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Conventional estimation techniques of Stokes images from observed radiance
images through different polarization filters suffer from noise contamination
that hampers correct interpretation or even leads to unphysical estimated
signatures. This paper presents an efficient restoration technique based
on non-local means, permitting accurate estimation of smoothly variable
polarization signatures in the Stokes image while preserving sharp transitions.
The method is assessed on simulated data as well as on real images. (©) 2012

Optical Society of America

OCIS codes: 100.3020, 100.3190, 120.5410.

1. Introduction

Polarization imaging enhances classical intensity imaging techniques by providing access
to extra parameters that describe the vector nature of light. This is achieved by placing
controlled polarization filters prior to the camera. This has been widely used for many
applications ranging from medical imaging to surface inspection and remote sensing. In
this paper, we focus on the restoration of polarization encoded images from raw radiance
measurements.

The Stokes-Mueller formalism is a coherent framework based on a linear observation model
that provides access to polarization parameters from raw radiance acquisitions. In polariza-
tion imaging, this observation model is extended to the entire image where classical pixel-wise
data reduction approaches are generally used [1,2]. Usually, the measurement system is cal-
ibrated so as to reduce the impact of noise and to reduce system errors. However, even for
a well calibrated imaging polarimeter, errors and noise may be amplified and transferred

from raw acquisitions to the estimated polarization parameter images. This reduces also the



accuracy of the estimated quantities (Stokes vectors) that may violate physical admissibility
constraints. A general and robust approach is thus needed to correctly restore the polariza-
tion signatures while preserving their integrity. Such algorithms can be used as a valuable
tool for analyzing the physical contents of observed scenes in the context of polarization
imaging.

Bayesian approaches providing robust estimates of polarization channels with regard to
image noise have been introduced. The Bayesian framework yields neat solutions to the
polarimetric data reduction problem for the case of piecewise constant signatures [3,4]. The
case of smoothly varying signatures has also been addressed, for example by Valenzuela et
al. [5] and by Sfikas et al. [6]. However, the work of Valenzuela does not account for physical
admissibility constraints, and Sfikas’ algorithm requires a pre-processing step that may blur
the edges.

To circumvent these limitations, we propose here to adapt a very efficient denoising algo-
rithm, the non-local means (NLM) algorithm [7], to the estimation of Stokes vectors. The
core idea of the denoising algorithm is to exploit the possible repetitive pattern or texture
within the image to improve denoising. Basically, the original image is decomposed into a col-
lection of small sub-images called patches. By considering image patches as image features,
the NLM algorithm can be viewed as a regression technique adapted to image denoising: the
restored patches are computed as a weighted average of noisy patches. Buades et al. have
shown that, for 2D natural images, the NLM filter outperforms popular denoising methods
such as the Rudin-Osher-Fatemi Total Variation minimization scheme [8] or wavelet-based
techniques [9]. Since then, this non-local strategy has been studied and applied to several
image processing applications such as non-local regularization functionals in the context of
inverse problems [10-13]. The interested reader may consult the recent review by Katkovnik
et al. [14].

From the NLM algorithm, we derive in this article a joint filtering-estimation procedure
suitable for Stokes images: the noise is filtered while estimating physically admissible Stokes
vectors at each pixel location. Moreover, we have shown that the proposed joint filtering-
estimation procedure can be equivalently achieved sequentially by a two step method: a fil-
tering stage based on the NLM approach, which is widely recognized for its edge-preserving
smoothing properties, followed by an estimation step ensuring physical admissibility. The
contribution of this article is also methodological, by the introduction of NLM weights differ-
ent from those found in the literature. This new weight structure allows the NLM algorithm
to adapt to the content of the image, thus improving the robustness of the approach and the
quality of the results.

The article is organized as follows: section 2 states the problem of estimating Stokes vectors

from polarized radiance measurements. The proposed approach is presented in Section 3.



Section 4 deals with the application of the method to simulated and real measurements.

Conclusions are drawn in section 5.

2. Problem statement

A Stokes imaging polarimeter yields data linked to Stokes vectors, where one 4 x 1 Stokes
vector is attached to each pixel in the image. These data correspond to the outgoing radiance
of a scene, captured by K (K > 4) independent probing states of a Polarization State
Analyzer (PSA) placed in front of a camera. At each pixel location x, the K intensity

measurements I are related to the Stokes vector S by the linear equation:
I(x)~PS(x),

where P is a matrix of size K x 4 called Polarization Measurement Matrix (PMM) whose
rows constitute the K probing states. Systematic calibration errors as well as CCD noises are

accounted for in the same way as in [2,3], which leads to the following observation model:
I(x)=PS(x)+n(x),

where n encompasses all noise terms. The problem is now to estimate S from observations I

while ensuring the physical admissibility

So > 1\/S?+ 5%+ 52

of the retrieved Stokes vector attached to each pixel.
The classical approach relying on the PSA pseudo-inverse matrix does not take the admis-
sibility constraints into account. We can remedy this problem by replacing the pseudo-inverse

estimate by the following constrained optimization:
S(x) = in ||I(x) — P. 2 1
S(x) = argmin [|I(x) — P.S(x)|[, (1)

where B is the set of admissible Stokes vectors. Note that the pseudo-inverse approach corre-

sponds to optimizing the criterion of Eq. 1 without considering the admissibility constraints.

