicles sideways velocity – will be zero,
like in Dissanayake et al. (2001); 2) Vehicle Dynamic
Modelling, where a motion model of the vehicle give a
history of the vehicle pose, control inputs and external
forces acting on the vehicle, like in Koifman and Bar-
Itzhack (1999); Xin et al. (2003).

The main contributions in this paper are:

• The development of a simple nonlinear control law
(composed of a position controller and heading di-
rection controller) in order to stabilize a WMR with
differential drive. The proposed control law exploits
the fact that the kinematic model can be broken down
into two subsystems, one defining the translation
movement and the other one the rotation movement.
These subsystems are coupled in cascade since the
translational subsystem depends on the rotational
one, but the rotational subsystem is independent
of the translational one. The proposed controller is
extremely simple and it is suitable for embedded
implementation.
• The development of a method to aid in estimating the

errors in the inertial navigation solution of a WMR
with differential drive, using vehicle dynamic model
and vehicle model constraints. The main idea is to
contribute further to the understanding of the value
of dynamic vehicle model aiding.

The paper is organized as follows. In section 2, the dynamic
models of Inertial Navigation System and Wheeled Mobile
Robot are recalled. The control law for stabilization pur-
poses is established in section 3. In section 4, we present
the model-aided inertial navigation method. Some simula-
tion results using the control law and the aided INS are
presented in section 5. Finally some discussions conclude
the paper.

2. SYSTEM DESCRIPTION

A classical method for aiding an INS using some external
measurements coming from GPS and magnetometers con-
sists in using a Kalman filter. In this case, the INS reads
the acceleration and rotation rate of the vehicle, provided
by an on-board Inertial Measurement Unit (IMU). Then,
the Kalman filter is used to compute the errors in the INS
from an observation of the differences between the INS and
GPS with magnetometer. This framework is illustrated in
Fig. 1(a). As it was mentioned in the introduction, an
alternative method can be using also the dynamic model of
the vehicle to control, such as suggested in Fig. 1(b). The
dynamic model of the vehicle is used to compute velocity,
position and rotation rates of the vehicle. A Kalman filter
is used to compute the total error states of the system,
including errors in velocity, position, orientation and ac-
celerometer and gyro biases. The system is thus aided
with GPS and magnetometer readings, but when these
signals are noisy or unavailable the system is aided by the
dynamic vehicle model. Moreover, in this paper we focus
in particular on nonholonomic vehicles, and we propose to
take into account such constraints in order to improve the
estimation.

(a) Traditional aided INS.

(b) Proposed model-aided INS.

Fig. 1. High-level configuration of the system.

2.1 Mobile Robot Dynamic Model

In this subsection, dynamics and kinematics of wheeled-
mobile robots are shown under the nonholonomic con-
straints as in . The dynamic equations under nonholonomic
constraints can be described by Euler-Lagrange formula-
tion as:

M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)τ + JT (q)λ (1)

where q ∈ Rn is generalized coordinates, τ ∈ Rn is
a control input vector, λ is the Lagrange multipliers of
constrained forces, M ∈ Rn×n is a symmetric and positive
definite inertia matrix, C ∈ Rn×n is a centripetal and
Coriolis matrix, G ∈ Rn is a gravitation vector, B ∈ Rn×r
is an input transformation matrix (n < r), and J ∈ Rn×r
is a matrix related with nonholonomic constraints. Pose
vector of robot in the surface is defined as q = (xr, yr, θr)
where xr and yr are the coordinates of point CG center of
axis of wheels, and θr is the orientation angle of robot in

the inertial frame Ef (ef1 , e
f
2 ) (see Fig. 2). One can write

the dynamic equations of mobile robot according to (1),
using the fact that G(q) and C(q, q̇) are zero.
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) ẍr
ÿr
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and
λ = −m(ẋr cos θr + ẏr sin θr)θr (3)

Where τ1 and τ2 are the torques of right and left motors, m
and I present the mass and inertia of robot respectively.
R is the radius of wheels and 2L is the distance of rear
wheels.
The nonholonomic constraint, the no slip condition, is
written in the form of

ẋr sin θr + ẏr cos θr = 0 (4)

This equation is not integrable, so the feasible trajectory
of robot is limited.
On the other hand, the kinematic relationship is

q̇ =

(
cos θr 0
sin θr 0

0 1

)(
vr
ωr

)
(5)

After some manipulations is easy to shown that:

v̇r =
F

m
=
τ1 + τ2
mR

ω̇r =
Γ

I
=

(τ1 − τ2)L

IR
(6)

where vr and ωr are the linear and angular velocity of the
mobile robot.
Actually, (5) can be used in order to design a nonlinear
kinematic controller to stabilize the configuration vari-
ables. This will be discussed in the next section.

