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Abstract—In a maritime area supervision context, we seek
providing a human operator with dynamic information on the
behaviors of the monitored entities. Linking raw measure-
ments, coming from sensors, with the abstract descriptions
of those behaviors is a tough challenge. This problem is
usually addressed with a two-stepped treatment: filtering the
multidimensional, heterogeneous and imprecise measurements
into symbolic events and then using efficient plan recognition
techniques on those events. This allows, among other things, the
possibility of describing high level symbolic plan steps without
being overwhelmed by low level sensor specificities. However,
the first step is information destructive and generates additional
ambiguity in the recognition process. Furthermore, splitting the
behavior recognition task leads to unnecessary computations
and makes the building of the plan library tougher.

Thus, we propose to tackle this problem without dividing
the solution into two processes. We present a hierarchical
model, inspired by the formal language theory, allowing us to
describe behaviors in a continuous way, and build a bridge over
the semantic gap between measurements and intents. Thanks
to a set of algorithms using this model, we are able, from
observations, to deduce the possible future developments of the
monitored area while providing the appropriate explanations.

Keywords-behavior recognition; activity recognition; con-
straint programming; pattern recognition; formal grammars

I. INTRODUCTION

Today, numbers of key applications involve the use of
wide area maritime surveillance. Those applications can be
either civil (sea traffic regulation, exclusive fishing area en-
forcement, maritime search and rescue missions, illicit trade
prevention, ...) or military (embargo situation enforcement,
military training area protection, protection of territorial
waters, ...).

In order to perform this surveillance, we need information
about the monitored entities and about the parameters of
the area. The gathering of this data is realized by several
means (maritime patrol aircrafts, satellites, frigates, radar
stations, ...). This sensor network generates raw heteroge-
neous imprecise and incomplete measurements. In the end,
all this data is transmitted to a human operator, whose
task is to determine whether or not actions should be
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considered. Given the number of parameters and entities
involved in a maritime area surveillance task, providing
human operators with a comprehensive analysis of the many
entities behaviors and intents is mandatory for them to have
a real understanding of the complex situation. Furthermore,
as we want them to be able to prevent some dangerous
state of affairs from happening, we must focus on the online
analysis of the situation. Thus, we intend to provide human
operators with hypotheses on what behavior type(s) each
entity can be performing. In order to do that, we must link
the observations provided by a real sensor network with the
relevant behavior types.

In the next section we discuss some related works and
see why they don’t fulfill all the requirements imposed by
our application problem. We first introduce some concepts
(measurement, view, behavior, ...) in Section 3. Then, we
detail our model in Section 4 which is based upon an
extension of the attribute formal grammar model [1]. As in
[2], the plan library is represented by a grammar depicted in
our formalism. A plan is a set of grammar rules. A grammar
rule expresses the temporal decomposition of a symbol in
terminal and non-terminal symbols. We also clarify some
improvements to this model. The confrontation between
measurements and a grammar is depicted in Section 5. This
is done thanks to two mechanisms: the progressive building
of an abstract syntax tree and the handling of attributes
relations with a constraint solver. We show how the inherent
imprecision on continuous values is managed thanks to
an interval constraint solver [3]. We present some of our
experiments in Section 6 and we finally conclude in Section
7 with the depiction of ongoing researches.

II. RELATED WORK AND MOTIVATION

Techniques used to determine an entity’s internal state
given external observations are referred to as plan recogni-
tion [4]. Most of the time, these observations are represented
by a set of symbolic events [5]. These events are used in
the depiction of abstract plan steps. A plan is usually a
hierarchy of plan steps. In behavior/activity recognition, all
the sequences of actions (behaviors) that an entity may be



performing can be generated from the plan library. Recog-
nizing an ongoing behavior, before it has ended, is referred
to as dynamic or online plan recognition. A common way
to address this problem is to provide at any time hypotheses
about the entity behavior (which are revised each time a new
observation arrives).