3. Joint filtering-estimation of Stokes vectors

In order to reduce the effects of noise, we propose to take advantage of spatial information
by using non-local filtering. Section 3.A addresses non-local filtering for the canonical one-
channel image case. Section 3.B introduces some improvements to the standard method.

Section 3.C generalizes the algorithm to handle multi-channel Stokes image restoration.



3.A.  Non-local means filtering

Let consider the following additive model for one-channel noisy images:

I(x) = f(x) + n(x), (2)

where f is the ideal image, n is a zero mean noise with unknown variance o2, I is the
observed image and x is a pixel location. The purpose of a denoising algorithm is to estimate
the image f based on the observed image I.

Let us consider a weighted graph w linking the pixels x € Q and y € € of the input
image I with a weight w(x,y). € is the image domain, i.e., the support of the digital image
(2 C Z?). The weighted graph w is a representation of non-local similarities within the input
image I. In [7], the non-local graph w is used for denoising purpose using a neighborhood

averaging strategy: E ( )I ( )
yea WX, Y)Y

Zyeﬂ 'LU(X, Y) (?))

where I,,;,, is a denoised version of I. The weights of the graph are estimated by considering

Vx € Q, Inlm(x) =

image patches that are local features at each pixel. An image patch Py of width (2.k + 1)

centered around pixel x is defined as follows:
Py={I(x+7),T€[-kK]’}, (4)
where [—k, k] denotes the set {—k,—(k —1),...(k — 1), k} of integers.
The graph weights w(x,y) are computed as [16]:

utxy) =0 (LET). )

where dp(x,y) is an intensity-based distance between patches Py and P, (we use here the
Euclidean norm ||.||2); N is the number of pixels of a patch (N = (2.k + 1)?); ¢ is a kernel
function measuring the similarity between two patches, which was chosen by Buades et al. [7]
as ¢(r) = e~ *; [ is a smoothing parameter and ¢ is the estimated standard deviation of
the noise. With the assumption of Gaussian noise, 3 can be set to 1 (see [7] for theoretical
justifications) and the standard deviation of noise is estimated via pseudo-residuals €, as
defined in [17]. For each pixel x of I, let us define:

4 1
“=1\z I(x) - ; > Iy, (6)

yeN(x)

where N (x) is the 4-neighborhood at pixel x. The standard deviation of noise is estimated

using the median absolute deviation:
o = 1.4826 med;(|e; — med,(€;)]). (7)
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Note that ¢ is a key parameter that reflects the equilibrium between noise reduction and
image destruction. Indeed, this parameter significantly changes the value of the similarities
between patches. Basically, the algorithm may not remove details whose intensity range is
higher than the estimated noise level of the input image.

In order to decrease the computation time, instead of using the entire image domain €2 as
the search window for each pixel as in [7], a smaller search window, denoted €y, is generally
considered. As a consequence, the numerator and the denominator of Eq. 3 contain card(€y)

terms instead of card(€2) terms.

3.B.  Adaptive NLM

The key point of NLM-based denoising techniques is the definition of the weighted graph.
We aim at providing a more flexible NLM algorithm, that adapts to the content of the image.
In this regard, our contribution concerns three important parameters of the graph w: the
function ¢, the patch size and the patch shape. In practice, at each pixel x, the size of patch
that will be used for the computation of {w(x,y)}yeq, is first determined. The shape of each
patch is then determined for each pair {x,y}. Finally, small weights are set to 0 in order to

discard dissimilar patches.

3.B.1. Function ¢

While the original version of the NLM algorithm [7] uses ¢(z) = e™* as a kernel, the use of
kernels with finite support may yield better results [18]. Indeed, the exponential form of ¢
used in [7] assigns positive weights even to very dissimilar patches. Although the weights of
these patches are usually very small, the denoising process may not be optimal due to all
these non-negligible small contributions.

In this work, the traditional kernel function ¢(z) = e~® has been used, but we propose to
remove the contributions of the outlier patches using statistical arguments. Let us recall that
if Xi,..., Xy are independent, standard normal random variables, then the sum Zf\il X?
of their squares is distributed according to the chi-square distribution with N degrees of
freedom. So, by assuming that two patches Py and Py, are associated to the same uniform

area and that the noise is white Gaussian with variance o2, we have:

dP (Xa y)2

NG

~ X*(N). (8)
We use this property to efficiently define a threshold for outlier removal.

