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may come    

Qualitative properties and existence of sign changing solutions with compact support for an equation with a p-Laplace operator

introduction

In this paper we shall consider classical radial sign-changing solutions of ∆ p u + f (u) = 0

(1) on R N with p > 1. Radial solutions to (1) satisfy the problem

r N -1 φ p (u ) + r N -1 f (u) = 0 , u (0) = 0 . (2) 
Here, for any s ∈ R\{0}, φ p (s) := |s| p-2 s and φ p (0) = 0. Also denotes the derivative with respect to r = |x| ≥ 0, x ∈ R N and for radial functions as it is usual we shall write u(x) = u(r). We will assume henceforth that N > p. By a (classical) solution of (2), we mean a function u in C 1 ([0, ∞)) such that u (0) = 0 and |u | p-2 u is in C 1 (0, ∞).

It is well known that equations involving quasilinear operators (p-Laplace, mean curvature) may have positive solutions with compact support, see for example [START_REF] Conti | Existence of ground states and free-boundary problems for the prescribed mean-curvature equation[END_REF], [START_REF] Gazzola | Existence of ground states and free boundary problems for quasilinear elliptic operators[END_REF], and [GHMS + 00]. We are interested here in qualitative properties of the solutions to problem (2) that have a prescribed number of zeros. They satisfy the problem r N -1 φ p (u ) + r N -1 f (u) = 0 , r > 0 , u (0) = 0 , lim r→∞ u(r) = 0 .

(3)

As we shall see in Section 2, under condition (H3) below, such solutions have compact support.

We assume the following conditions on f .

(H1) f is continuous on R, locally Lipschitz on R \ {0}, with f (0) = 0.

(H2) There exist two constants a > 0 and b < 0 such that f is strictly decreasing on (b, a), and a (resp. b) is a local minimum (resp. local maximum) of f .

(H3) The function F (u) := u 0 f (s) ds is such that u → |F (u)| -1/p is locally integrable near 0. More generally, we will assume that the function u → |F (x 0 ) -F (u)| -1/p is locally integrable near x 0 = 0 whenever x 0 is a local maximum of F .

(H4) For any u 0 such that f (u 0 ) = 0, F (u 0 ) < 0. (H6) For some θ ∈ (0, 1), we have

lim inf |x|→∞ F (θ x) x f (x) > N -p N p > 0 .
By the last two conditions, our problem is (p)-superlinear and subcritical. As a consequence of the previous assumptions, there exist two constants B < 0 < A such that (i) F (s) < 0 for all s ∈ (B, A) \ {0}, F (B) = F (A) = 0 and f (s) > 0 for all s > A and f (s) < 0 for all s < B, (ii) F is strictly increasing in (A, ∞) and strictly decreasing in (-∞, B), (iii) F (s) is bounded below by -F = min s∈[B,A] F (s) for some F > 0,

(iv) lim |s|→∞ F (s) = ∞.
This paper is organized as follows. Our approach is based on a shooting method and a change of variables which is convenient to count the number of nodes. In Section 2 we state and prove a version of the compact support principle for sign changing solutions. In Section 3, we consider the initial value problem (4), and establish some qualitative properties of the solutions. Most of these properties are interesting by themselves: see for instance Theorem 3.6. Section 4 is devoted to generalized polar coordinates that allows us to write the initial value problem (4) as a suitable system of equations, see (19), that describes the evolution on the phase space for the asymptotic Hamiltonian system corresponding to the limiting regime as r → ∞. From this system we can estimate the number of rotations of solutions around the origin, in the phase space at high levels of the energy and relate it with the number of sign changes of the solution of (3). In Section 5 we state and prove our existence results that essentially says that for any k ∈ N there is a solution to (3) with k nodes that has compact support. This result differs from [START_REF] Balabane | Nodal solutions for a sublinear elliptic equation[END_REF] in the sense that it holds for the p-Laplace operator for any p > 1 and the nonlinearity f is an arbitrary superlinear and subcritical function satisfying assumptions (H1) -(H6).

It also differs from the recent results of [START_REF] Cortázar | On the existence of sign changing bound state solutions of a quasilinear equation[END_REF] in the sense that the change of coordinates of Section 4 gives a detailed qualitative description of the dependence of the solutions in the shooting parameter λ = u(0). When λ varies, the number of nodes changes of at most one and we can estimate the size of the support of compactly supported solutions: see Section 6 for more details and precise statements. Finally we state two already known results in the Appendix, for completeness. The first one deals with existence of solutions to the initial value problem (4) on [0, ∞). The second one shows where uniqueness of the flow defined by (19) holds on the phase space; for a proof we refer to [START_REF] Cortázar | On the existence of sign changing bound state solutions of a quasilinear equation[END_REF].

The case p = 2 has been studied in [START_REF] Balabane | Nodal solutions for a sublinear elliptic equation[END_REF] for a special nonlinearity. Assumption (H3) is the sharp condition for the existence of solutions with compact support; see [START_REF] Pucci | A strong maximum principle and a compact support principle for singular elliptic inequalities[END_REF]. If u → |F (u)| -1/p is not locally integrable, then Hopf's lemma holds according to [START_REF] Vázquez | A strong maximum principle for some quasilinear elliptic equations[END_REF], and there is no solution with compact support. How to adapt the known results on the compact support principle to solutions that change sign is relatively easy by extending the results of [START_REF] Serrin | Symmetry of ground states of quasilinear elliptic equations[END_REF]. See [START_REF] Benilan | A semilinear equation in L 1 (R N )[END_REF][START_REF] Cortázar | On a semilinear elliptic problem in R N with a non-Lipschitzian nonlinearity[END_REF][START_REF] Balabane | Nodal solutions for a sublinear elliptic equation[END_REF] in case p = 2 and [Váz84, SZ99, PSZ99, PS00, FQ02, GHMS + 00] in the general case.

We shall refer to [START_REF] García-Huidobro | Infinitely many solutions for a Dirichlet problem with a nonhomogeneous p-Laplacian-like operator in a ball[END_REF] and to [START_REF] Cortázar | On the existence of sign changing bound state solutions of a quasilinear equation[END_REF] respectively for multiplicity and existence results; earlier references can be found in these two papers. Consequences of a possible asymmetry of F are not detailed here: see, e.g., [START_REF] Fabry | Equations with a p-Laplacian and an asymmetric nonlinear term[END_REF] for such questions. There is a huge literature on sign changing solutions and we can quote [HRS11, KLS09, KLS11, KK09, KW10, LS08, MT05, Ma07, NT04, NT08, Tan07] for results in this direction, which are based either on shooting methods or on bifurcation theory but do not take advantage of the representation of the equation in the generalized polar coordinates.