The first challenge in dynamic plan recognition (as in plan
recognition), is to design the plan library. Many aspects
are relevant when choosing the description model of the
plans. For example, temporal relations should be explicitly
represented in the model. Usually, the order of plan steps
is sufficient, like in Hierarchical Task Networks [6] but
some models [7] allow complex temporal relations between
events and plan steps if needed. As a plan step can usually
be made up of several sub-plan steps, a certain form of
hierarchy must be represented in the model, that’s why raw
Hidden Markov Models [8] encounter some difficulties in
recognizing behaviors which require long term interactions.
Of course, the more expressive the model is, the less efficient
the hypothesis generation mechanism will be [9].

The second difficulty is to manage ambiguous cases
generating a high number of recognition hypotheses. This
problem has previously been addressed. In most approaches,
a probabilistic extension of an existing model is proposed
like [10] or [11] with Stochastic Grammars. The proba-
bilistic solution allows the pruning of low likelihood hy-
pothesis and the ranking of the remaining ones. Classical
probabilistic approaches used in pattern recognition like
Hidden Markov Models [8] have been used to capture the
hierarchical essence of plans, extensions like Hierarchical
Hidden Markov Models [12] or Abstract Hidden Markov
Memory Models [13] have been proposed. All those proba-
bilistic models can be compared on a common ground thanks
to Dynamic Bayesian Networks [14]. But this likelihood
ranking is not a shared feature. Indeed, for some applications
relating to abnormal behavior detection, sometimes, a low-
probability behavior should be highlighted instead of being
pruned. Thus, [15] introduced the concept of capabilities-
based plan recognition, bringing a new concept (capabilities)
in a classical Bayesian plan recognition context. Recently,
[16] focused on allowing the plan library builder to add some
decisional criteria on plans and plan steps. The idea is that
the relevance of a hypothesis is linked to the observer and
that it should be specified directly into the plan library.

All those previous methods have focused on handling
the effects of ambiguous cases. None are wondering why
those ambiguous situations are happening. What if a wise
choice of representation model was helpful in avoiding the
generation of a great number of hypotheses?

First, let’s remind that plan recognition models are often
based on symbolic events. When dealing with real world
applications, observations are not a set of symbolic events.
The captured data coming from a sensor network is het-
erogeneous, multidimensional, can be incomplete and if we

are dealing with numerical measurements, imprecise. With
regards to that, using the above legacy plan recognition
techniques requires to have a mechanism, transforming those
observations into events. When addressing this issue, the
plan recognition process is assumed to be divided in two
steps: first the events generation and then the confrontation
of events against the plan library. For instance, in [2] a
tracking system extracts some visual atomic events from
a video surveillance camera stream (like the appearance
of objects) and then feeds a stochastic attribute grammar
parsing algorithm with them. In this work, no comments
were made about the cost of computing those events by the
tracking system. In fact, very few people acknowledge the
event generation process as a part of plan recognition.

[17] focused on the best way to compute, from these
raw observations, symbolic events in order to use legacy
symbolic plan recognition techniques. They build the event
generator (in this case a feature decision tree) function
of the plan library before the recognition process begins.
We consider that this work is fundamental, it exhibits the
existence of a strong relation between the event generation
process dealing with raw measurements and the legacy plan
recognition process. The fact is that with tightening up
the links between the two phases, an overall benefit has
been drawn out. However, this decomposition still generates
several issues.

(1) First, during the recognition process, the link between
the two processes is still unidirectional: the event generator
computes all the events it can produce from the observations
and gives them to the legacy plan recognition process. Some
of those events don’t need to be computed. Assuming the
only one recognition hypothesis remaining about the behav-
ior of a boat is that it is going toward Algiers, generating an
event concerning the weather in New York is very unlikely to
be relevant. It would be better to generate only the relevant
events function of the plan recognition state.

(2) Secondly, the first process causes an information loss
which engenders ambiguity in the plan recognition step. The
application context we are in is already deficient in workable
data. For example, reducing the real value of the measured
orientation (—79°) of a boat in a symbolic one (west)
is information destructive and this can lead to producing
several hypotheses (the boat is going toward harbor A, B
or C). In order to deal with the resulting huge number
of recognition hypothesis, some have developed ranking or
pruning techniques based upon likelihood [18] or decisional
[16] criteria. Still, it would have been better to keep the real
measured value.