Fig. 2. Coordinate plane of the mobile robot.

2.2 Inertial Navigation System

The system uses two kinds of inertial sensors; an ac-
celerometer and a rate gyro whose measurements are
mathematically represented by

ac = ar + ba + µa (7)

where ac is the measurement from the accelerometer, ar is
the truth acceleration of the vehicle, ba is the accelerometer
bias and µa is assumed to be zero-mean Gaussian white-
noise process with covariance Na. The output signal of a
rate gyro is is given by

ωg = ωr + bg + µg (8)

where ωg is the measurement from the rate gyro, ωr
is the truth angular rate of the vehicle and bg is the
rate gyro bias. As in the case of the accelerometer µg

is assumed to be zero-mean Gaussian white-noise process
with covariance Ng. In this work the signals ba and bg are
considered unknown but constants.
Then, position p̄f = (x̄r ȳr)

T , velocity v̄f = ( ˙̄xr ˙̄yr)
T

and orientation θ̄r of the mobile robot can be computed
integrating the above equations. They are given by

˙̄pf = v̄f
˙̄vf = (ac cos θg ac sin θg)

T

˙̄θr = ωg

(9)

Due to inherent errors in the gyros and accelerometers,
the INS navigation solution will have an unbounded drift,
where the divergence rate depends on the quality of the
IMU. Since the INS is a divergence system, it requires an
aiding system to avoid the growth of its errors.

3. NONLINEAR CONTROLLER

Lets introduce some definition and lemmas before detailing
the nonlinear control strategy.

3.1 Mathematical preliminaries

Definition 3.1. For a given positive constant parameter
Mi, the function σMi : R → R is a linear function of
saturation of Mi if it is continuous, no decreasing, such
that

σMi
(s) := min

(
Mi,max(−Mi, s)

)
(10)

and satisfies
sσMi(s) > 0, ∀s 6= 0 (11)

The functions of saturation are quite interesting in sys-
tems which are subject to some restrictions on the input
amplitude. In such cases, the limits Mi allow to bound
the amplitude of the control signal and, consequently, the
signal applied to the actuators.

Lemma 3.2. Let consider the double integrator system
defined by

ẏ1 = y2
ẏ2 = u

(12)

and the control law given by

u = −σM2

(
a1y2 + σM1

(a2y2 + a1a2y1)
)

(13)

where σMi
are defined in Definition 3.1, with M2 >

2M1 and a1, a2 > 0 are some tunable parameters, then
the double integrator closed-loop system is globally and
asymptotically stable (GAS) and locally exponentially
stable (LES).

Proof. Let ξ = Ty be a linear transformation, with

T =

(
a1a2 a2

0 a1

)
(14)

and y = (y1, y2)T . Applying this to the double integrator
system (12) yields

ξ̇1 = a2ξ2 + a2u

ξ̇2 = a1u
(15)

with ξ = (ξ1, ξ2)T and

u = −σM2

(
ξ2 + σM1(ξ1)

)
(16)



Then, the closed-loop system becomes

ξ̇1 = a2
[
ξ2 − σM2

(
ξ2 + σM1

(ξ1)
)]

ξ̇2 = −a1σM2

(
ξ2 + σM1

(ξ1)
) (17)

Now we can analyze the convergence of this system.

1) Firstly, let consider the dynamics of state ξ2 and the
candidate Lyapunov function

Vξ2 = ξ22 (18)

The time derivative of Vξ2 along the trajectory ξ2 is given
by

V̇ξ2 = 2ξ2ξ̇2

= −2a1ξ2σM2

(
ξ2 + σM1(ξ1)

) (19)

Then, assuming |ξ2| > 2M1 implies |ξ2+σM1(ξ1)| ≥M1+ε
with ε > 0 sufficiently small. Also, one can easily show
ξ2 +σM1(ξ1) is of the same sign that ξ2 and, consequently,