Our main tool in this paper is indeed the change of variables of Section 4, which can be seen as the canonical change of coordinates corresponding either to N = 1 and f (u) = |u| p-2 u, or to the asymptotic Hamiltonian system in the limit r → +∞: see [START_REF] Fabry | Equations with a p-Laplacian and an asymmetric nonlinear term[END_REF][START_REF] Drábek | Generic Fredholm alternative-type results for the one dimensional p-Laplacian[END_REF] for earlier contributions.

We end this introduction with a piece of notation and some definitions. We shall denote by F and Φ p the primitives of f and φ p respectively, such that F (0) = Φ p (0) = 0. Thus for any u ∈ R,

F (u) = u 0 f (s) ds and Φ p (u) = 1 p |u| p .
We shall say that the function u has a double zero at a point r 0 if u(r 0 ) = 0 and u (r 0 ) = 0 simultaneously. We call nodes of a solution the zeros which are contained in the interior of the support of the solution and where the solution changes sign: for instance, a solution with zero node is a nonnegative solution, eventually with compact support.

Compact support principle

The following result is an extension to sign changing solutions of the compact support principle, which is usually stated only for nonnegative solutions. See for instance [START_REF] Cortázar | On a semilinear elliptic problem in R N with a non-Lipschitzian nonlinearity[END_REF][START_REF] Pucci | A strong maximum principle and a compact support principle for singular elliptic inequalities[END_REF]. Our result shows a compact support property of all solutions converging to 0 at infinity, without sign condition and generalizes a result for the case p = 2 that can be found in [START_REF] Balabane | Nodal solutions for a sublinear elliptic equation[END_REF].

Lemma 2.1. Assume that f satisfies assumptions (H1), (H2) and (H3). Then any bounded solution u of (3) has compact support.

Proof. Let us set

A = a 0 ds [p (-F (s))] 1 p
, where p = p/(p -1). Defining ū on (0, A) implicitly by

r = a ū(r) ds [p (-F (s))] 1 p , we first have that 1 p |ū | p + F (ū) = 0 ,
and, by differentiation, that ū satisfies

(φ p (ū )) + f (ū) = 0 .
It is straightforward to check that ū(0) = a and ū(A) = 0, so that ū (A) = 0 as well.

We may then extend ū to (A, +∞) by 0.

Let u be a bounded solution of (3) such that lim r→∞ u(r) = 0. Then there exists R > 0 such that b < u(r) < a ∀ r > R . Let w(r) := ū(r -R) ∀ r ≥ R . Then either u(r) ≤ w(r) for any r ≥ R, and, as a consequence, u(r) ≤ w(r) ≤ 0 for any r ≥ R + A, or there exists r 0 > R such that u(r 0 ) > w(r 0 ). Assume that this last case holds. Since (u -w)(R) ≤ 0 and lim r→∞ (u -w)(r) = 0, with no restriction we may assume that

(u -w)(r 0 ) = max r∈[R,∞) (u -w) > 0 .
Hence, there exists a positive ε such that

(u -w)(r) > 0 ∀ r ∈ [r 0 , r 0 + ε) .
From the equations satisfied by u and w,

(r N -1 φ p (u )) + r N -1 f (u) = 0 , (r N -1 φ p (w )) + r N -1 f (w) = (N -1) r N -2 φ p (w ) ,
by integrating from r 0 to r ∈ (r 0 , r 0 + ε), and by taking into account the fact that (u -w) (r 0 ) = 0, we get

r N -1 φ p (u (r)) -r N -1 φ p (w (r)) = - r r 0 s N -1 f (u(s)) -f (w(s)) <0 because u(s)>w(s) ds -(N -1) r r 0 s N -2 φ p (w (s)) ≤0 because w ≤0
ds , which proves that u > w on (r 0 , r 0 + ε). This obviously contradicts the assumption that u -w achieves its maximum at r = r 0 . Summarizing, we have proved that u(r) ≤ w(r) for any r ≥ R, and, as a consequence, u(r) ≤ 0 ∀ r ≥ R + A .

Similarly, we observe that ũ(r) := -u(r) is a solution of

(r N -1 φ p (ũ )) + r N -1 f (ũ) = 0 , ũ (0) = 0 , lim r→∞ ũ(r) = 0 , where f (s) := -f (-s)
has the same properties as f , except that the interval (b, a) has to be replaced by the interval (-a, -b). With obvious notations, we obtain that

ũ(r) ≤ w(r) ∀ r ≥ R + B ,
for a certain positive B and where w is a nonnegative solution of (φ p (w )) + f (w) = 0 on (R, R + B) , such that w(R) = -b, w(R + B) = w (R + B) = 0, and w(r) = 0 for any r ≥ R + B. This proves that u(r) ≥ 0 ∀ r ≥ R + B , which completes the proof: u ≡ 0 on (R + max{A, B}, ∞) .

Properties of the solutions

To deal with problem (3), we will use a shooting method and consider the initial value problem

r N -1 φ p (u ) + r N -1 f (u) = 0 , r > 0 , u(0) = λ > 0 , u (0) = 0 . (4) 
To emphasize the dependence of the solution to (4) in the shooting parameter λ, we will denote it u λ . Solutions to (4) exist and are globally defined on [0, ∞); see a proof of this fact in Appendix A. By Proposition A.2, these solutions are uniquely defined until they reach a double zero or a point r 0 with u (r 0 ) = 0 and such that u(r 0 ) is a relative maxima of F . To be used in our next results, to a solution u λ (r) of (2), we associate the energy function

E λ (r) := |u λ (r)| p p + F (u λ (r)) , (5) 
where p = p/(p -1). The following proposition shows several properties of the solution u λ to (4) that are needed to prove Theorem 5.1.

Proposition 3.1. Let f satisfy (H1) through (H5) and let u λ be a solution of (4).