(3) Lastly, the limit between real observations and sym-
bolic events is the same for all the behavior types represented
in the plan library. Though, all those don’t involve the same
concepts and relations, and if it was not for the sake of other
behavior types, some would have been described differently
with a more appropriate separation between the real data



and the abstract layers. For example, let’s assume we want
to describe two behaviors for a boat: a sudden accelera-
tion and a supply delivery. The first behavior should be
described with speed change events (speed_augmentation)
whereas the second behavior should be described with
events of higher abstraction (sailing_toward_a_harbor,
loading_supply, ...). Indeed, when dealing with a huge
number of behavior types, finding a suitable common event
ground for the description of the plan library involves too
much compromises between efficiency and declarativity.

We argue that the source of those problems is the event
generation process (multidimensional numeric-symbolic
measurements to unidimensional symbolic events). Intro-
ducing a synthetic abstraction level introduces more issues
than it solves. When applied to real world applications like
ours, we can’t afford to realize unnecessary computations, to
generate more than the inherent knowledge domain ambigu-
ity, and to add some difficulties to the plan library building
process.

[19] focused on how an activity recognition process could
be working directly with low level heterogeneous events and
proposes a homogeneous model to represent a hierarchy of
facts (which could be associated to a plan library). However,
they didn’t go far enough. In their formalism, some relations
can be described between numeric and symbolic data. But
even if numeric events are taken into account, they don’t
handle imprecise or missing measurements. In fact, whereas
their event-level is closer to the sensor measurements, there
is still a two-stepped treatment in their approach.

We choose to avoid the introduction of the classical event
level, splitting the measurements handling and the plan
recognition process. While doing so, we are bound to di-
rectly use raw measurements in the second step. As a result,
we must be able to handle heterogeneous multidimensional
and possibly imprecise data and describe in the same model
our abstract plan steps.

Let’s consider a motivating example. It consists in a
scenario of a sailing boat tacking from a harbor (Bastia)
toward a second one (Livorno). These kinds of behaviors
are complex: they involve multiple steps (leaving Bastia
through its fairway, tacking toward Livorno’s fairway, and
entering Livorno), external parameters like wind orientation
must be taken into account, and a combination of multiple
geometrical relations is used. In this situation, the only
live information at our disposal are imprecise (and maybe
incomplete) measurements about the sailing boat position
and orientation issued from a sensor network (radars, spy
planes, etc.) from time to time.

To achieve our goal, we present a new generative model
capable of representing in a declarative and continuous way
this kind of behavior. Instances of this model are then
confronted to raw measurements to determine whether or
not the monitored entity is performing the depicted behav-
iors, without generating more recognition hypotheses than

needed. Furthermore, thanks to this declarative model we are
able to provide explanations justifying them and predictions
on the future evolution of the entity’s behavior. Confronted
to this triple result, a human operator is able to evaluate the
local relevance of a hypothesis, to anticipate and prevent
unwanted situations.

III. PRELIMINARY CONCEPTS

In real world applications, live data is provided by
a heterogeneous sensor network. In order to be able to
deal in a consistent way with heterogeneous data, we first
define a common abstraction of the concept of measurement:

Definition 1: A measurement is defined as a 4-tuples
(E,P,S,V), with E the entity unique identifier, P the
name of the measured property, S the sensor unique
identifier, and V' the measurement value. This value can be
either a real numeric value or a symbol.

Measurements can’t be carried out at all times, and for an
arbitrary time 7', we can’t be sure to have a value for all the
entities properties measured by our sensor network. Thus,
we suppose the existence of an interpolation/extrapolation
system, which will generate from previous measurements
some complete views of the entities properties at a given
time 7.

Definition 2: A view is defined as the set M of all the
measurements done or extrapolated at a given time.
Definition 3: A subview is defined as a subset of a view.

