
HAL Id: hal-00727682
https://hal.science/hal-00727682v1

Submitted on 4 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ROI based video streaming for 3D remote rendering
Nicolas Tizon, Christina Moreno Alcerreca, Marius Preda

To cite this version:
Nicolas Tizon, Christina Moreno Alcerreca, Marius Preda. ROI based video streaming for 3D remote
rendering. MMSP ’11 : IEEE 13th International Workshop on Multimedia Signal Processing, Oct
2011, Hangzhou, China. pp.1-6, �10.1109/MMSP.2011.6093837�. �hal-00727682�

https://hal.science/hal-00727682v1
https://hal.archives-ouvertes.fr


ROI based video streaming for 3D remote rendering

Nicolas Tizon, Christina Moreno, Marius Preda

ARTEMIS Dept., Télécom SudParis

9 rue Charles Fourier, 91011 EVRY,France
nicolas.tizon, christina.moreno, marius.preda@it-sudparis.eu

Abstract—This paper proposes a low computational method
to perform ROI (Region Of Interest) based video encoding and
adaptive streaming for remote rendering applications. The main
objective of the proposed solution is to minimize the latency in the
interactive loop even when facing poor transmission conditions.
In order to do that, the knowledge of the depth map information
provided by the rendering engine is exploited by the real-time
video encoder to adapt the bitrate of the transmitted stream.
Especially, thanks to an efficient coupling between the rendering
and the video encoding stages, the macroblocks of each video
frame are encoded with different quantization steps that follow
an ROI partitioning. The details of this partitioning algorithm
are provided as well with some implementation considerations.
The simulation results demonstrate the benefit of our adaptive
approach from the user experience point of view.

I. INTRODUCTION

Thanks to the continuous increase of the mass market

electronic devices processing capabilities, the access to 3D

and complex 2D applications has been generalized well over

the frontiers of the professional practices. However, even if the

multimedia platforms (PC, tablet, smart-phone...) are more and

more powerful, especially those with advanced GPUs, the 3D

graphic application designers tend to exploit their capabilities

to the edge and thus condemn these devices to a very short life

expectancy. In addition, the computing domain met last years

a growing tendency to externalize the application execution

process, from the client to the network. This so called cloud

computing approach allows to benefit from new released

applications, even with thin-end devices, and also favors the

users access, “every where and every time”, to their data and

applications. One example among others, cloud gaming offers

new possibilities integrating hardware, software and service.

Several companies such as OnLive, OTOY, Gaikai begin to

propose services that involve game streaming technologies.

Likewise, our proposed remote rendering solution is based

on standardized video encoding and interactivity streaming

methods and was developed within the framework of the

Kusanagi project 1. Various remote rendering solutions al-

ready exist, but a few of them are well suited to the high

requirements of 3D gaming or Ultra-High Definition visual-

ization. The latency is a major problem in both cases and

requires specific optimizations of the whole chain: from the

rendering server to the display device. Moreover, even if an

efficient latency control is a necessary condition to run an

application remotely with an acceptable QoE, one must pay

1http://www.kusanagi.eu/

a special attention to the way the application is executed on

the server. Indeed, in order to minimize the latency during the

signal processing and communication stages, a safe strategy

would consist in over provisioning the resources (CPU, GPU,

bandwidth) allocated to each user. In this case, the multi user

requirement is very difficult to achieve and not really efficient

in terms of pooling of resources.

II. REMOTE RENDERING

A. Previous work

In the scope of remote rendering techniques, two main

families of solutions could be mentioned: Graphics commands,

2D Pixels steaming. In [1], [2], the graphics commands which

are exchanged between the application and the graphics card

on the server are intercepted and sent to the client. Then,

the rendering is performed by the client’s GPU. In [1] the

solution was originally proposed to distribute rendering tasks

over a cluster of computers. The application needs to be

parallelized in a first time and the rendered data needs to be

centralized in the last time, in order to be displayed. In [2], a

graphic commands solution is proposed to reach satisfactory

performances in terms of latency and to serve many users

without consuming too many resources on the server. The main

drawback of such a solution is the requirement of a powerful

GPU on the client side limiting the advantages of executing

the application remotely.