(i) The energy E λ is nonincreasing and bounded, hence the limit

lim r→∞ E λ (r) = E λ
is finite. (ii) There exists C λ > 0 such that |u λ (r)| + |u λ (r)| ≤ C λ for all r ≥ 0. (iii) If u λ reaches a double zero at some point r 0 > 0, then u λ does not change sign on [r 0 , ∞). Moreover, if u λ ≡ 0 for r ≥ r 0 , then there exists r 1 ≥ r 0 such that u λ (r) = 0, and E λ (r) < 0 for all r > r 1 and u λ ≡ 0 on [r 0 , r 1 ]. (iv) If lim r→∞ u λ (r) exists, then there exists a zero of f such that Proof. Let u λ (r) be any solution of (4). As

E λ (r) = - (N -1) r |u λ (r)| p ,
and N ≥ p > 1, we have that E λ is decreasing in r. Moreover, we have that

F (λ) ≥ F (u λ (r)) ≥ - F
and thus (i) and (ii) follow by recalling that from (H5) we get lim |s|→∞ F (s) = ∞. Assume next that u λ reaches a double zero at some point r 0 > 0. Then E λ (r 0 ) = 0 implying that E λ (r) ≤ 0 for all r ≥ r 0 . If u λ is not constantly equal to 0 for r ≥ r 0 , then E λ (r 1 ) < 0 for some r 1 > r 0 and thus, by the monotonicity of E λ , E λ (r) < 0 for all r ≥ r 1 . Moreover u λ cannot have the value 0 again (because at the zeros of u λ we have E λ ≥ 0). This proves (iii) by taking the infimum on all r 1 with the above properties.

Finally, if lim r→∞ u λ (r) = , then from the equation in (4) and applying L'Hôpital's rule twice, we obtain that

0 = lim r→∞ u λ (r) - r p = -lim r→∞ r N -1 p-1 |u λ (r)| p r N -1 p-1 r p -1 = - 1 p lim r→∞ r N -1 |u λ (r)| p-1 r N p -1 = - 1 p lim r→∞ r N -1 f (u λ ) N r N -1 p -1 = - 1 p f ( ) N p -1
.

Next, from the definition in (5), it follows that lim r→∞ |u (r

)| = p (E λ -F ( ) 1/p .
Assume that lim r→∞ |u (r)| := m > 0. Then given 0 < ε < m there is r 0 > 0 such that u (r) > m -ε > 0 or u (r) < -m + ε < 0, for all r ≥ r 0 . Hence either

u(r) > u(r 0 ) + (m -ε)(r -r 0 ) or u(r) < u(r 0 ) + (-m + ε)(r -r 0 )
, for all r > r 0 , which is impossible because lim r→∞ E λ (r) = E λ is finite, and (iv) follows.

Proposition 3.2. Let f satisfy (H1)-(H5) and let u λ be a solution of (4). Then u λ has at most a finite number of sign changes.

Proof. The result is true if u reaches a double zero. Let us prove it by contradiction.

If {z n } is a sequence of zeros accumulating at some double zero r 0 , then for each n ∈ N, there exists a unique point r n ∈ (z n , z n+1 ) at which u λ reaches its maximum or minimum value. At these points, using that

E λ (r n ) ≥ E λ (z n ) ≥ 0, we must have that |u λ (r n )| ≥ min{|B|, A}.
As we also have that u λ (r n ) → u λ (r 0 ) = 0, we obtain a contradiction.

This proves that u λ has only a finite number of zeros on (0, r 0 ), and by Proposition 3.1(iii), we know that u λ cannot change sign on (r 0 , ∞). Hence, without loss of generality we may assume that u does not have any double zero. By the above argument, we also know that zeros cannot accumulate.

Next, we argue by contradiction and suppose that there is an infinite sequence (tending to infinity) of simple zeros of u. Then E λ (r) ≥ 0 for all r > 0. We denote by {z + n } the zeros for which u (z + n ) > 0 and by {z - n } the zeros for which

u (z - n ) < 0. We have 0 < z - 1 < z + 1 < z - 2 < • • • < z + n < z - n+1 < z + n+1 < • • • Between z - n and z + n there is a minimum r m n where u(r m n ) < 0 and between z + n and z - n+1 there is a maximum r M n where u(r M n ) > 0. As E λ (r M n ), E λ (r m n ) ≥ 0, it must be that u(r m n ) < B and u(r M n ) > A.
We claim that there exists T > 0 and n 0 ∈ N such that the distance between two consecutive zeros is less than T for all n ≥ n 0 .

Indeed, let a + be the largest positive zero of f (b -the smallest negative zero of f ).

Set d = A -a + , b 1 = a + + d 4 , b 2 = A - d 4 . Let r 1,n ∈ (z + n , r M n ) be the unique point where u(r 1,n ) = b 1 , and let r 2,n ∈ (z + n , r M n ) be the unique point where u(r 2,n ) = b 2 . Then z + n < r 1,n < r 2,n . For r ∈ (z + n , r 2,n ), u(r) ∈ (0, b 2 ) ⊂ (0, B + ), hence F (u(r)) < 0 and thus |u | p p ≥ |F (u(r))| implying that u (r) |F (u(r))| 1/p ≥ (p ) 1/p for all r ∈ (z + n , r 2,n ) ,
and thus (from (H3))

b 2 0 du |F (u)| 1/p ≥ (p ) 1/p (r 2,n -z + n ) (6)
Next, from the equation we have that for r

∈ [r 2,n , r M n ], |(φ p (u )) (r)| = (N -1) r φ p (u (r)) + f (u(r)) ≥ f (u(r)) - (N -1) r φ p (C λ ) ≥ f (b 2 ) - (N -1) r φ p (C λ ) ≥ 1 2 f (b 2 ) for all r ≥ 2 (N -1) φp(C λ ) f (b 2 )
.

Hence, choosing n 0 such that

z + n ≥ 2 (N -1) φp(C λ ) f (b 2 )
for all n ≥ n 0 , we have that

|(φ p (u )) (r)| ≥ 1 2 f (b 2 ) for all r ∈ [r 2,n , r M n ]
and therefore

φ p (C λ ) ≥ φ p (u (r 2,n )) -φ p (u (r M n )) = (φ p (u )) (ξ)(r M n -r 2,n ) ≥ 1 2 f (b 2 )(r M n -r 2,n ) implying that (r M n -r 2,n ) ≤ 2 φ p (C λ ) f (b 2 ) . (7) 
From ( 6) and (7) we conclude that

r M n -z + n ≤ 1 (p ) 1/p b 2 0 du |F (u)| 1/p + 2 φ p (C λ ) f (b 2 ) := T 1 . A similar argument over the interval [r M n , z - n+1 ] yields z - n+1 -r M n ≤ T 1 , implying z - n+1 -z + n ≤ 2 T 1
and finally, the same complete argument over the interval [z - n , z + n ] yields z + n -z - n ≤ 2 T 1 for some T 1 which will depend on b -and B only and the claim follows with T = max{2 T 1 , 2 T 1 }.