In order to represent the imprecision induced by the
sensors and the interpolation/extrapolation system, we allow
the numeric value of a measurement to be an enclosing
interval of real numbers. In the case of uncertainty about
a symbolic value we allow it to be a set of symbols.
Of course, if a measurement is missing, and can’t be
inter/extrapolated, it is replaced by either | — oo, +o0o[ in
case of a numeric value, or S in case of a symbolic one,
such as S is the set of symbols. Here is a sample of a
subview made up of two measurements (speed and type of
the boat named Artemis II):

((ArtemisII, Speed, Radar01,[15.28,17.67]),
(ArtemisII, Type, Radar02, {CargoShip, Sailboat}))

We then define a behavior for an entity as a sequence of
subviews, where there is at least one measurement about
one of its properties.

Definition 4: A behavior for an entity e is defined as a
sequence of subviews (M, ..., M,) where there is at least
one m € My U...UM, such as m = {e, P, S, V).



In classical online plan recognition, a plan is a sequence
of events. Having at our disposal a plan library, the goal is
to find which plans match with an incoming sequence of
events. In our case, the sequence of events is a sequence of
views and all the plans (i.e. sequence of subviews) can’t be
exhaustively written in the plan library.

The previous concepts are intended to be very general
and could be used through a variety of application domains.
With such concepts, it is obvious that we are not going
to be able to list exhaustively all the behaviors that we
want to recognize. Furthermore, recognizing one behavior in
particular is never useful at such a low level of description.
However recognizing all the behaviors with some common
characteristics (ex: all the behaviors in which the boat is
sailing toward a precise harbor) would be. Those character-
istics are often abstract ones and are never easily linked with
low level measurements.

The first problem is to find a representation in which
we can describe all the characteristics, function of those
measurements. Then, with such a representation, how can
we be able to match an instance of it with live data? We
address these two issues in the next sections.

IV. MODEL

Any plan recognition system works with a collection
of plans to be recognized. These plans must be described
through a formal language. In this section we define the
concepts behind our plan library model.

Our model is an extension of the attribute formal
grammar model.

Definition 5: An attribute grammar is defined as a
5-tuples (N,T,R,S,A) with N a set of non-terminal
symbols, 7" a set of terminal symbols, R = Uie N R!
where R' is the set of production rules associated with
each non-terminal symbol ¢ € N, S a set of starting
symbols with S C N and A = |J;cyyp A7 where A7 is
the set of attributes associated with each symbol j € NUT !

In a classical attribute grammar, a production rule » € R*°
is divided in a left part made up of a non-terminal symbol
sop € N with its attributes A®°, a middle part made
up of a sequence of terminal and non-terminal symbols
S1,82,83,...,8, € N UT associated with their respective
attributes and a right part made up of equality relations
between the symbols attributes involved in the rule. The
syntactic symbols used to split those parts are — and :.

Example 1: In the classical attribute grammar model, a
production rule r € R*° is written :
so(aj®, a3’, a3, ay’) — s1(aj*,as')..

cal® = a3y, ..

-sn(a")
a3’ = aj"

IAs usual, a terminal symbol is written in lower case characters and a
non terminal symbol begins with an upper case character.

In the following, we extend the attribute grammar model
with new definitions for R, T and A, and introduce the
concept of Terminal Set.

A. The & symbol

As we already stated, our behavior library will be
encoded through a formal grammar. We need a way to
combine several sub behaviors such as Acceleration and
SailingTowardAnEntity to compose a new one such
as DeliberateCollisionCourse. Thus we introduce some
changes in the model of R.

Definition 6: A language L& is defined as the
set of sequences of terminal symbols that can be
generated/recognized by a formal grammar G.

A production rule represents a decomposition of a non
terminal symbol into other symbols (non terminal and
terminal ones). To obtain a sequence of terminal symbols
belonging to the grammar language, beginning with a start
symbol, each non terminal symbol is replaced recursively
according to one of its production rules until there only
subsists terminal symbols.

Definition 7: A sub-language LG is defined as the
set of sequences of terminal symbols that can be
generated/recognized by a non terminal symbol n € N of
a given formal grammar G.

We are going to use two symbols in the middle part of our
rules. The first one is < expressing the classical sequentiality
of symbols and the second one is the intersection symbol &.