Given a p-value p, a threshold ¢ can be estimated such that the probability of random
value defined in Eq. 8 exceeding t is equal to p. Since ¢ is a decreasing function on R™, then
P(w(x,y) < ¢(t/N.3)) = p. The patches with weights w(x,y) less than ty = ¢(t/N.3) are

considered as outliers, and their weights are set to 0. In the following, p is set to 0.05. Such a



thresholding procedure is very efficient to discard irrelevant (i.e. dissimilar) patches during

the denoising process.

3.B.2. Size and shape of patches

Buades et al. proposed to use square patches in the original NLM algorithm version. The
parameter k is generally chosen equal to 1, 2 or 3, which leads to patches of size 3 x 3, 5 x5 or
7 x 7. The half-width £ is usually considered as a global parameter. However, using a global
setting may not lead to an optimal denoising procedure since the information redundancy
principle on which the NLM algorithm relies may be scale-dependent. Seen as a problem
of multi-scale image representation, the estimation of an optimal patch size appears to be
also related to the estimation of an optimal patch shape. While the square shape has the
advantage of keeping the algorithm simple, the overall denoising performance might not be
optimal around high contrasted edges. To deal with this issue, one possibility is to consider
anisotropic supports. In [14], Katkovnik et al. propose a star-shaped neighborhood which is
approximated by a sectorial decomposition. The use of such a decomposition allows different
adaptive scales for different directions. In [15], Deledalle et al. also propose to use families
of arbitrary shapes (disks, half-pies and quarter-pies, bands) to improve the standard NLM
performance.

In this work, we propose an adaptive technique to modify the shape of the patches dur-
ing the estimation of the weights w(x,y). The patch shape is locally estimated in a non-
parametric fashion for each pair (x,y) of pixels. As shown in Fig. 1, the patch support S
is decomposed into two disjoint parts, denoted S; and Sy, such that S = S;(JS,. Sy is the
center square fully contained in S, and S5 is the one-pixel wide peripheral border. In order
to keep a coherent local descriptor, all pixels of S; are used in the computation of w(x,y).
To build variable shapes, pixels of Sy considered as possible outliers do not take part in the
computation of w(x,y). Combining such a patch partitioning with a data driven approach
allows to handle locally various shapes in a simple and efficient way. In practice, a fourth
of the pixels of Sy (corresponding to the most dissimilar pixels between the two patches
Py and Py) are removed for the computation of w(x,y). Note that the aim of the previous
subsection was to discard irrelevant patches, that is, to set w(x,y) to zero for some couples,
whereas the purpose is here to discard some pixels for the computation of w(x,y).

The distance between patches can be expressed as follows:

dp(x.y)? =min Y Spey)(T) (I(x+7) = Iy +7))°, (9)

Te[—k,k]?
where S(xy)(T) defines the shape of patches P and P, (S(xy)(T) equals 1 for all pixels
except for a fourth of the pixels of S5 for which Sixy)(7) is set to 0). The computation of

Eq. 9 is straightforward using classical sorting algorithms.



Finally, it is known that the use of large patches leads to high performance denoising in
image parts with uniform intensity while small patches are more adapted in contrasted areas.
Here, we propose a sequential procedure to automatically choose the local optimal patch size.
The underlying idea is to use the largest possible patch. Basically, we start with a large patch
size (2.kmaz +1) X (2.kpmar +1) and compute the corresponding weights {w(x,y)}yeq, . If not
enough similar patches are found in the search window (), the patch size is decreased (it
is expected to observe more small similar patches than large similar patches) and the set of
weights {w(x,y)}yeq, is recomputed. This procedure is repeated until a minimum number
of similar patches is reached or until the minimal size of the patch is reached (ki = 1).
In practice, the minimum number of similar patches (i.e. card ({FPy,y € Qx|w(x,y) > 0}))
is set to Ny. Since the optimal patch size at each pixel is estimated starting from a maximal
value of 2,4 + 1, ke can be arbitrary set to a very high value. However, k.. has to be
small to lower the computational cost. For traditional images, a patch of size 9 X9 (k0 = 4)
is generally sufficient to estimate the similarity between two pixels.

The overall weight computation is described in Alg. 1.

Algorithm 1 Computation of the weights at pixel x
Input: image I, maximal patch size k.., search window centered around the point x: §2,

Output: weights w(x, .)

Emin = 1
for k = k42 t0 kppin do
Estimate the threshold ¢, such that P(w(.,.) < tg) = 0.05.
for each y € 2, do
Compute w(x,y) according to Eq. 5 and Eq. 9.
Set w(x,y) to 0 if w(x,y) < to.
end for
Set w(x, x) to the maximal value of {w(x,y)}yeq,
if there are at least Ny values of w(x,.) strictly greater than 0 then
leave the ”for” loop
end if

end for

Note that the value of Ny (the minimum number of similar patches) may have a direct
influence on the results. If less than Ny similar patches are observed, the size of the patch is
reduced in order to possibly detect more patches. This is due to the fact that less than Nj
observations are not considered enough to denoise the images efficiently (as an example, in a

uniform area corrupted by white noise and under the hypothesis that all weights are equal,