V̇ξ2 < 0. This implies ξ2 decreases until it enters to the set

Φ2 = {ξ2 : |ξ2| ≤ 2M1} (20)

in a finite time t1 and stay in this set for all t > t1.
Furthermore, Lemma 4 in Marchand and Hably (2005)
ensures ξ1 is bounded. Once this convergence is achieved,
then ξ2 + σM1(ξ1) ∈ [−2M1, 2M1], and so is not saturated
σM2(·). The system (17) hence becomes

ξ̇1 = −a2σM1
(ξ1)

ξ̇2 = −a1 [ξ2 + σM1
(ξ1)]

(21)

2) Secondly, let consider the dynamics of ξ1 and the
candidate Lyapunov function

Vξ1 = ξ21 (22)

whose time derivative along trajectory ξ1 is

V̇ξ1 = 2ξ1ξ̇1
= −2a2ξ1σM1

(ξ1)
(23)

From the definition of the function of saturation, it follows
V̇ξ1 < 0 and, consequently, ξ1 decreases till it enters to the
set

Φ1 = {ξ1 : |ξ1| ≤M1} (24)

in a finite time t2 and stay in it for all t > t2, and so is
not saturated σM1

(·). The system (21) hence becomes

ξ̇1 = −a2ξ1
ξ̇2 = −a1 [ξ2 + ξ1]

(25)

which, in a matrix form, yields(
ξ̇1
ξ̇2

)
=

[
−a2 0
−a1 −a1

](
ξ1
ξ2

)
(26)

This result is of the form ξ̇ = Aξ, whose solution ξ =
eAtξ(0) vanishes when t → ∞, if A is Hurtwitz. As a
consequence, the double integrator system (12) is GAL
and LES when applying the control law (13). This ends
the proof.

Now let consider the nonlinear system defined by

ẏ1 = y2
ẏ2 = σM3

(u)

z = y1

(27)

where the objective is to make z tracking a desired
trajectory zd, given for zd, żd and z̈d.

Lemma 3.3. If |z̈d| ≤ M3 − δ for all t > t0 and for some
δ > 0, with M2 ≤ δ, M2 > 2M1 and the control law given
by

u = z̈d − σM2

(
a1z̃2 + σM1

(a2z̃2 + a1a2z̃1)
)

(28)

where σMi are defined in Definition 3.1, z̃1 = y1 − zd and
z̃2 = y2 − żd, then the reference tracking is asymptotic.

Proof. Expressing system (27) in terms of z̃1 and z̃2 yields
˙̃z1 = z̃2
˙̃z2 = −z̈d + σM3

(u)
(29)

Then, applying the control law (28) and M2 ≤ δ, one
can show that the function of saturation σM3(·) ever
operates in its linear region and, consequently, the closed-
loop system becomes

˙̃z1 = z̃2
˙̃z2 = −σM2

(
a1z̃2 + σM1(a2z̃2 + a1a2z̃1)

) (30)

which is equivalent to system (13) in Lemma 3.2 where the
stability conditions where established. As a result, z̃1,2 → 0
and, consequently, z(t) = y1(t)→ zd(t) when t→∞. This
concludes the proof for asymptotic tracking.

3.2 Control strategy

Actually, the mobile robot system in (5) can be divided
into two subsystems, afterwards denoted Σ1 and Σ2,
which represent the equations of translation and rotation
movement respectively. Let define θ := θr, υ := vr and

x :=

x11x12
x21
x22

 =


∫
xr
xr∫
yr
yr

 (31)

Then, the system (5) can be broken down into two sub-
systems Σ1 := f(x, θ) and Σ2 := g(θ) such that

Σ1 :


ẋ11 = x11
ẋ12 = v cos θ
ẋ21 = x21
ẋ22 = v sin θ

(32)

Σ2 : θ̇ = ω (33)

One could note that Σ2 is independent of x1 and x2 since it
is a simple integrator with respect to ω. On the other hand,
Σ1 is composed of two independent double integrators with
respect to υ and θ.