Definition 8: Given a formal attribute grammar
G = (N,T,R,S,A) and ny,ny € N, the sub-language L&
generated/recognized by n1&ns is such as L% = Lgl ﬂILnGZ

Example 2: Let G = ({I, A, B},{a,b}, {I — A&B ),
(A—a<a<a:), (B—=b<ab:), (B— (a<a<a:)}, {1},
{}) a formal grammar, then LY = {(a<a<a)}.

Remark 1: Using this symbol we can easily merge
two grammars G1 = (N1,T1,R1,S51, A1) and G2 =
(N2,7T2,R2,52,A2) in a new one G = (N,T R, S, A)
such as N = N1U N2U {Snew}, T = T1UT2,
R = R1 U R2U U g1 sego{Snew — sl&s2},
S = {Snew} and A = A1 U A2.

Merging two grammars can be useful in order to verify
several simultaneous properties at once (ex. : respects of
language syntax and code standards at once).

B. Terminal Sets

As previously stated, we want to analyze a sequence of
views and not a sequence of terminal symbols. Thus, in



our grammar model, the elements of T are not terminal
symbols, but terminal sets of elementary symbols.

Definition 9: An attribute formal grammar G depicted in
our model is a 6-tuples such as G = (N,0,T,R, S, A),
with IV a set of non terminal symbols, © a set of elementary
symbols, T" a set of terminal sets such as 7' C P(0), R =
U,en R' where R" is the set of production rules associated
with each non-terminal symbol ¢ € N, S a set of starting
symbols with S C N and A = ;¢ v e A’ Where A7 is the
set of attributes associated with each symbol j € N U ©.

Example 3: Let G=({I, A, B},{a,b,c},{[b ’(a)’<lc)) I

C

a a b A
{(ImA&B =), (A—|b|alc|a] ]| ), (B—><C><(a) ),
c b a
a\ [a\ [a
(B=|blal b )<l b] )}, {I}, {}) a formal grammar, then
& & &
a\ [a\ [a
LE ={(|b]«lb|a|b])}).
c¢) \¢/ \c

A terminal set represents a view. It’s near as impossible
to specify all the combinations of measurements a
view can contain. We introduce an operator [|, [f] stands
for the belonging of a symbol § € O to a terminal set ¢t € 7.

Definition 10: Given a formal attribute grammar
G=(N,0,T,R,S,A), ]L[C;] ={|te TN OND €t}

We introduce a particular usage of this operator with the
symbol *, which stands for any symbol.

Definition 11: Given a formal attribute

G = <N7@7T7 Ra Sa A>’ IL’[C;:} = UteT{(t)}'

grammar

C

Example 4: Let G = ({I},{a,b,c} {|b],(a), (b)}u

{(I—=1[b]ald] :), {I}, {}) a formal grammar, then L =

1 b . b (¢ b () b A2

C. Attributes

In our model, an attribute is a name/value pair. Tts name
is a string of characters, and its value can be one of two
types, symbolic or numerical (a real number).

Notation 1: If A is a set of attributes, let values(A) be
the set of values and names(A) be the set of names of all
attributes of A.

Definition 12: An attribute set A’ for a symbol i € NUO
is such as A® = A’ U AY, where values(A%) C R and

values(A%) is set of strings of characters.

Notation 2: A terminal set ¢ € T' containing a elementary
symbol a € © with at least two attributes named n1 and n2
with respectively values v1 and v2, is noted [a(nl : v1,n2 :
v2)].

D. Attributes Relations

Notation 3: Let r € R a production rule of a given
grammar G, the set of non-terminal symbols used in the
left and middle part of r is noted N, the set of elementary
symbols belonging to terminal sets involved in the middle
part of r is noted ©" and the set of relations between
attributes in the right part of r is noted C".

Relations between attributes are described in the right part
of a production rule. As there are two kinds of attributes,
there are two kinds of attribute relations. Relations between
symbolic attributes and between numerical ones.