the standard deviation of the noise is expected to be decreased by the factor 1/v/N if N
similar patches are considered). Small values of Ny can also lead to poor denoising properties
(large patches will be considered even if a small number of similar patches are found). On
the opposite, a high value of NV, will lead to always consider patches of small size. In practice,
the choice of Ny may vary according to the local geometrical and intensity properties of the
considered image. For instance, the number of examples that can be found is expected to be
higher for a pixel at the center of a flat region in term of intensity, than for a pixel at the
border of a region that is mainly constituted of edges, and that exhibits a smoothly varying
intensity signature. Consequently, Ny has to be high for an image composed of large and
uniform regions, and small for an image composed of small regions with varying intensity

signatures. In the following, Ny has been arbitrarily set to 40.

3.C. A non-local means filter for the estimation of Stokes vectors

The non-local means filtering approach can be considered as a weighted least squares prob-
lem: under the hypothesis that the weights w(x, .) have been normalized such that they sum

up to 1, we can write:

Vx € Q, ILyn(x) = Z w(x,y) I(y)
yEQx ' (10)

In our application, we have K (K > 4) measurement images. The image I can also be
considered as an image with K components : I = (I, 1) 13 [5)) Denoising I can

be performed for each channel independently as follows:

vx€Q, Lun(x) = Y Du(y). I(y)
yEQx ' (11)

where Dy(y) is a K x K diagonal matrix. The diagonal element d;; (i = 1...K) is the

normalized weight between pixel x and pixel y for the i channel (which can be considered

as a scalar image). As a consequence, » .o Dx(y) is equal to the identity matrix.
However, our purpose is not to denoise the measurement images, but rather to estimate a

denoised version of the Stokes vectors. Eq. 11 becomes:

Yx e Q, S(x)=arg min > (I(y) — P.S)".Dy(y).(I(y) — P.S). (12)

Three comments can be made about Eq. 12. The first one is that this equation represents
a joint filtering-estimation of the Stokes vectors. Nevertheless, admissibility constraints are

not taken into account. This point will be addressed later.

8



The second comment is that minimizing this criterion is equivalent to minimizing the
quadratic reconstruction error between the observed measurements I and the predicted ones
P.S if no filtering is performed, which is equivalent to the pseudo-inverse approach since
no admissibility constraint has been defined yet. Indeed, without any filtering, the matrix
D (y) is the null matrix if y # x, and the identity matrix otherwise: only data associated
to pixel x are considered for the estimation of the Stokes vector at this pixel.

The last comment is related to the estimation of Dy(y). Coefficient d;; is the normalized
weight between pixel x and pixel y for the i** channel. It is estimated using the approach
presented in Sec. 3.B. However, it could be envisaged to consider other matrices Dy(y)
related to other approaches.

Note finally that the criterion of Eq. 12 can be expressed more simply and compactly.

Since Dy(y) is diagonal and symmetrical, the gradient V of the criterion writes:

vV = —2.P7 EyeQx D.(y).(I(y) — P.S)
= —2PT (3 0, Dx(¥)I(y) — Xyeq, Dx(¥)P-S) (13)
= _2'PT(ZyEQx Dy« (y)I(y) — P.S),

since ) cq Dx(y) is equal to the identity matrix. Finally, by definition of L, (Eq. 11),

the gradient of the criterion can be written as:
V = 2P (L (x) — P.S). (14)

This gradient is equal to the gradient of the cost function |[|L,;,(x) — P.S||%. The Stokes

vector can thus be estimated as:
Yx e, S(x)=arg min || Ly, (x) — P.S||?, (15)

both criteria (Eq. 12, Eq. 15) beeing equal up to a constant. The criterion of Eq. 15 corre-
sponds to denoising each channel using a NLM approach, and then to estimating the Stokes
vector at each pixel separately. For each pixel, the criterion of Eq. 15 can be optimized using
the pseudo-inverse solution, but this method suffers from a major limitation: the estimated
Stokes vector may not verify the admissibility constraint. To overcome this limitation, the
criterion of Eq. 15 is optimized using a constrained optimization procedure (see Appendix
1). Note that solving the criterion of Eq. 15 under the physical admissibility constraint is
equivalent to solve the one of Eq. 12 under the same constraint since both criteria are equal
to a constant.

Finally, if S denotes the estimated Stokes vector image, the image I defined as i(x) =
P.S(X) for each x, can be considered as the denoised version of I. In the case & = 4, note
that the images I and I, differ only for the pixels for which the pseudo-inverse solution

does not satisfy the admissibility constraints.