On the opposite, when streaming 2D pixels, all the rendering

tasks are performed on the server and the output images are

sent to the client. Different approaches have been considered to

encode these output data. In [3] and [4] the 2D rendered pixels

are sent through a video stream and in [5] they are coded as

still images. In [6], a hybrid approach in which the 2D pixels

are sent by using the X11 protocol for almost static contents

and through an h.264 video stream when the motion increases,

is proposed. Thanks to a switching mechanism the solution

allows minimizing the latency for highly animated contents

while saving CPU resources in the others cases. Finally, in [7],

[8], mixed approaches are proposed to build efficient multi-

environment remote rendering platforms, the latency being

restricted below a certain level.

In the category of 2D pixel streaming based solutions,

a few works concerning video encoding optimizations by

using side information from the 3D rendering exist. In [9],

the authors propose an optimized MPEG-4 video encoder

that benefits from the available model of the scene to better



compress the sequence. Two main contributions are described.

The first one is a MPEG-4 based object segmentation that

distinguish two regions (background and foreground) when

applying the quantization factor. In addition, an accelerated

motion estimation algorithm is described. In this algorithm,

the optical flow is calculated by using the scene model

and the camera parameters. In [10], Herzog et al. present a

framework where the video encoder provides perceptual error

thresholds to the renderer. Those threshold errors are used to

control the rendering quality by considering the information

loss introduced by the video encoder. This strong coupling

between rendering and encoding aims at accelerating the

overall frame processing. In the same way, an accelerated

video encoding algorithm is described in [11] by using render

context information. The general principle here consists in

using both the projection information and the z-buffer in order

to calculate the motion vectors. This rendering information

is integrated in a rate-distortion based decision that allows

providing an optimized H.264/AVC encoder.

To the best of our knowledge, these works represent the

principal contributions in the the field of video streaming

based remote rendering optimized systems. However, while

these studies mainly aim at decreasing the overall processing

load of the system, here we propose a solution to improve

the encoding and streaming adaptivity by exploiting the depth

map information from the rendering engine.

B. Overview of the kusanagi platform

Kusanagi project is an end-to-end seamless infrastructure

to develop, publish and play High-Definition 2D and 3D

Real-Time Networked Multimedia Content. The project focus

on 2D and 3D interactive content required for both gaming

and professional applications. An overview of the Kusanagi

framework is given in Fig 1. The three main components of

this architecture are: the Kusanagi application, the lobby server

and the MPEG compliant client. The Kusanagi application is

the new application obtained after integrating the audio/video

capture and the Kusanagi plug-in with the original graphic

application.

Lobby server

User 1

User 2

User n

Ressources (hardware, virtual devices

C
o

re
 a

p
p

.

rendering

audio

Interaction

K
u

sa
n

a
g

i
p

lu
g

in

Kusanagi applications

Multi-user interface

MPEG-4 compliant clients

Fig. 1. Kusanagi framework.

The Kusanagi plug-in is a piece of software that allows

turning any 3D graphic application into a remote controlled

software. This transformation requires being able to stream

two different kinds of data:

• interactivity commands from client to server,

• audio and video data from server to client.

The lobby server is the central program that manages

the resources sharing and acts as an interface between the

application and the users. A net-input HTTP server is used

to transmit clients’ commands to the game. The port number

is negotiated by the lobby server and there is no interaction

with the lobby server during the session (transport). At the

beginning of the session, the lobby server can also provide

some user based information to the Kusanagi plug-in like the

initial round trip time (RTT), measured between the server and

each client. This RTT value will be used further (in III-B) to

initialize one parameter of the adaptation algorithm.