Definition 13: Let r € R a production rule of a given
grammar G. C" is such as C" = C, UC), where C7 is a set
of equality relations between the elements of |, yr o A%
and C] is a set of arithmetical relations between the
elements of | J;c yruer A5

Usually, attributes are splitted into two groups, inherited
and synthesized attributes and don’t influence the syntactic
parsing step. We don’t make this distinction in our model
as an attribute can be used in both situations in the very
same grammar. Furthermore, attribute relations, are not just
functions used to evaluate some semantics values associated
with the rules. They must be considered as conditions for
the production rule to be enforced. Therefore, during the
generation/recognition phase, a production rule can be used
to reduce a non-terminal symbol only if all its relations
between attributes are not proven wrong (least commitment
hypothesis).

E. Production Rule Samples

Formal grammars are used through a variety of application
domains, mostly in order to recognize given patterns over
a spatial structure, like a text file. We are going to use our
model in order to describe and recognize temporal patterns
(behavior types).

The instanciation of the previous abstract concepts with
our application is the following :

o Terminal Sets < Subviews.

o Symbols of Terminal Sets < Measurements.

¢ A Formal Grammar G < The description of a behavior
type.

o LY < All the sequences of subviews belonging to a
behavior type.

Here is some samples of production rules pointing out the

relevance of the extensions we made.



GoToHarbor (Boat: B, Harborl: HI,
Harbor2: H2, StartTime: ST,
EndTime: ET,MaxTime: MT)—
CurrentTime (Time: ST)d
LeaveHarbor (Boat: B, Harbor: H1l)«
SailTowardHarbor (Boat: B, Harbor:
EnterHarbor (Boat: B, Harbor: H2)d
CurrentTime (Time: ET).
MT<ET-ST.

H2)<«

In the above example, we are describing a rule represent-
ing a possible high level behavior for an entity Entity going
from a first harbor Harborl toward a second one Harbor2
in less than a predefine amount of time MaxTime.

Views are filled with only one symbol : measurement.
Of course, it would be tough to build a useful grammar
with just this symbol at our disposal. That’s why attributes
corresponding to the fields of the previous definition of
a measurement (Entity, Property, Sensor, Value) are
associated with this terminal symbol. Thus, if we want to
use the speed of an entity we just have to write:

Speed (Entity: E,Value: V,Property: P)—
[measurement (Entity: E,Property: P,
Value : V)].
P="speed".

The introduction of our intersection symbol & lets us
write relations between a set of attributes representing en-
tities properties at a given time (multi-dimensionality) such
as:

AtHarbor (Boat: B, Harbor: H,
BoatType: BT, HType: HT,
BoatPosX: Bx,BoatPosY: By,
HarborPosX: Hx, HarborPosY:Hy)—
Position(X: Bx,Y: By,Entity: B)&
Position(X: Hx,Y: Hy,Entity: H)&
Type (Entity: B, Type: BT) &
Type (Entity: H, Type: HT).
BT="SailingBoat", HT="Harbor",
Bx=Hx,By=Hy.

This rule describes the fact for a sailing boat Boat to
be at a harbor Harbor. As we already stated, our behavior
types often involve classical geometrical relations. Trying to
describe that a boat is heading toward a point implies being
able to represent vectors and manipulate them. Here is a
well known geometrical relation in 2-D space:

FrameOfRefSwitch (OriginX: Ox,OriginY:Qy,
X: X, Y: Y,
NewX: NX, NewY: NY,
OriginAngleX: OAXx,
OriginAngleY: OAy)—
[*].
NX=(X-0x) *OAx+ (Y-Oy) xOAy,

NY=(Y-0Oy) xOAx— (X-0x) «OAy,
X=NXx0OAxX—-NY*OAy+0x,
Y=NX*xOAy+NY*OAx+Oy.

This is a kind of relations, useful in our application
context, which can’t be specified in most of current plan
recognition models. Hopefully, those relations only need to
be written once, and can be propagated in all the grammars
they are needed in. Here is an example of usage of the above-
written geometrical relation:

InRectangleArea (AreaCenterX: Ax,
AreaCenterY: Ay,
PointPosX: Px,
PointPosY: Py,
PointAreaPosX: PAXx,
PointAreaPosY: PAy,
AreaWidth: AW,
ArealLength: AL,
AreaAngleX: AAX,
AreaAngleY: AAy)—
FrameOfRefSwitch (OriginX: Ax,
OriginY: Ay,
X: Px,Y: Py,
NewX: PAx, NewY: PAy,
OriginAngleX: AAXx,
OriginAngleY: AAy) .
abs (PAy) <abs (AW) /2 ,
abs (PAx) <abs (AL) /2

This rule describes the fact for a point (PointPosX,
PointPosY) of being inside a rectangular area defined
by its center (AreaCenterX, AreaCenterY’), its width
(AreaWidth), its lenght (AreaLength) and oriented on an
axis of direction (AreaAngleX, AreaAngleY).