4. Results

4.A.  Application to simulated data
4.A.1. Evaluation protocol

In order to evaluate the relevance of the proposed approach, simulations were carried out on
simulated data. Methods were assessed considering signal-to-noise ratio. We synthesized a
256 x 256 pixel Stokes image S9 composed of two distinct regions: (i) a background with a
uniform polarization signature S = [1, 1/v/3,1/V/3,1/ \/g}T, and (ii) a 100 pixel radius circle
with a smoothly varying completely polarized Stokes signature placed in the center of the
image (see Fig. 2). The data necessary to carry out our study were generated as described
in [2]. The observation model corresponding to an optimal rotating wave-plate Stokes-meter
was used to generate the intensity images 19 that were degraded by adding white Gaussian
noise of variance 2. We assume in the following that no systematic errors occur, i.e., that
the PMM is error free. Note that the polarization states of the synthetic target lie on the
Poincaré sphere and even small noise lead also to non physical solutions if one uses the
pseudo-inverse approach. This constitutes a hard test case.

Since the ground truth is known, estimation accuracy can be evaluated by comparing
the estimated values (the Stokes vectors S and the associated intensity values I) with the
original ones (S9 and I9"). The method is first evaluated by comparing the original image 19

(noise-free intensity image) with its estimation I using the peak signal-to-noise ratio (PSNR):

d2
By, (Fe - L) )

where «; is computed so that the dynamic range of ij.]:?t is d (for example 255), and where

PSNR(I?,1) = 10 log,,

(16)

P is the number of pixels. Complementary to this PSNR-based assessment, the method is

also assessed considering Stokes vectors as:

gt &) [1S9(x) — S(x)][2
e(8%,8) = 100 Z Hsm H2 . (17)

Results obtained with the proposed approach are compared with several methods in the
next three sections. Methods used for comparison are chosen so as to illustrate (i) the benefit
of using spatial information (section 4.A.2), (i7) the relevance of the proposed weight deter-
mination procedure (section 4.A.3), and (iii) the benefit of accounting for the admissibility

constraints (section 4.A.4).

4.A.2. Benefit of using spatial information

Five methods, My, My, Ms, My, and Mp, are evaluated:
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e Mi: S(x) is the pseudo-inverse solution;

~

e My: S(x) is the pseudo-inverse solution, further orthogonally projected onto the Stokes

vector set if the admissibility constraints are not verified;

A

e Mj: S(x) is computed pixel-wise (without any spatial filtering) by taking the admissi-

bility constraints into account (see appendix for details);
e M, is the approach proposed by Sfikas et al. [6];

e Mp is the proposed approach with a search window of size 11 x 11, and a maximal

patch size of 9 x 9.

Note that the methods My, Ms, and M3 do not use any spatial filtering.
The PSNR (Eq. 16) and the Stokes vector estimation error (eq. 17) corresponding to Mj,
My, M3, My and Mp for different values of 0% (from o2 = 0.001 to 0.05) are given in Tab. 1.

o? M, M,y M; My Mp o? M, M, Ms My Mp

0.001 | 24.09 | 24.17 | 24.81 | 30.81 | 43.49 || 0.001 | 5.09 | 4.94 |4.67 |2.35 |0.54
0.002 | 21.08 | 21.16 | 21.86 | 28.40 | 40.33 || 0.002 | 7.20 | 6.98 |6.55 | 3.12 | 0.79
0.005 | 17.12 | 17.21 | 17.98 | 25.26 | 35.85 || 0.005 | 11.34 | 10.95 | 10.22 | 4.44 | 1.31
0.01 | 14.08 | 14.15 | 15.02 | 23.02 | 32.31 || 0.01 | 16.09 | 15.47 | 14.32 | 5.60 | 1.95
0.02 | 11.07 | 11.13 | 12.15 | 20.50 | 29.06 || 0.02 | 22.76 | 21.73 | 19.86 | 7.44 | 2.86
0.05 | 7.09 |7.14 |8.46 |16.97|25.24 || 0.05 | 36.02 | 33.86 | 30.06 | 10.97 | 4.35

Table 1. PSNR (left) and Stokes vector estimation error (right) obtained with
the five different methods, and for different values of 0. Bold values correspond
to the best results.

Tab. 1 shows the interest of considering spatial information in the estimation of Stokes
vectors. The proposed approach Mp, and M, outperform clearly the methods M7, M, and
Ms. As an example, the PSNR (left part of Tab. 1) obtained with the proposed approach
(Mp) is at least 15 dB greater than the one obtained with M;, My, or M, and the estimation
error (right part of Tab. 1) is decreased of a factor varying from 8 to 10.

We note also that the proposed approach is more efficient than the method M, [6]. This
is mainly due to the efficiency of the NLM algorithm that has been shown to outclass other
denoising methods.

Finally, amongst the methods which do not consider spatial information, Mj is the one

providing the best results. This shows that the traditional way of projecting a vector onto the
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Stokes vector set (method My, orthogonal projection) is not an efficient approach, compared
to the proposed method which reduces the most the error reconstruction between the ob-
served measurements and the predicted ones, while constraining the solution to be physically
admissible.