At client side, a full multimedia player with network-

ing, media, user interactions management and rasterizing is

used [12]. The MPEG-4 scene description language allows

managing an interactive multimedia session and supporting

any kind of graphic applications. The client supports also a

wide range of video and audio codecs (H.264, AAC, among

others) and is a complete network client. Especially, it supports

RTP/RTSP streaming including RTP/UDP streaming and RTP

over RTSP(TCP). Jointly with RTP, the client implements the

control protocol RTCP. In the next section, an algorithm that

exploits the RTCP reports from the client (RTCP-RR) to adapt

the transmitted bitrate is presented.

III. ROI AND LATENCY BASED BITRATE ADAPTATION

During the rendering process, for each frame, a depth map

is generated on the GPU through the well known z-buffer. As

previously mentioned, this information can be very useful to

improve the video encoding process [9], [11]. In this section,

we propose to use this information in order to divide the image

into different regions and to adapt the bitrate next with a finer

granularity. The first issue addressed here is the ability to

obtain an automatic and relevant partitioning of each frame

without overloading the processors. Then, we improve a bitrate

adaptation algorithm previously described in [13], by taking

into account of the differentiated regions of the picture.

A. Low computational ROI partitioning

In many practical cases, the objects that belong to the

scene’s foreground are subject to a higher visual attention from

the user and are more relevant in terms of QoE. From this

assumption, one can consider that the z-buffer used to render

a scene, contains the main information when defining regions

of interest. In the Kusanagi platform, we use the Direct3D9

texture interoperability with CUDA [14] to capture and to store

the depth map on the GPU. Next, we process this depth image

on the GPU and finally obtain a macroblock based partitioning

of each frame as described in Fig. 2.

First of all, the depth values are quantized over a small

number of integer values (6 values in Fig. 2 (c)). This

processing is implemented with reduction based programming

methods, well suited to be efficiently executed on the GPU.



(a) YUV frame (b) Depth map

(c) Quantized depth map (d) Quantized and rescaled depth map

Fig. 2. Depth map processing steps (partitioning: 6 regions).

The integer value of each pixel, from 0 to 5 in the given

example, represents its depth level. The lower values (black)

correspond to the foreground and the higher values (white)

to the background. As this ROI partitioning is used next to

perform the bitrate adaptation during the video encoding stage,

the next processing step consists in downscaling the quantized

depth map values (d). This downscaling is basically obtained

by averaging the depth values for each macroblock (16 × 16
pixels) and by dividing this mean value by the number of

different depth levels in the macroblock. After this last GPU

processing, each macroblock is represented by an integer value

(0..N ) which is supposed to indicate its level of importance.

The lower levels correspond to the higher interest for the user

and this value will be used as a quantization factor offset

during the video encoding stage (see next section). This last

operation on the depth map allows a better discrimination of

homogeneous areas from regions with high frequencies (object

borders). For instance in the given example, some object

borders on the boat are almost in the background, however

thanks to the division by the number of different levels, they

will be better taken into account during the video encoding.

B. Adaptation algorithm

In [13], an adaptation algorithm is proposed to optimize

the video encoding quality following the network conditions

of each user. The proposed algorithm is based on a re-

peated round trip time (RTT) measurement. The proposed

measurement consists in separating the latency into an intrinsic

component RTTi and a congestion based component RTTc:

RTT (t) = RTTi +RTTc(t), (1)

where RTT and RTTc are time dependent variables.

For each user, the RTTi variable can be easily estimated

by the lobby server by sending a ping command at the

beginning of the session. Then during the session if the video

bitrate is too high, the RTTc component will increase due

to congestion. In our platform, RTCP-RR (Receiver Report)

are sent periodically (∼ every seconds) from the client to

the server. Thanks to this information, the server is able to

compute the round trip time RTT (t) and with the intrinsic

delay RTTi measured by the lobby, the server can deduce

the congestion based latency RTTc(t). Moreover, in order to

better take into account of long term congestion variations

an additional control must be done to verify if the intrinsic



latency has still the original value provided by the lobby at

the beginning of the session. Hence, if we detect that the

variability of the estimated RTT is low enough then we can

deduce that we are measuring this intrinsic latency RTTi. In

this case, if the new estimated RTTi is different from the

current one, our adaptation algorithm makes an update with

the corresponding value. To measure the variability of RTT ,

we compute the relative standard deviation (RSD) over a large

set of estimated RTT values. This parameter is computed as

follows:

RSD = σ/µ, (2)

where σ is the standard deviation and µ the mean value of

RTT .