We can now prove the proposition. Observe that u(r)

∈ [b 1 , b 2 ] for r ∈ [r 1,n , r 2,n ] and thus |u (r)| p ≥ p |F (u(r))| ≥ p |F (b 2 )| (8)
and from the mean value theorem

b 2 -b 1 ≤ C λ (r 2,n -r 1,n ) , hence r 2,n -r 1,n ≥ b 2 -b 1 C λ . (9) 
Then,

∞ > E λ (z + n 0 ) -E λ (∞) = (N -1) ∞ z + n 0 |u (t)| p t dt (10) 
≥ (N -1) ∞ k=n 0 r 2,k r 1,k |u (t)| p t dt from (8) ≥ (N -1) ∞ k=n 0 p |F (b 2 )| (r 2,k -r 1,k ) 1 r 2,k from (9) ≥ p |F (b 2 )| b 2 -b 1 C λ ∞ k=n 0 1 r 2,k . But, setting s 2k-1 = r 1,n 0 +k-1 , s 2k = r 2,n 0 +k-1 , we have that s 1 < s 2 < s 3 < • • • and for any i, s i+1 -s i ≤ 3 T. Hence s n -s 1 ≤ 3 (n -1) T , implying that s n ≤ s 1 + 3 (n -1) T and thus 1 s n ≥ 1 s 1 + 3 (n -1) T .
Therefore,

∞ k=n 0 1 r 2,k = ∞ k=1 1 r 2,n 0 +k-1 = ∞ k=1 1 r 2,n 0 +k-1 = ∞ k=1 1 s 2k ≥ ∞ k=1 1 s 1 + 3 (2 k -1) T = ∞
contradicting the finiteness of the left hand side in (10) and the proposition follows.

Corollary 3.3. Under the assumptions of Proposition 3.2, the only solutions u λ of (4) satisfying E λ (r) ≥ 0 for all r ≥ 0 are those that reach a double zero at some point r 0 > 0 and u λ (r) ≡ 0 for all r ≥ r 0 .

Proof. Let u λ be a solution of (4) such that E λ (r) ≥ 0 for all r ≥ 0, and assume that it does not reach any double zero. By Proposition 3.2, u λ has at most a finite number of (simple) zeros. Without loss of generality we may assume that u λ (r) > 0 for r > r 0 , for some r 0 > 0. If u λ is eventually monotone, then lim r→∞ u λ (r) = exists, and thus by Proposition 3.1(iv), is a zero of f and u λ → 0. By assumption (H3) i.e. the compact support assumption, we know that = 0. Hence lim r→∞ E λ (r) = F ( ) < 0 because of (H4), implying that E λ (r) < 0 for r sufficiently large.

If u λ has an infinite sequence of critical points, then in particular it has a first positive minimum at some point r 1 > 0. From the equation, f (u λ (r 1 )) ≤ 0 and thus 0 < u λ (r 1 ) < A, and thus E λ (r 1 ) = F (u λ (r 1 )) < 0 implying that E λ (r) < 0 for all r ≥ r 1 .

Therefore, in both cases u λ must reach a first double zero at some r 0 > 0. As E λ decreases, it follows that E λ (r) = 0 for all r ≥ r 0 , and in particular, by differentiation,

(φ p (u λ )) + f (u λ ) u λ (r) = 0 for all r ≥ r 0 , hence - N -1 r |u λ (r)| p = 0 for all r ≥ r 0 ,
implying that u λ (r) = 0 for all r ≥ r 0 , thus u λ (r) = 0 for all r ≥ r 0 .

Proposition 3.4. Let f satisfy (H1)-(H5) and let u λ be a solution of (4). Let {s n } be any sequence in [0, ∞) that tends to ∞ as n → ∞ and define the sequence of real functions {v n } by v n (r) = u λ (r + s n ) . Then {v n } contains a subsequence that converges pointwise to a continuous function u ∞ λ , with uniform convergence on compact sets of [0, ∞). Furthermore the function u ∞ λ is a solution to the asymptotic equation

(φ p (u )) + f (u) = 0 . ( 11 
)
Thus it satisfies

(φ p (u ∞ λ (r))) + f (u ∞ λ (r)) = 0 , for all r ∈ [0, ∞).
Proof. Let u λ be any solution to (4). We know that there exist two constants c 1 λ and c 2 λ such that u λ (r) ≤ c 1 λ , u λ (r) ≤ c 2 λ , for all r ≥ 0 . Let now {s n } be any sequence in [0, ∞) that tends to ∞ as n → ∞ and define the sequence of real functions {v n } by

v n (r) = u λ (r + s n ) . Then v n (r) ≤ c 1 λ , v n (r) ≤ c 2 λ , for all r ≥ 0 .
Hence, for any s, t > 0, and all n ∈ N,

|v n (s) -v n (t)| ≤ c 2 λ |s -t| .
Then, from Ascoli's theorem (see [Roy88, Theorem 30]), {v n } contains a subsequence, denoted the same, that converges pointwise to a continuous function u ∞ λ , with uniform convergence on compact sets of [0, ∞).

It is clear that each function v n satisfies

((r + s n ) N -1 φ p (v n (r))) + (r + s n ) N -1 f (v n (r)) = 0 ,
and hence

φ p (v n (r)) = φ p (v n (0)) - r 0 t + s n r + s n N -1 f (v n (r)) = 0 .
By passing to a subsequence if necessary we can assume that

φ p (v n (0)) → a as n → ∞. Let now T > 0, then since {f (v n } converges uniformly in [0, T ] to f (u ∞ λ )
, we find that v n converges uniformly to a continuous function z given by

z(r) = φ p a - r 0 f (u ∞ λ (t)) dt .
Hence z exists and is continuous. Furthermore from

v n (r) = v n (0) + r 0 v n (t) dt , letting n → ∞, we obtain that u ∞ λ (r) = u ∞ λ (0) + r 0 z(t) dt . Hence u ∞ λ is continuously differentiable and u ∞ λ (r) = z (r), for all r ∈ [0, T ]. Com- bining, we obtain φ p (u ∞ λ (r)) = a - r 0 f (u ∞ λ (t)) dt ,
that implies first that a = φ p (u ∞ λ (0)), and then that

(φ p (u ∞ λ (r))) + f (u ∞ λ (r)) = 0 .
This argument show indeed that u ∞ λ is a solution to (11) for all r ∈ [0, ∞).

Proposition 3.5.

lim r→∞ E λ (r) = E λ = F ( ),
where is a zero of f .