Fig. 3 summarizes the interest of the proposed approach. The original image S9 (top left),
the estimates S computed using I (62 = 0.01) with the method M; (top right), with the
method M, (bottom left) and with the proposed approach Mp (bottom right) are presented
using the Poincaré sphere representation. Note that it is difficult to observe the homogeneous
region (background) in the original image S9" with this representation, since it is composed
of a unique Stokes vector. Results obtained with M; provide vectors which do not belong
to the sphere, and it is difficult to distinguish between the two regions (the circle and the
background). Results obtained with M, and Mp enable to filter the noise while constraining
the solution to be physically admissible. The two regions can then easily be observed. Note
also that the images show clearly that the proposed approach enables to achieve a better

noise filtering. Note also that Fig. 2 leads to a similar conclusion.

4.A.3. Evaluation of the proposed weight determination procedure

We propose here to compare the proposed weight determination procedure (the size and
the shape of the patches are determined according to the procedure of Sec. 3.B) with the
traditional one [7]. To this end, we derive four methods (73 to 7}) that are simplified versions
of Mp, in the sense that the weights are estimated as in [7] (the patch size is a square of
fixed size, and the contributions of outlier patches are not removed). In all cases, the search
window has been set to a size of 11 x 11, whereas the patch size has been set to 3 x 3 for
T, to 5 x 5 for Ty, to 7 x 7 for T3, and to 9 x 9 for T. Results obtained with these methods
are given in Tab. 2.

We can first notice that the proposed approach outperforms the methods 77, T, T3, and
T, for each experiment. This clearly highlights the interest of the approach which has been
defined for the estimation of the weights. Finally, results of Tab. 2 show clearly that the size
of the patch may have an impact on the results. In this case, we can observe that neither T}
nor Ty enables to achieve the best results (amongst 77, Ts, T3, and T}), leading to conclude
that the size of the patch has to be chosen neither too small nor too large. This clearly
highlights the benefit of an adaptive strategy as in the proposed approach.

Moreover, the proposed approach is versatile: other strategies can be envisaged to compute
the weights. Indeed, the criterion of Eq. 15 under the physical admissibility constraint is
equivalent to the one of Eq. 12 independently of the way the weights are defined. The
only constraint is that 3 o Dx(y) is the identity matrix (for all x). It is also possible to

determine the weights of Eq. 12 so as to obtain a Gaussian or a median filtering. We propose
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0.001 | 40.24 | 40.68 | 38.98 | 37.41 || 43.49 0.001 | 0.79 | 0.76 | 0.91 | 1.08 || 0.54
0.002 | 37.23 | 37.57 | 36.17 | 35.06 | 40.33 0.002 | 1.13 | 1.08 | 1.24 | 1.40 || 0.79
0.005 | 33.00 | 33.24 | 32.26 | 31.44 || 35.85 0.005 | 1.82 | 1.74 | 1.93 | 2.10 || 1.31
0.01 |29.85 | 30.41 | 29.62 | 28.89 | 32.31 0.01 |2.59| 241|261 283 | 1.95
0.02 |26.92 | 27.80 | 27.25 | 26.66 || 29.06 0.02 | 3.64|3.25 | 3.43 | 3.65 || 2.86
0.05 | 23.18 | 24.54 | 24.39 | 24.12 || 25.24 0.05 | 557|470 |4.75 | 4.88 || 4.35

Table 2. PSNR (left) and Stokes vector estimation error (right) obtained with
four simplified versions of the proposed approach (71, T, T3, and T}), and
with the proposed approach for different values of o2 (see text for details).
Bold values correspond to the best results (without considering the proposed

approach Mp which provides always the best results).

to first filter the images with a Gaussian filter (GF) or a median filter (MF), and then to
optimize the criterion of Eq. 15 under the physical admissibility constraint (where I, is
now the filtered images). Several values of the Gaussian filter standard deviation (from 0.1
to 3 with a step of 0.1), and several median filter sizes (from a size of 3 x 3 to 11 x 11)
have been tested. Results are presented in Tab. 3. For each experiment, only the best result
in terms of PSNR and of estimation error is given as well as the corresponding setting in
parentheses (filter size for MF or standard deviation for GF).

Results of Tab. 3 show clearly that the proposed approach outperforms the Gaussian and
the median filtering based approaches. Moreover, since the only difference between the three
methods concerns the way the weights are computed, this also shows that the method can
benefit from future advances in denoising methods provided that the filtered image can be
expressed with Eq. 10, that is, the denoised value at a pixel is a weighted sum of the pixel

values of the original image (with the constraint that the weights sum up to 1).
4.A.4. Benefit of accounting for the physical admissibility constraint
We propose to compare the proposed method with the two following approaches:
e NLMPI: S(x) is the pseudo-inverse solution computed using I,;,,,. This means that S(x)
is not necessarily a Stokes vector since it may not verify the admissibility constraints,
but S(x) is the global minimum of the criterion of Eq. 15. Note that the proposed

approach and the NLMPI method give identical results if the pseudo-inverse solution