V. MODEL USAGE

After having described all the relevant behaviors in our
model, we now have at our disposal a complete gram-
mar, standing for our plan library. We are now going to
explain how, from this grammar and the succession of
views provided by our interpolation/extrapolation system,
we can deduce hypotheses about the entity behavior(s). The
algorithm will answer this question: Is our grammar capable
of generating a behavior (a succession of subviews involving
at least one measurement related to the entity) that matches
the observed behavior ?

Of course answering this question isn’t enough for our
application goal which is to provide human operators with a
comprehensive analysis of the many entities behaviors and
intents. Therefore, the result of our algorithm must be triple:
W hat? (behaviors the entity can be performing), How? (the
hypotheses under which the system is giving this result) and
NextSteps? (the future possible evolutions of the monitored
area).



Providing an answer to the question Could a sentence
have been produced by a given grammar ? is referred as
parsing. Usually in the Formal Language Theory, during
the parsing step, a derivation tree is built. We are going
to follow this process and build the derivation trees of
our grammar that can produce the observed sequence of
views. As we are dealing with online plan recognition, the
algorithm we propose is iterative and produces derivation
trees as temporary results.

A. Initialization

We initialize L, the list of derivation trees (hypotheses),
as a singleton containing the tree made up of one node .S,
standing for the start symbol of our grammar (in our case it
will be the non-terminal Behavior).

B. Iteration

As shown in Figure 1, a grammar rule can be viewed
as a subtree: the root is the left symbol, children are the
symbols in the right part. In the case of symbols linked
simultaneously in the right part, an intermediate & node is
inserted.

Figure 1. Conversion of the AtHarbor rule into a subtree
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Then, each time a view V is produced by our interpo-
lation/extrapolation system, one iteration of the following
algorithm is applied:

1: Each tree of L is partially developed

—-A node is expanded according to its
grammar rule.

—-If there are several rules for a
node, the whole tree is reused as
many times as needed.

—-The left child of non-terminal nodes
is expanded recursively.

—-All the children of & node are
expanded recursively.

2: Matching with views:

—Associate each leaf of each tree
(terminal symbol) with a measurement
of the current view.

—-If several combinations are possible,
reuse the tree as many times as
needed.

3: Repositionning:

-Locate the next node(s) to be
expanded for the next iteration.

Figure 2. Partial development of a tree after the first step of the iteration
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Figure 2 shows the result of the first step of the iteration
(m stands for measurement). It is noticeable that the tree
isn’t fully deployed and that all the expanded nodes in
this iteration are involving measurements belonging to the
same view.

Through the analysis of the derivation tree, we can extract
all the information we need for our triple result (this is
illustrated on the derivation tree on Figure 3): What as the
direct child of root Behavior, How as all the expanded
nodes of the tree and the NextSteps as all the nodes not
yet expanded.

Figure 3. Visualization of the triple result on a derivation tree
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C. Attribute relations management

Unlike [2] we provide mechanisms for imprecision and
uncertainty handling, which are essentials in order to deal
with raw measurements. As we previously said, we use
constraint programming techniques in order to deal with
the relations linking the attributes of our nodes. In order
to do that, we associate a constraint store to each derivation
tree. When a tree is reused, the associated constraint store
is reused too. Each time a node is expanded, the relations
between attributes associated with the rule involved are
inserted into the constraint store. If a constraint store is



inconsistent, the associated derivation tree is removed from
the tree list (the hypothesis is invalid).

As we said earlier, the observed data can be imprecise,
and numeric measurement values are represented as intervals
or real numbers. Thus, we use an Interval Constraint Solver
to manage this kind of data. Hence non-linear mathematical
relations are allowed.