Proof. Let T > 0 be arbitrary but fixed. Then

E λ (k 0 T ) -E λ = (N -1) ∞ k 0 T |u | p t dt = (N -1) ∞ k=k 0 (k+1) T k T |u (t)| p t dt = (N -1) ∞ k=k 0 T 0 |u (s + k T )| p s + k T ds ≥ (N -1) ∞ k=k 0 1 (k + 1) T T 0 |u (s + k T )| p ds .
As the left hand side of this inequality is finite, it must be that lim inf uniformly in compact intervals, where v is a solution of

(φ p (v )) + f (v) = 0 .
Hence,

T 0 |v (s)| p ds = 0 , implying that v is a constant, say v(r) ≡ v 0 .
From the equation satisfied by v, f (v 0 ) = 0. On the other hand,

|v k (r)| p p + F (v k (r)) = |u (r + n k T )| p p + F (u(r + n k T )) = E λ (r + n k T ) → E λ as k → ∞ and thus F (v 0 ) = E λ .
Although not necessary for the proof of our existence results in Theorem 5.1 in our next result we give sufficient conditions for the limit of u λ (r) to exists as r → ∞.

Theorem 3.6. Let f satisfy (H1) through (H5), and assume furthermore that f has only one positive zero at a + and only one negative zero at b -. Then either lim r→∞ u λ (r) exists and equals either a + or b -, or u λ (r) ≡ 0 for all r ≥ r 0 for some r 0 > 0.

If f has more than one positive or negative zero and if we assume that

x 0 ds |F (s) -F (x 0 )| 1/p < ∞ whenever x 0 is a local maximum of F , (12) 
then lim r→∞ u λ (r) exists and it is either a nonzero zero of f or u λ (r) ≡ 0 for all r ≥ r 0 , for some r 0 > 0.

Proof. We first give the proof for the case f has only one positive zero at a + and only one negative zero at b -. By Proposition 3.2 we can assume without loss of generality that u λ remains positive for r > r 0 , for some r 0 > 0. If u λ has only a finite number of critical points, then it is eventually monotone and thus it converges as r → ∞. Then the result follows from Proposition 3.1(iv).

Hence we are left with the case in which u λ has an infinite sequence of maxima at {r M n } and an infinite sequence of minima at {r m n }, with both u λ (r M n ), u λ (r m n ) > 0. From the equation, the maxima occur with f (u λ (r M n )) ≥ 0, hence u λ (r M n ) > a + (strict inequality due to Proposition A.2 in Appendix A) and for the same reason, the minima occur with f (u λ (r m n )) ≤ 0 with u λ (r m n ) < a + . As E λ is decreasing, we must have that u λ (r m n ) increases (thus u λ (r m n ) is bounded away from 0) to a positive limit 1 ∈ (0, a + ], and

u λ (r M n ) decreases to a limit 2 ∈ [a + , A]. Moreover, lim inf r→∞ u λ (r) = lim n→∞ u λ (r m n ) = 1 , and lim sup r→∞ u λ (r) = lim n→∞ u λ (r M n ) = 2 . Thus E λ (r m n ) = F (u λ (r m n )) → F ( 1 ) and E λ (r M n ) = F (u λ (r M n )) → F ( 2 ), implying 0 = F ( 1 ) = F ( 2 ).
From Proposition 3.5, lim r→∞ E λ (r) is either F (0) = 0 or F (a + ). Since 0 = F ( 1 ), the limit must be F (a + ), and thus F ( 1 ) = F ( 2 ) = F (a + ), and the only possibility is that 1 = 2 = a + proving the first part of the theorem.

In order to prove the second part of the theorem, for simplicity we consider f with three positive zeros u 1 , u 2 and u 3 , but the arguments clearly hold for the general case. In this case F has two minimum points at u 1 and u 3 , and one maximum point at u 2 , and the limit of the energy can be any of the three values F (u 1 ), F (u 3 ) or F (u 2 ).

Claim 1: If E λ is a relative minima of F , then the solution u λ converges as r → ∞.

For the relative minima there are two cases: F (u 1 ) = F (u 3 ) and F (u 1 ) > F (u 3 ). In the first case (shown in Figure 1), we can prove that if E λ converges to L = F (u 1 ) = F (u 3 ), then the solution u λ either converges to u 1 or it converges to u 3 . Indeed, we can assume that u λ (r) > 0 for r ≥ r 0 . If u λ has an infinite sequence of minima at {r m n } and an infinite sequence of maxima at {r M n } (tending to infinity), then by setting

1 = lim inf r→∞ u λ (r) = lim n→∞ u λ (r m n ) , 2 = lim sup r→∞ u λ (r) = lim n→∞ u λ (r M n ) ,
we must have that F ( 1 ) = F ( 2 ) = L = F (u 1 ) , so if 1 = 2 , then 1 = u 1 and 2 = u 3 . But then the solution u λ crosses the value u 2 at an infinite sequence {r 2,n } tending to infinity and

F (u 1 ) = lim n→∞ E λ (r 2,n ) = lim n→∞ |u λ (r 2,n )| p p + F (u 2 ) , implying that lim n→∞ |u λ (r 2,n )| p p = F (u 1 ) -F (u 2 ) < 0 ,
which is a contradiction. Hence 1 = 2 and the claim follows.

The second case is a little more involved. The following two cases may occur:

(a) lim r→∞ E λ (r) = F (u 3 ) or (b) lim r→∞ E λ (r) = F (u 1 ) .
The case (a) is simple because in this case F ( 1 ) = F ( 2 ) = L = F (u 3 ) and the only possibility is that 1 = 2 = u 3 .

In the second case we claim that 1 = 2 = u 1 . If this is not true, then there are two possibilities: (i) 1 = u 1 and 2 as in Figure 2, or (ii) 1 and 2 are as in the same figure. The first case is simple because again the solution u λ must cross the value u 2 at an infinite sequence {r 2,n } tending to infinity and we arrive to the same contradiction as above. For the second case, we proceed as in the proof of Proposition 3.2 and prove that the distance between any two consecutive critical points is bounded above. We set

b 1 = 1 + u 3 2 , b 2 = 2 + u 3 2 ,
and let r 1,n ∈ (r m n , r M n ) be the unique point where u λ (r 1,n ) = b 1 , and r 2,n ∈ (r m n , r M n ) be the unique point where u λ (r 2,n ) = b 2 . See Figure 3. As the sequence {u λ (r m n )} increases to 1 , we may assume that u λ (r m n ) ≥ (u 2 + 1 )/2, and thus, |f (u λ (r))| is bounded below by some positive constant c 1 for all r ∈ [r m n , r 1,n ].