In the sequel, θ is considered as a virtual control, as
suggested in Olfati-Saber (2000); Hably et al. (2006), and
joint with υ both will control the subsystem Σ1. Firstly,
we assume that a control ω exists in such a way it drives
θ to a desired angle θd given by

θd := arctan

(
r2
r1

)
(34)

where r1 and r2 are some parameters next defined in (38).
Also, this desired angle is such that

cos(θd) =
r1√
r21 + r22

and sin(θd) =
r2√
r21 + r22

(35)

The application of the control signal υ

υ =
√
r21 + r22 (36)

when θ = θd, will transform subsystem Σ1 := f(x, θ) (32)
into the form of two independent chain of integrators (32)




ẋ11 = x11
ẋ12 = r1
ẋ21 = x21
ẋ22 = r2

(37)

Theorem 3.4. Let consider the system (5), the velocity
control signal υ defined in (36), with r1 and r2 given by

r1 = −σM2

(
a1x12 + σM1

(
a2x12 + a1a2x11

))
r2 = −σM2

(
b1x22 + σM1

(
b2x22 + b1b2x21

)) (38)

and the angular rate control signal ω defined by

ω = θ̇d − σMθ
(θ − θd) (39)

with M2 > 2M1, where σM1
, σM2

and σMθ
are some

saturated linear functions of M1, M2 and Mθ defined in
Definition 3.1. Then, for a given initial state x(t = 0) ∈ R4,
with x defined in (31), we have

lim
t→∞

x(t) = 0, ∀t ≥ 0 (40)

with 0 ≤
√

2M2 ≤ υ.

Proof. First, we consider the stabilization of the rotation
movement. Let θ̃ = θ − θd be the error between the
measured/estimated and desired angle. The dynamics of

this error is
˙̃
θ = ω − θ̇d, from (33). Then, using the

control law defined in (39) results in
˙̃
θ = −σMθ

(θ̃). Now,
considering the candidate Lyapunov function

Vθ̃ = θ̃2 (41)

and evaluating its time derivative along the trajectory θ̃
yields

V̇θ̃ = −2θ̃σMθ
(θ̃) < 0, ∀θ̃ 6= 0 (42)

This means θ̃ → 0 when t→∞ and, consequently, θ → θd
when t → ∞. Then, as soon as θ = θd the system (32)
with υ defined in (36) and r1, r2 given by (38) becomes

ẋ11 = ẋ11
ẋ12 = −σM2

(
a1ẋ12 + σM1

(a2x12 + a1a2x11)
)

ẋ21 = ẋ21
ẋ22 = −σM2

(
b1x22 + σM 1(b2x22 + b1b2x21)

) (43)

Therefore, from Lemma 3.3 the system (43) is GAS and
LES. As a result, limx(t) = 0 when t → ∞ under the

restriction 0 ≤
√

2M2 ≤ υ. This ends the proof.

Remark 3.5. For simplicity, the convergence was proved
for the equilibrium x(t) = 0. However, the proof can be
extended to any equilibrium point of the whole coordinate
plane in making the appropriate variable translation, e.g.
ϑ = x− xd where xd is the equilibrium.

Remark 3.6. The stabilization of the whole system during
the transition θ(t)→ θd(t) can be guaranteed by the result
of Sontag (1989).

Remark 3.7. θd is calculated through

θd = atan2(r2, r1) (44)

where θd ∈ [0, 360] represents the relative North, with pos-
itive clockwise rotation, e.g. θd = 90 degrees corresponds
to the East direction.

Remark 3.8. From (34), the time derivative of the desired
angle is given by

θ̇d =
ṙ2r1 − r1ṙ2

υ2
(45)

For this reason, the saturation function σMi
con i = 1, 2

has to be differentiable. An easily implementable solution
is given by (see Hably et al. (2006))

σ(s) =


−1 if s = −1− α
p1(s) if s ∈ [−1− α,−1 + α]
s if s ∈ [−1 + α, 1 + α]
p2(s) if s ∈ [1− α, 1 + α]
+1 if s = 1 + α

(46)

with p1(s) = e1s
2 + e2s+ e3 and p2(s) = −e1s2 + e2s− e3,

where e1 = 1
4α , e2 = 1

2 + 1
2α and e3 = α2−2α+1

4α . Such
a function is twice differentiable. Finally, this function
of saturation bounding to Mi and −Mi with j = 1, 2 is
defined by σMi(·) := Miσ(·).