This way, it is not necessary to handle imprecision in the
description of the plan library (the grammar).

VI. EXPERIMENTS

We use a simulator allowing us to play predefined scenarii
while simulating a sensor network generating imprecise
measurements about our scene entities. In order to exper-
iment on a large number of different situations, we chose to
confront our method on a leisure sailing scenario. Going
from one point toward another one with a sailing boat
isn’t as easy as it looks. In fact, function of the wind,
the boat may need to tack several times, switching from
one direction to another one in order to reach a given
harbor. The sensor network simulated is a simulation of
the Automatic Identification System [20] providing position,
heading and speed of boats. Those three simulated imprecise
measurements are at our disposal for each entity, thanks
to our interpolation/extrapolation system at approximately
each hour. We consider intervals of real numbers to be
our raw data. Harbor and fairways are also considered as
measurements, even if their position will remain unchanged
through the time. In the scenario represented on Figure
4, a boat is going from Bastia to Livorno. Fourteen other
harbors are considered in order to confront our system
with ambiguous cases. The wind speed and orientation,
which will remain homogeneous on the monitored area for
simplification purposes, is also considered as a measurement.
The position of the sailing boat each time a view of the
situation is taken is also represented. The GotoHarbor
behavior for a sailing boat requires forty rules in order to
be characterized with enough precision. We presented some
samples of this grammar in the previous sections. Most of
the rules are geometrical relations. More domain related
rules like ClosedHauled (sailing as near as possible close to
the wind) are easily described as function of those relations.
Figure 5 shows the evolution of the number of hypotheses
(derivation trees) function of the number of iteration of
the algorithm (each time a view is received, an iteration
is performed). Before i1, the boat is in Bastia’s fairway
and the target harbor is yet unknown. At i1 the boat is
just leaving the harbor fairway and could be sailing toward
each harbor in the area. From i1 to ¢7, the boat begins
to tack toward Livorno’s fairway, hypotheses with other
harbors as targets are successively eliminated. In all our
experiments, the maximum number of derivation trees after
an iteration was linear function of the number of behavior
types. However, we must precise that it mostly depends on

Figure 5. Evolution of the number of derivation trees function of the
number of iterations (number of views received) during the recognition.
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how the plan library (the grammar) is written. In fact, it
is possible to write some artificial grammars in our model
that can easily produce an exponential number of hypotheses
function of the number of iterations. However, when defining
real behaviors into our model, the mechanisms involved
in this prohibitive tree generation didn’t appear. We found
that describing behavior types with great precision was the
best way to fight against ambiguity, and a huge number of
hypotheses.

VII. CONCLUSION

In this article, we showed that splitting the behavior
recognition process (event generation task and then plan
recognition task) engenders several issues like unnecessary
computations, generation of more than the inherent knowl-
edge domain ambiguity and difficulties in the plan library
building process.

Thus, we have presented a one-stepped approach capable
of solving the issues of the behavior recognition problem
with real sensor data as live input (multidimensional impre-
cise heterogeneous measurements).

To achieve that, we defined a specific attribute formal
grammar model, and used it to build a grammar representing
our plan library. Lastly, we showed how such a grammar
could be confronted to raw measurements in order to pro-
duce a triple result: What? (What behaviors the entity can
be performing), How? (Under which hypotheses the system
is giving this result) and NexztSteps? (the future possible
evolutions of the monitored area).

Even if it wasn’t fully specified in this paper, the use of
interval constraint programming techniques allows to deal
with imprecise measurements without impacting the plan
library building process. Furthermore, it is a great tool to
handle missing measurements and increases the robustness
of our approach.

Our approach is currently implemented and conclusive
tests have been carried out. Several grammars made up of
about forty rules each are available. The whole has been
merged in a demonstrator.

Ongoing researches are numerous. We are going to focus
on techniques allowing us to merge several almost identical



Figure 4. Screenshot of the simulation : a sailing boat going from Bastia to Livorno. Harbors are in white, the global wind is blowing South South West

and the circled digits represent the position of the Sailing Boat at each views taken of the situation.
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