verifies the admissibility constraints.
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o2 | GF MF Mp o2 | GF MF Mp
0.001 | 27.00 (0.5) | 31.04 (3 x 3) || 43.49 0.001 | 3.44 (0.5) | 1.98 (5% 5) | 0.54
0.002 | 25.06 (0.6) | 29.38 (5 x 5) || 40.33 0.002 | 4.15 (0.6) | 243 (5% 5) | 0.79
0.005 | 22.86 (0.7) | 26.77 (5 x 5) || 35.85 0.005 | 5.27 (0.8) | 3.35 (5x 5) | 1.31
0.01 | 21.39 (0.9) | 24.57 (7 x 7) | 32.31 0.01 [6.16 (1.1) | 4.28 (7x 7) || 1.95
0.02 |20.12 (1.2) [ 22.52 (7 x 7) | 29.06 0.02 |7.02(14) |5.50 (7x7) || 2.86
0.05 | 18.61 (1.7) | 19.57 (7 x 7) | 25.24 0.05 | 829 (1.9) | 7.49 (9 x 9) | 4.35

Table 3. PSNR (left) and Stokes vector estimation error (right) obtained with
the Gaussian (GF) and with the median (MF) filtering based approaches,
and with the proposed approach (Mp) for different values of noise (0?). For
each case, only the best result is given as well as the corresponding setting in

parentheses (filter size for MF and standard deviation for GF).

e NLMPROJ: S(x) is the pseudo-inverse solution computed using I, further orthog-
onally projected onto the Stokes vector set if the admissibility constraints are not

verified.

Results are presented in Tab. 4.

o? NLMPI | NLMPROJ || Mp o? NLMPI | NLMPROJ || Mp
0.001 | 41.55 41.63 43.49 0.001 | 0.67 0.66 0.54
0.002 | 38.30 38.36 40.33 0.002 | 1.00 0.97 0.79
0.005 | 33.97 34.18 35.85 0.005 | 1.61 1.57 1.31
0.01 | 30.65 30.79 32.31 0.01 | 2.36 2.31 1.95
0.02 | 27.52 27.63 29.06 0.02 | 341 3.34 2.86
0.05 | 23.77 23.88 25.24 0.05 | 5.19 5.08 4.35

Table 4. PSNR (left) and Stokes vector estimation error (right) obtained with
two simplified versions of the proposed approach (NLMPI, NLMPROJ), and

with the proposed approach for different values of 0% (see text for details).

The use of the admissibility constraint permits to improve the PSNR and the Stokes vector
estimation accuracy (see Tab 4). The constraint acts like a prior that enables to achieve a
better estimation. Moreover, the proposed way to account for the admissibility constraint,

namely to constrain the solution to be physically admissible while reducing the most the
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error reconstruction, outperforms orthogonal projection. Note finally that such a conclusion
has already been drawn in Sec. 4.A.2 (methods M;, M,, and Ms).

4.B.  Results on real data

To test the ability of the method to handle real images, we used a well calibrated Stokes
polarimeter [19] to image a real scene. The scene consisted of an ensemble of objects (see
Fig. 4) lighted with multidirectional partially polarized light. Observations were carried out
through a narrow band interferential filter to ensure that the PMM is known with high
accuracy. For the sake of conciseness, we present only the degree of polarization (DOP),
orientation and ellipticity images that are obtained with the proposed approach (left part of
Fig. 4), and the pseudo-inverse solution (right part). We observe that the three estimated
characteristics, especially the ellipticity and the orientation, are less noisy with the proposed
approach. With respect to the degree of polarization, the same conclusion can be drawn if
we look more closely at the local variations of the polarization signature (see for example
Fig. 5 which is a zoom in on the foot of the figurine).

More generally, we found that for all cases considered here, our approach performed better

than the other methods considered, without having to tune any parameter.

5. Conclusion

Polarimetric imaging carries information absent in conventional optical imaging, and as such
is of great interest for many applications. However, exploiting polarimetric data requires
special care. Admissibility constraints have to be taken into account. Besides, noise stemming
from narrow spectral band measurements and contaminating data has to be handled.
Traditional approaches estimate Stokes vectors without considering the admissibility con-
straints, and without considering spatial information to reduce the impact of noise. We
have presented here an algorithm which overcomes these two limitations. The proposed
joint filtering-estimation procedure can be equivalently achieved sequentially by a two step
method: a filtering stage, and an estimation step. Noise is filtered using a very efficient
denoising approach — the non-local means algorithm — and admissibility constraints are en-
sured in the framework of convex optimization. We assessed the performance of the proposed

approach on simulated and real data.
A. Estimation of the Stokes vector at a pixel

A.A.  Problem statement and solution

The purpose of this appendix is to show how to compute the Stokes vector at pixel x using
the intensity of the denoised image I, at pixel x. Since the processing is achieved pixel-

wise, the term x will not be considered so that I denotes here the K measures associated to
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a pixel, and S represents a Stokes vector. The aim is then to solve the following optimization

problem:
S = arg min |1 - P.S|P% (18)

or more precisely the following one:
- ) B )
S = arg min I|II—-P.S||%, (19)

where B denotes the set of admissible Stokes vectors.