If this value is lower than a given threshold RSDth, the

algorithm considers that is measuring RTTi.

During the encoding process, the more efficient way to

decrease the bitrate consists in increasing the quantization

step Qp. Hence, when receiving an RTCP-RR and given the

estimated round trip time RTT, in [13] the server adapts the

quantization step value as follows:

Qn
p = Qn−1

p (1 + αXβ), (3)

where Qn
p is the new quantization step, Qn−1

p is the old value,

α and β are positive constant variables experimentally fixed

in the next section and X is given by:

X = (RTT −RTTi)/RTT (4)

This heuristic computing allows decreasing the quantization

step when a congestion based latency is detected i.e. when

RTTc = RTT −RTTi > 0. Hence, when the estimated RTT
is high, Qp increases dramatically while it is almost constant

for low values of the congestion based delay RTTc i.e. when

RTT is close to RTTi. In order to be able to converge locally

to an optimized value of the video bitrate, the server needs to

decrease sometimes the quantization step when the measured

RTT < RTTi. In this case, Eq 3 is no longer valid as X
given in Eq 4 becomes infinite for very low values of RTT .

Basically, in our algorithm, when RTT < RTTi we compute

the new quantization step as follows:

Qn
p = θ.Qn−1

p , (5)

where θ is a decreasing rate fixed empirically in the next

section.

In [13], the quantization factor Qn
p used in Eq 3 and Eq 5

has the same value for all the macroblocks of the picture. In

addition, in the previous section we described a depth map

based process that provides, for each macroblock, an integer

value from 0 to N that indicates its level of importance. As the

lower values correspond to regions of higher interest, we can

directly map these integer values to quantization factor offsets.

Let’s denote ∆Qn
p the matrix containing these offset values

and represented by picture (c), in Fig. 2. The coefficients of

this matrix belong to the integer interval 0..Nn, where Nn is

the higher offset value for the nth iteration of the algorithm.

Then we can write Qn
p , the matrix of the quantization factors

for the entire picture as follows:

Qn
p = Qn

p b
+∆Qn

p , (6)

where Qn
p b

is the matrix that contains only one value Qn
p b

,

which is the base quantization factor common to all the

macroblocks.

Let’s define now Qpmax
the maximum value, acceptable for

the quantization factors :

Qn
p b

+Nn
≤ Qpmax

. (7)

This maximum value is fixed in function of the application

requirements and highly depends on the content of the video.

Then, the adaptation algorithm when receiving a RTCP-RR is

summarized in Alg. 1.

Algorithm 1 Adaptation alg. when receiving a client feedback

Update RTT , σ and µ

RSD = σ/µ
if RSD < RSDth then

RTTi = µ
end if

Qn−1

p = Qp
n−1

b
+Nn−1

if RTT ≥ RTTi then

X = (RTT −RTTi)/RTT
Qn

p = Qn−1

p (1 + αXβ)
if Qn

p > Qpmax
then

Qn
p b

= MIN(Qp
n−1

b
+ 1, Qpmax

)
else

Qn
p b

= Qp
n−1

b

end if

Nn = Qn
p −Qn

p b
else

Qn
p = θ.Qn−1

p

if Qn
p ≥ Qp

n−1

b
then

Qn
p b

= Qp
n−1

b

Nn = Qn
p −Qn

p b
else

Nn = Nn−1

Qn
p b

= Qn
p −Nn

end if

end if

The first part of the algorithm concerns the computation

of Qn
p and is detailed at the beginning of this section. Next,

if the increase of Qn
p (when RTT ≥ RTTi) leads to a value

that exceeds Qpmax
, hence the base quantization factor Qn

p b
is

incremented by one (or saturated to Qpmax
). In this case, the

higher offset value is obtained by calculating the difference:

Nn = Qn
p − Qn

p b
. Inversely, if the decrease of Qn

p (when

RTT < RTTi) leads to a value lower than Qp
n−1

b
, the higher

offset value does not change (Nn = Nn−1) and the base



quantization factor is obtained by calculating the difference:

Qn
p b

= Qn
p −Nn.

The general principle of this heuristic computing is to use,

as much as possible, the variations of the quantization offsets

to perform low scale bitrate adaptations and to only use Qn
p

to perform large scale adaptation on the entire image, when

it is necessary. In the next section, some simulation results

demonstrate the interest of such an approach, in terms of image

quality, when facing degraded transmission conditions.

IV. EXPERIMENTAL RESULTS

To perform our experimental measurements we have built

a monitored client-network-server architecture which is basi-

cally composed of three computers:

• The server: 3D application and streaming,

• The network emulator,

• The client: video player and interactivity manager.

The server is composed of the rendering engine and the

streaming module. The rendering engine is directly connected

to a video encoding module based on the x264 encoder and

the Darwin Streaming Server (DSS) is then used to provide a

complete RTSP based streaming solution. The application used

here to test our solution is a point and click adventure game

called “Jack Keane”. To control and to monitor the network

we have chosen the network emulation approach by using

the WANem software 2. By installing it on a computer, the

latter is turned into an IP gateway (WANem PC) from which

we can increase the intrinsic latency and control the available

bandwidth. The video streams are encoded with the following

features:

• Average frame rate: 30fps,

• Spatial resolution: VGA,

• H.264 low latency encoding: no B-frames, CAVLC, no

rate control buffering.

At the beginning of the session, the adaptation algorithm is

initialized with the following parameters: Q0

p = 20, N0 = 0
and Qpmax

= 35. Typically with this high quality level and

with the low latency based configuration of the encoder, the

video bitrate is around 5Mbps and the average PSNR is around

50dB. On the opposite, a value of 35 for the quantization

factor corresponds to PSNR values around 30dB and average

bitrates lower than 2Mbps for our gaming content. In H.264,

the quantization factor can take its value in the interval 0..51.

By assigning high or low values to Qpmax
one can turn the

streaming more or less adaptive.

In Fig 3, the RTT values estimated by the server and

the PSNR evolution of the encoded video are depicted. The

PSNR values are computed for two regions of the frames.

The first region corresponds to the macroblocks encoded with

the maximum quantization factor offset N , and all the others

macroblocks are constituting the second region which can

be seen as the region of interest. For this simulation, the

adaptation algorithm is used with the following parameters:

α = 0.2, β = 1 and θ = 0.9. Practically, this comes to

2http://wanem.sourceforge.net/

increase Qp of 20% when RTT is high and to decrease

Qp of 10% when RTT < RTTi. In addition, the network

emulator is configured with a delay of 10ms in each direction

(RTTi = 20ms) and a bandwidth of 2.5Mbps. We can see

0 2 4 6 8 10 12 14 16 18

x 10
4

0

2000

4000

6000

8000

10000

Time (ms)

R
T

T
 (

m
s
)

0 2 4 6 8 10 12 14 16 18

x 10
4

30

35

40

45

Time (ms)

P
S

N
R

 (
d
B

)

 

 

∆Qp<N

∆Qp=N

Fig. 3. Measured RTT and PSNR (RTTi = 20ms, bandwidth: 2.5Mbps).

that the server spends around 30s to adapt the video bitrate

and a stable state (RTT = RTTi) is reached after 40s.

The cost of this adaptation is a significant PSNR decrease of

the non-ROI region, mainly during the first iterations, whereas

the quality of the rest of the frame is relatively well conserved.