From the equation we have that for r ∈ [r m n , r 1,n ],

|(φ p (u λ )) (r)| = (N -1) r φ p (u λ (r)) + f (u λ (r)) ≥ |f (u λ (r))| - (N -1) r φ p (C λ ) ≥ c 1 - (N -1) r φ p (C λ ) ≥ c 1 2 for all r ≥ 2 (N -1) φ p (C λ ) c 1 .
Hence, choosing n 0 such that r m n ≥ 2 (N -1) φp(C λ ) c 1 for all n ≥ n 0 , we have that

|(φ p (u λ )) (r)| ≥ c 1 2 for all r ∈ [r m n , r 1,n ]
and therefore

φ p (C λ ) ≥ φ p (u λ (r 1,n )) -φ p (u λ (r m n )) = (φ p (u λ )) (ξ)(r 1,n -r m n ) ≥ c 1 2 (r 1,n -r m n ) implying that r 1,n -r m n ≤ 2 φ p (C λ ) c 1 . (13) 
Similarly, for r ∈ [r 2,n , r M n ], using now that in this interval f (u λ (r)) is bounded from below by a positive constant c 2 , we conclude that there is n 1 ≥ n 0 such that

r M n -r 2,n ≤ 2 φ p (C λ ) c 2 (14) 
for all n ≥ n 1 . Finally we estimate r 2,n -r 1,n . In the interval [r 1,n , r 2,n ], u λ (r) ∈ [b 1 , b 2 ] and F (u λ (r)) ≤ max{F (b 1 ), F (b 2 )} < F (u 1 ), hence there exists a positive constant c 3 such that F (u 1 ) -F (u λ (r)) ≥ c 3 , hence, using that E λ decreases to F (u 1 ), we have that

|u λ (r)| ≥ (p c 3 ) 1/p .
Integrating this last inequality over [r 1,n , r 2,n ], we obtain that

r 2,n -r 1,n ≤ b 2 -b 1 (p c 3 ) 1/p . (15) 
Hence, from (13), ( 14) and (15), we conclude that for all n ≥ n 1 r M n -r m n ≤ T where

T = 2 φ p (C λ ) c 2 + b 2 -b 1 (p c 3 ) 1/p + 2 φ p (C λ ) c 1 .
Again, from the mean value theorem

b 2 -b 1 ≤ C λ (r 2,n -r 1,n ) ,
hence, as before, we obtain the contradiction

F (λ) -F (u 1 ) > E λ (r m n 1 ) -E λ (∞) = (N -1) ∞ r m n 1 |u λ (t)| p t dt ≥ (N -1) ∞ k=n 1 r 2,k r 1,k |u λ (t)| p t dt ≥ (N -1) ∞ k=n 1 p c 3 (r 2,k -r 1,k ) 1 r 2,k ≥ p c 3 b 2 -b 1 C λ ∞ k=n 1 1 r 2,k = ∞ .
Therefore, case (ii) cannot happen and Claim 1 follows.

Claim 2: If E λ is a relative maxima of F , then the solution u λ converges as r → ∞. See Figure 4. From (12),

u 2 du |F (u 2 ) -F (u)| 1/p is convergent . ( 16 
)
Then the same arguments used in the proof above can be used to establish the convergence of u λ . Indeed, we let

r 1,n : u λ (r 1,n ) = 2 + u 3 2 , r 2,n : u λ (r 2,n ) = u 2 + u 3 2 ,
and for r ∈ [r 1,n , r 2,n ], we have u λ (r) ∈ [ u 2 +u 3 2 , 2 +u 3 2 ] and thus

|u λ (r)| ≥ (p ) 1/p (F (u 2 ) -F (u λ (r)) ≥ c 0 > 0 for some positive constant c 0 implying that 2 -u 2 2 ≥ c 0 (r 2,n -r 1,n )
and similarly, by setting r1,n :

u λ (r 1,n ) = u 1 + u 2 2 , r2,n : u λ (r 2,n ) = u 2 + 1 2 , we have that u 2 -1 2 ≥ c 0 (r 2,n -r1,n ) .
For r ∈ [r 1,n , r1,n ] we use ( 16) to obtain that

(p ) 1/p (r 1,n -r 1,n ) ≤ u 3 +u 2 2 u 1 +u 2 2 du |F (u 2 ) -F (u)| 1/p .
The bounds for r 2,n -r M n and r m n+1 -r2,n is obtained as above using that |f (u)| is bounded below in those intervals and using the equation to obtain

φ p (C λ ) ≥ c 0 (r 2,n -r M n ) and φ p (C λ ) ≥ c 0 (r m n+1 -r2,n )
for some positive constant c 0 . We conclude that the distance between two consecutive critical points is bounded and we end the argument as we did at the end of Proposition 3.2.

A change of coordinates and a lower bound on the angular velocity in the phase space

In this section, we reformulate the problem in the phase space associated to the Hamiltonian system obtained in the (p)-linear case (that is, for f (u) = |u| p-2 u) in the asymptotic regime corresponding to r → ∞. By computing a lower bound on the angular velocity around the origin, this will allow us to estimate the number of sign changes of the solutions, see Section 5. First, let us explain how to change coordinates.

Setting v = φ p (u ), or equivalently u = φ p (v), problem (4) is equivalent to the following first order system.

           u = φ q (v) , v = -N -1 r v -f (u) , u(0) = λ , v(0) = 0 . ( 17 
)
Here q = p stands for the Hölder conjugate of p. We consider also the auxiliary problem

               dx dt = -φ q (y) , dy dt = φ p (x) , x(0) = 1 , y(0) = 0 .
The auxiliary problem describes the asymptotics of (17) as r → ∞, that is, when the N -1 r v term is neglected in case of a (p)-linear function f (u) = |u| p-2 u. It is well known, see [START_REF] Manuel Del Pino | A homotopic deformation along p of a Leray-Schauder degree result and existence for (|u | p-2 u ) + f (t, u) = 0, u(0)[END_REF], that solutions to this last systems are 2 π p = 2 π q periodic. Furthermore, with the notation of [START_REF] Manuel Del Pino | A homotopic deformation along p of a Leray-Schauder degree result and existence for (|u | p-2 u ) + f (t, u) = 0, u(0)[END_REF], we can define sin q (t) := y(t) and cos q (t) := x(t) = φ q d dt sin q (t) .

It is immediate to check that Φ p (cos q (t)) + Φ q (sin q (t)) = 1 p for all t ∈ R .