The criterion of Eq. 18 has a unique minimum which is the pseudo-inverse solution: V=
P1S. However, this solution may not verify the admissibility constraints. In this case (V ¢ B),
the criterion of Eq. 19 has a unique minimum denoted S* which belongs to the border 0B
of B. This is a consequence of the fact that the criterion is strictly convex and that B is a

convex part of R*. Moreover, S* is the unique point of 9B verifying:
e the gradient of the criterion 18 at point S* is orthogonal to 0B,
e the gradient of the criterion 18 at point S* gives the direction of the interior of B.

Note that the two aforementioned points correspond to the Kuhn-Tucker (KT) conditions.
Since there is a unique KT point and since it corresponds to a global minimum, the criterion
and the inequality constraint are Type I invex [20]. This means that a nonlinear optimization
approach such as a sequential quadratic programming (SQP) is ensured to converge to the
global minimum. However, in practice, we have observed that when using a SQP algorithm,
the convergence rate can be slow, leading to a poor approximation of the solution, or to a
time-consuming algorithm (such algorithms have been tested with the optimization toolbox
of Matlab). To solve this problem, we propose an algorithm which takes benefit from the
fact that 0B is the set of Stokes vectors with a degree of polarization of 1. The proposed

algorithm is much simpler than a SQP approach and has shown to be very efficient.

A.B.  Optimization algorithm
fVe B, then S=V. Otherwise, S has to be searched in 9B. Unfortunately, the criterion

|T — PS||” restricted to B is not convex and it may have local minima. However, since the
general problem (Eq. 19) is convex, local descent methods can be used to estimate S if the

following two strategies are used iteratively:

1. local descent on the border 0B:

T
I-P l,/Sf+S§+S§, S, Ss, Sg}

; (20)

min
51,52,53
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2. local descent on the interior B of B:

min [T PS|?, (21)
SeB

B:{S|SO>\/S%+S§+S§}.

The algorithm is initialized on OB (the orthogonal projection of V onto B) and the strategy 1

with

is considered. When a minimum is obtained, estimating the gradient of criterion 18 at this
points enables us to determine if this minimum is the global one or a local one: it gives
the direction of the interior of B ¢ff the minimum is the global one. If this minimum is a
local one, the criterion can be reduced by entering into B. The descent is then continued
with strategy 2. In this strategy, the border is then ensured to be met since there is no local
minimum in B. Then, the strategy 1 can be used again. The algorithm is described more
precisely in Alg. 2.

We have observed that the method converges in all cases at the first iteration of the while
loop (see Alg. 2): this means that the solution obtained after the first optimization of the
criterion of Eq. 20 provides always an estimation of the global minimum. However, instead
of setting S to the projection of V onto B for the initialization (see Alg. 2), we can set
S randomly in OB. In this case, the algorithm may need two iterations to converge. Note
finally that the proposed approach has been made possible thanks to the fact that OB can

be easily parametrized.
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Algorithm 2 Estimation of the Stokes vector at a pixel
Input: I (the K measurements), P

Output: S (the associated Stokes vector)

Computation of the pseudo-inverse V

if V ¢ B then
S=V
else

Set S to the orthogonal projection of V onto B
Set ASolutionHasBeenFound to 0
while ASolutionHasBeenFound == 0 do
Estimate S by optimizing the criterion of Eq. 20 using the current value of S as a
starting point (descent on the border).
if the gradient of Eq. 18 at point S gives the direction of the exterior of B then
Estimate S by optimizing the criterion of Eq. 21 using Sasa starting point (descent
on the interior). For the optimization, a gradient approach is used: a maximal
admissible step is computed at each iteration to constrain S to be a Stokes vector.
At the end of the procedure, S is ensured to belong to IB.
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end while
end if
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Fig. 1. Example of 3 patches of size 3 (left), 5 (middle), and 7 (left): S; is in

white, and S, is in gray.
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Fig. 2. Representation of the simulated data. The i-th column is associated to

the i-component of the Stokes vector. The first line represents the ground truth,
whereas the other lines represent the Stokes vectors that are estimated from
the most noisy simulated images (0?=0.05) with the pseudo-inverse solution
M; (second line), the proposed approach Mp (third line), and with M, (fourth

line).
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Fig. 3. Poincaré sphere representation of the original image S9 (top left), of
its estimation from I (o2 = 0.01) with method M; (top right), method M,
(bottom left) and the proposed approach Mp (bottom right).
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Fig. 4. Degree of polarization (first line), ellipticity (second line) and orienta-
tion (third line) of the Stokes vectors estimated with the proposed approach
(left), and by using the pseudo-inverse (right).
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Fig. 5. Degree of polarization of the Stokes vectors estimated with the proposed
approach (left) and by using the pseudo-inverse (right). The zoom in on the

foot of the figurine reveals the denoising efficiency of the proposed approach.
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