Indeed, the PSNR of the ROI never fall down below 35dB.

Finally, we can say that the non-ROI area is used by the

adaptation algorithm to “learn” the transport channel profile.

In Fig. 4, the evolution of the quantization factor components:

Qpb
(t) and N(t)) is depicted. We can clearly identify the end

of the adaptation phase around the fifth iteration, where Qpb
(t)

increases and N(t) decreases. After the tenth iteration, the

strong adaptation phase is finished and the values are more

constant.

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

Time

Q
u

a
n

ti
z
a

ti
o

n
 f

a
c
to

r

 

 

Qpb(t)

N(t)

Fig. 4. Quantization factors variations (RTTi = 20ms, bandwidth:
2.5Mbps).

In Fig 5, the RTT values estimated by the server and

the PSNR evolution of the encoded video are depicted. The

network emulator here is configured with a bandwidth of

5Mbps and the delay in each direction varies from 10ms

(RTTi = 20ms) to 40ms (RTTi = 80ms) during the

session. In order to catch this intrinsic delay variation the



algorithm computes the relative standard deviation and update

the RTTi parameter when this deviation is higher than 10%

(RSDth = 0.1).

0 0.5 1 1.5 2 2.5 3

x 10
5

0

100

200

300

400

Time (ms)

R
T

T
 (

m
s
)

0 0.5 1 1.5 2 2.5 3

x 10
5

30

35

40

45

50

P
S

N
R

 (
d
B

)

Time (ms)

 

 

∆Qp < N

∆Qp = N

RTTi = 20 ms RTTi = 80ms

Fig. 5. Measured RTT and PSNR (RTTi = 20ms and 80ms, bandwidth:
5Mbps).

The server spends around one minute to update its estimated

RTTi value. During this period, due to the congestion control,

the algorithm decreases mainly the quality of the non-ROI

macroblocks in order to “learn” the new RTTi value. When

this value is updated, the quality of the entire image recovers

its initial level and the adaptation period is almost transparent

for the user.

V. CONCLUSION

This paper proposes a low computational ROI based adap-

tive streaming algorithm for remote 3D applications. The

macroblock differentiation used during the video encoding

process is obtained thanks to an efficient processing loop of the

depth map on the GPU. This coupling between the rendering

engine and the encoder has been implemented here in a video

game architecture but can be obviously generalized to any

3D graphics application. The proposed partitioning algorithm

provides a powerful tool to discriminate automatically the

video frame regions in function of the visual content and that

is completely executed on the GPU.

In addition, the resulting matrix of this GPU processing is

used as an input parameter in our previously proposed bitrate

adaptation algorithm. Thanks to this knowledge of the ROIs,

the server is able to face bad transmission conditions, in terms

of latency, without scarifying the QoE, in terms of image

quality.

Finally, the future works will investigate more relevant ROI

partitioning by taking into account of interactivity feed-backs.

A finer object based partitioning could be used also to improve

the video encoding efficiency and more specially to decrease

the required processing time.

ACKNOWLEDGMENT

The presented work is supported by the European project

Kusanagi, labellized by the Celtic consortium.

Jack Keane, the game used for the Beta tests, was provided

by the German video game company Deck13.

REFERENCES

[1] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett, and
P. Hanrahan, “Wiregl: a scalable graphics system for clusters,”
in Proceedings of the 28th annual conference on Computer

graphics and interactive techniques, ser. SIGGRAPH ’01. New
York, NY, USA: ACM, 2001, pp. 129–140. [Online]. Available:
http://doi.acm.org/10.1145/383259.383272

[2] I. Nave, H. David, A. Shani, Y. Tzruya, A. Laikari, P. Eisert, and
P. Fechteler, “Games@large graphics streaming architecture,” in Proc.