To the (u, v) coordinates of the phase plane, we assign generalized polar coordinates (ρ, θ) by writing

   u = ρ 1 p cos q (θ) v = ρ 1 q sin q (θ) (18) where ρ = p [Φ p (u) + Φ q (v)] .
Notice that in case p = q = 2, ( √ ρ, θ) are the usual polar coordinates of (u, v), and cos q and sin q are the usual cos and sin functions. Now, if (u(r), v(r)) denotes a solution to (17) and if we define the corresponding polar functions r → ρ(r) and r → θ(r), then it turns out by direct computation that (ρ, θ) satisfies the following system of equations :

           ρ = p φ q (v) φ p (u) -f (u) -N -1 r v , θ = -1 ρ p Φ q (v) + u f (u) + N -1 r u v , ρ(0) = λ p , θ(0) = 0 . ( 19 
)
We will denote by (ρ λ , θ λ ) the solution of (19).

The following lemma is a key step for our main result. We establish a lower bound on the angular velocity |θ | around the origin, which will later allow us to estimate the number of sign changes of u by counting the number of rotations of the solutions around the origin, in the phase plane. In order to formulate the lemma, we begin by noticing that from (H5), given ω ∈ (0, 1/8) there is s 0 > 0 such that |f (s)| ≥ 4 ω |s| p-1 for all |s| ≥ s 0 .

Lemma 4.1 (Rotation Lemma). With the previous notation, let assumptions (H1) through (H5) be satisfied and let (ρ λ , θ λ ) be the generalized polar coordinates of a solution (u λ , v λ ) to (17). Set

r 0 := 2 (N -1) ω (p -1) 1/q , σ 0 ≥ max 2 1/p s 0 , 4 sup x∈[-s 0 ,s 0 ] |f (x)| 1/(p-1)
.

Then, if r ≥ r 0 and ρ λ ≥ σ p 0 , it holds that

θ λ (r) < -ω .
Proof. We start by observing that with the above notation, i.e. x = cos q (θ),

-θ = 1 -|x| p + x f (σ x) σ p-1 + N -1 r u v σ p ≥ 1 -|x| p + x f (σ x) σ p-1 - N -1 r |x| 1 -|x| p p -1 1/q ≥ 1 -|x| p + x f (σ x) σ p-1 - N -1 r 1 (p -1) 1/q where σ = ρ 1/p . It is clear that - N -1 r 1 (p -1) 1/q > -ω
for any r > r 0 . Hence in order to prove our result we need to estimate the minimum

min |x|≤1 1 -|x| p + x f (σ x) σ p-1 . First assume that |x| p ≤ 1/2. If σ |x| ≥ s 0 , then 1 -|x| p + x f (σ x) σ p-1 = 1 -|x| p + |x| p f (σ x) σ p-1 |x| p-2 x ≥ 1 -|x| p + 4 ω |x| p = 1 + (4 ω -1) |x| p ≥ 1 2 + 2 ω ≥ 2 ω .
Otherwise, if σ |x| ≤ s 0 , then we have

1 -|x| p + x f (σ x) σ p-1 ≥ 1 -|x| p - |x| σ p-1 sup s∈[-s 0 ,s 0 ] |f (s)| > 1 2 - 1 σ p-1 sup s∈[-s 0 ,s 0 ] |f (s)| > 1 4
if σ ≥ σ 0 and we already know that 1 4 > 2 ω. On the other hand, if |x| p ≥ 1/2, then σ |x| ≥ 2 -1/p σ, hence for σ ≥ σ 0 , we have σ |x| ≥ s 0 and

1 -|x| p + x f (σ x) σ p-1 = 1 -|x| p + |x| p f (σ x) σ p-1 |x| p-2 x ≥ 1 -|x| p + 4 ω |x| p ≥ 2 ω .
This concludes the proof.

In preparation for Section 5 we finally relate the energy associated to the flow with the quantity ρ.

Proposition 4.2. Consider E(u, v) = F (u)+Φ p (v) and ρ(u, v) = p [Φ p (u) + Φ p (v)].
Under assumptions (H1) through (H5), it holds that

E(u, v) → ∞ if and only if ρ(u, v) → ∞ , for each (u, v) in R 2 .
Proof. The properties E(u, v) → ∞, sup(|u|, |v|) → ∞, and ρ(u, v) → ∞ are equivalent.

Existence result

We may now state our main result.

Theorem 5.1. Let N >, p > 1 and suppose that assumptions (H1)-(H6) are satisfied. Then there exists an unbounded increasing sequence {λ k } of initial data such that for any k ∈ N, (4) with λ = λ k , has a compactly supported solution with exactly k nodes.

The proof is based upon some preliminary results that we state and prove next.

For given λ > A, let (u λ , v λ ) be a solution to (17). Recall that the energy function E λ has been defined by (5). For any a ∈ [0, F (λ)], let us set r λ (a) := inf{r ≥ 0 : E λ (r) = a} .

We first observe that r λ (0) is finite. Indeed, if for some λ ≥ A (as defined in Section 1) we have that r λ (0) = ∞, then E λ (r) ≥ 0 for all r ≥ 0, and thus, from Corollary 3.3, there exists r 0 > 0 such that r 0 is a double zero of u λ implying by the definition that r λ (0) ≤ r 0 < ∞.

We will denote by N [0,R) (λ) the number of nodes of u λ in [0, R). For simplicity of notation, we will denote

N (λ) := N [0,r λ (0)) (λ) .
Notice that all the possible zeros of u λ in [0, r λ (0)) must be simple zeros.

The following proposition was proved in [START_REF] García-Huidobro | Infinitely many solutions for a Dirichlet problem with a nonhomogeneous p-Laplacian-like operator in a ball[END_REF].

Proposition 5.2. Under assumptions (H1) through (H6), given R > 0,

lim λ→∞ E λ (r) = ∞ uniformly for r ∈ [0, R].
Now we start to make use of the variables introduced in Section 4.

Proposition 5.3. If N (λ) > 1, then for any r ∈ (0, r λ (0)), the number of nodes of u λ in (0, r) is given by π p 2 -θ λ (r) 1 π p where [x] denotes the integer part of x.

Proof. Follows directly from the change of variables (18). Propositions 5.2 and 5.3 combined with the Rotation Lemma 4.1 on the angular velocity, yields the following result. Proof. Let M > 0. We will show that there exists λ M > 0 such that for λ > λ M , we have N (λ) > M . We prove this by finding an interval [0, R] with R = R(M ), such that the number of nodes in [0, R] is greater than M . To do this we set

R = π p ω M + 1 2 + r 0 .
Using Propositions 4.2 and 5.2, we know that there exists λ M such that for any λ ≥ λ M , ρ λ (r) > ρ 0 := σ p 0 in [0, R]. Next we apply the rotation Lemma 4.1 which ensures that

-θ λ (R) ≥ ω R -ω r 0 -θ λ (r 0 ) ≥ ω R -ω r 0 = M + 1 2 π p ,
by the choice of R. Applying Corollary 5.3, it follows that

N (λ) ≥ [M + 1] > M .
Lemma 5.5. Under assumptions (H1) through (H5), when λ > 0 varies, the number of nodes of the solution u λ can locally change by at most one. Moreover, to the value of λ at which the number of nodes changes corresponds a solution with compact support.