4. MODEL-AIDED INERTIAL NAVIGATION

This section reports the concept and development of an
integrated model-aided INS, applied to a nonholonomic
vehicle navigation. The basic idea and concept of using the
dynamic vehicle model for aiding the INS was illustrated
in Fig. 1(b), where the output from the dynamic vehicle
model is treated like the ones of external aiding sensors
(GPS and magnetometer). The interest in studying the
integration of a vehicle model is due to GPS outages,
sensor dropouts or emergency navigation. Note that the
integration of a vehicle model in the navigation system
does not require any additional instrumentation.
The Kalman filter is carried out in discrete-time frame-
work. Hence, measurements are taken at each instant time
tj with j ∈ Z denoting ∆t = tj+1 − tj the sample time.
A more detailed outline of the model-aided INS evaluated
herein is shown in Fig. 3. In this paper, external velocity
and position measurements are not included while utilizing
the output from the vehicle model, and the other way
around when using external velocity measurements. This
is illustrated with a switch in Fig. 1 and 3. In order to aid

Fig. 3. Block diagram of the model-aided INS.

the INS system, the estimated state vector x̂ is composed
of seven states, that are two velocities, two positions, one
attitude, one accelerometer bias and one gyro bias, which
yields

x̂ =
(
p̂r v̂r θ̂r ba bg

)T
(47)

where p̂r is the position of the vehicle in Er(er1, e
r
2). In

accordance to Fig. 1 and conventional Kalman Filter (KF)



notation, the general discrete input to the KF is defined
as

δzk = zk − žk (48)

where the accent (̌·) denotes a calculated variable, in this
case from the INS. Also, the process model for the errors
is expressed as

δ̇x̂ = Fδx̂+Gµ (49)

where F describes the INS error dynamics, G is the
noise input matrix and µ is an uncorrelated zero-mean
process noise vector of dimension 8 and covariance Q,
representing the inertial sensor process noise. The error
dynamics matrix F is calculated as follows

F =


1 0 0 −∆t 0

∆t 1 0 −∆t2

2
0

0 0 1 0 −∆t
0 0 0 1 0
0 0 0 0 1

 (50)

Also, the input matrix G is

G =

[
∆t2

2
∆t ∆t 0 0

]T
(51)

A virtual observation zobs is made as the difference be-
tween the velocity and position predicted by the INS and
the dynamic vehicle model. The relationship between the
estimated errors and observation is given by the observa-
tion model H, as follows

zobs =

[
υINS − υdvm
pINS − pdvm

]
(52)

=Hδx+ ν (53)

H =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (54)

where ν is an uncorrelated, zero-mean observation noise
vector.

5. SIMULATION RESULTS

In this latter section, we propose to test our proposed
strategy in simulation using Matlab/Simulink. In a first
time, we consider two scenarios when the mobile robot is
running on a linear way.

• In the first one, the vehicle is using GPS aided INS.
The simulation results are represented in Fig. 4. One
can see how is shattered the estimated (velocities,
position and attitude) values with respect to the GPS
information. Also, one can see the drift due to the INS
system.
• In the second case, the system losses satellite trans-

mission and can no longer provide positioning fixes to
the INS. As a result, the on-board vehicle navigation
system starts to aid the INS with the dynamic model
information at the time of satellite signal loss. The
results are depicted in Fig. 5. The estimation is highly
improved since no shattering occurs anyway (in par-
ticular for the attitude estimation in Fig. 5(c)). More-
over, one can really appreciate how the estimated
values are closer to the real ones, which means the
INS drift is reduced.

The same simulation is then performed in the case the
mobile runs in a circle way. This is shown in Fig. 6 where
the proposal is still performing.

(a) Velocity estimation with GPS signal.

(b) Position estimation with GPS signal.

(c) Orientation estimation with magnetometer signal.

Fig. 4. Velocity, position and attitude estimations of the
mobile when the system is aided with the GPS and
magnetometer, in the case of a linear way.

CONCLUSIONS

In this paper a simple nonlinear control law was designed
to asymptotically stabilize the position of Wheeled Mobile
Robots (WMRs) with nonholonomic constraints. Since
input constraints exist in the actuators, the control law
considers too the actuator saturation. Moreover, this work
has presented a method for aiding the solution of an
INS using vehicle model and nonholonomic constraints
information. Simulation results show that the navigation
system performance has been increased from un-aided
system when vehicle model information is used. Real-time
implementation will be pursued as a further work.
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(a) Velocity estimation with dynamic model information.

(b) Position estimation with dynamic model information.

(c) Orientation estimation with dynamic model information.

Fig. 5. Velocity, position and attitude estimations of the
mobile when the system is aided with the information
from the dynamic vehicle model, in the case of a linear
way.
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