IEEE Int. Symp. Consumer Electronics ISCE 2008, 2008, pp. 1–4.
[3] F. Lamberti, C. Zunino, A. Sanna, F. Antonino, and M. Maniezzo, “An

accelerated remote graphics architecture for pdas,” in Proceedings of

the eighth international conference on 3D Web technology, ser. Web3D
’03. New York, NY, USA: ACM, 2003, pp. 55–ff. [Online]. Available:
http://doi.acm.org/10.1145/636593.636602

[4] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D.
Kirchner, and J. T. Klosowski, “Chromium: a stream-processing
framework for interactive rendering on clusters,” in ACM SIGGRAPH

ASIA 2008 courses, ser. SIGGRAPH Asia ’08. New York,
NY, USA: ACM, 2008, pp. 43:1–43:10. [Online]. Available:
http://doi.acm.org/10.1145/1508044.1508087

[5] M. Aranha, P. Dubla, K. Debattista, T. Bashford-Rogers, and
A. Chalmers, “A physically-based client-server rendering solution for
mobile devices,” in Proceedings of the 6th international conference

on Mobile and ubiquitous multimedia, ser. MUM ’07. New
York, NY, USA: ACM, 2007, pp. 149–154. [Online]. Available:
http://doi.acm.org/10.1145/1329469.1329489

[6] P. Simoens, P. Praet, B. Vankeirsbilck, J. De Wachter, L. Deboosere,
F. De Turck, B. Dhoedt, and P. Demeester, “Design and implementation
of a hybrid remote display protocol to optimize multimedia experience
on thin client devices,” in Proc. Australasian Telecommunication Net-

works and Applications Conf. ATNAC 2008, 2008, pp. 391–396.
[7] A. Jurgelionis, P. Fechteler, P. Eisert, F. Bellotti, H. David, J. P.

Laulajainen, R. Carmichael, V. Poulopoulos, A. Laikari, P. Perälä,
A. De Gloria, and C. Bouras, “Platform for distributed 3d gaming,”
Int. J. Comput. Games Technol., vol. 2009, pp. 1:1–1:15, January 2009.
[Online]. Available: http://dx.doi.org/10.1155/2009/231863

[8] N. A. Nijdam, S. Han, B. Kevelham, and N. Magnenat-Thalmann,
“A context-aware adaptive rendering system for user-centric pervasive
computing environments,” in Proc. MELECON 2010 - 2010 15th IEEE

Mediterranean Electrotechnical Conf, 2010, pp. 790–795.
[9] Y. Noimark and D. Cohen-Or, “Streaming scenes to mpeg-4 video-

enabled devices,” Computer Graphics and Applications, IEEE, vol. 23,
no. 1, pp. 58 – 64, jan/feb 2003.

[10] R. Herzog, S. Kinuwaki, K. Myszkowski, and H.-P. Seidel,
“Render2mpeg: A perception-based framework towards integrating
rendering and video compression,” Computer Graphics Forum,
vol. 27, no. 2, pp. 183–192, 2008. [Online]. Available:
http://dx.doi.org/10.1111/j.1467-8659.2008.01115.x

[11] P. Fechteler and P. Eisert, “Accelerated Video Encoding Using Render
Context Information,” in Proceedings of the 17th International Con-

ference on Image Processing (ICIP2010), Hong Kong, China, 26-29th
October 2010, pp. 2033–2036, iCIP 2010.

[12] J. Le Feuvre, C. Concolato, and J.-C. Moissinac, “Gpac: open source
multimedia framework,” in Proceedings of the 15th international

conference on Multimedia, ser. MULTIMEDIA ’07. New York,
NY, USA: ACM, 2007, pp. 1009–1012. [Online]. Available:
http://doi.acm.org/10.1145/1291233.1291452

[13] N. Tizon, C. Moreno, M. Cernea, and M. Preda, “Mpeg-4-based adaptive
remote rendering for video games,” in Proceedings of the sixteenth

international conference on 3D web technology, ser. Web3D ’11. New
York, NY, USA: ACM, 2011.

[14] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to

General-Purpose GPU Programming. Addison-Wesley Professional,
2010.