Proof. This lemma is proved by defining for any k ∈ N 0 := N ∪ {0} the sets A k := {λ ≥ A : (u λ (r), v λ (r)) = (0, 0) for all r ≥ 0 , and N (λ) = k} ,

I k := {λ ≥ A : (u λ (r λ (0)), v λ (r λ (0))) = (0, 0) and N [0,r λ (0)) (λ) = k} .
Recall that r λ (a) := inf{r ≥ 0 : E λ (r) = a}, and E λ has been defined by (5). Notice that we have

[A, ∞) = ∪ k∈N 0 I k ∪ ∪ k∈N 0 A k .
Indeed, let λ ≥ A. Then N (λ) = j for some j ∈ N 0 . If u λ (r λ (0)) = 0, then u λ does not have any double zero in [0, ∞). Indeed, assume by contradiction that r 1 > r λ (0) is a double zero of u λ . Then by the monotonicity of E λ , E λ (r) ≡ 0 in [r λ (0), r 1 ]. But then also E λ (r) ≡ 0 in (r λ (0), r 1 ) implying that u λ (r) ≡ 0 in (r λ (0), r 1 ) and thus u λ (r λ (0)) = u λ (r 1 ) = 0, a contradiction. Hence λ ∈ A j . If u λ (r λ (0)) = 0, then by the definition of r λ (0) we also have u λ (r λ (0)) = 0 hence λ ∈ I j . Also, observe that the sets A i , I j are disjoint for any i, j, and for i = j, A i ∩ A j = ∅ and I i ∩ I j = ∅.

We also observe that if λ ∈ A j , then necessarily lim r→∞ E λ (r) < 0 (see Corollary 3.3), and if λ ∈ I j , then two cases may occur:

either lim r→∞ E λ (r) < 0 or lim r→∞ E λ (r) = 0 .
This due to the possible non-uniqueness of solutions to the initial value problem (4), a solution could reach a double zero but not remain identically zero after that. The proof of Lemma 5.5 is a consequence of the following technical result.

Proposition 5.6. With the above notation, we have:

(i) A k is open in [A, ∞), (ii) A k ∪ I k is bounded, (iii) if λ 0 ∈ I k , then there exists δ > 0 such that (λ 0 -δ, λ 0 + δ) ⊂ A k ∪ A k+1 ∪ I k , (iv) sup A k ∈ I k-1 ∪ I k , where we set I -1 = ∅ and, (v) sup I k ∈ I k . Proof. (i) A k is open in [A, ∞): Indeed, if λ ∈ A k ,
then in particular (uλ(r), vλ(r)) = (0, 0), where r = rλ(0). Then there exists ε 0 > 0 such that the solution of (4) is unique in [0, rλ(0) + ε] and Eλ(rλ(0) + ε/2) < 0 for all ε ∈ (0, ε 0 ], and thus there exists δ > 0 such that E λ (rλ(0) + ε/2) < 0 for all λ ∈ ( λ -δ, λ + δ) implying that r λ (0) ≤ rλ(0) + ε/2. On the other hand, for the same reason, there exists δ > 0 such that E λ (rλ(0) -ε/2) > 0 for all λ ∈ ( λ -δ , λ + δ ) implying that r λ (0) ≥ rλ(0) -ε/2. We conclude then that r λ (0) → rλ(0). Hence the openness of A k follows from the continuous dependence of solutions in the initial value λ.

(ii) The boundedness of A k ∪ I k is a consequence of Lemma 5.4.

(iii) The proof of this statement follows that of [CGY12, Lemma 2.3].

Figure 5. Situation for (iii).

Let λ 0 ∈ I k , set r 0 = r λ 0 (0) and let 0 < z 1,0 < z 2,0 < . . . < z k,0 < r 0 denote the k zeros of u λ 0 in (0, r 0 ). Assume first that u λ 0 is decreasing in (r 0 -2 ε 0 , r 0 ) for some ε 0 > 0, so that it reaches a last maximum point at some s k,0 ∈ (z k,0 , r 0 ). Let H λ (r) := r p (N -1) E λ (r) .

(20)

As u λ 0 (r 0 ) = 0 and H λ 0 (r 0 ) = 0, given ε > 0, there exists r < r 0 such that 0 < u λ 0 (r) < A 2 , and H λ 0 (r) < ε .

Hence by continuous dependence of solutions to (4) in the initial data in any compact subset of [0, r 0 ), there exists δ 0 > 0 such that for λ ∈ (λ 0 -δ 0 , λ 0 + δ 0 ), the solution u λ satisfies 0 < u λ (r) < A , H λ (r) < 2 ε and u λ has at least k simple zeros in [0, r 0 ) , (21) that is,

(λ 0 -δ 0 , λ 0 + δ 0 ) ⊂ ∪ j≥k A j ∪ ∪ j≥k I j . (22) 
Now we argue by contradiction and assume that there is a sequence {λ n } converging to λ 0 as n → ∞ such that

λ n ∈ A k ∪ A k+1 ∪ I k . From (22), λ n ∈ ∪ j≥k+2 A j ∪ ∪ j≥k+1 I j ,
that is, the solution u λn has at least k + 2 zeros and at least the first k + 1 zeros are simple. Let us denote these zeros by

0 < z 1,n < z 2,n < . . . < z k,n < z k+1,n < z k+2,n .
See Figure 5. By the choice of r and (21), u λn decreases in [r, z k+1,n ]. Let us denote by s k+1,n the point in (z k+1,n , z k+2,n ) where u λn reaches its minimum value. As E λn (z k+2,n ) ≥ 0, we must have that

u λn (s k+1,n ) < B .
Let us denote by r 1,n < r 2,n the unique points in (z k+1,n , s k+1,n ) where

u λn (r 1,n ) = B 4 , u λn (r 2,n ) = B 2 .
From (20), we have that

H λn (r) = p (N -1) r p (N -1)-1 F (u λn (r)) . (23) 
Therefore, using the first estimate in (21), we have that for n large enough, H λn (r) < 0 for r ∈ [r, z k+1,n ] and thus by the second in (21), H λn (z k+1,n ) < 2 ε . Integrating now (23) over [z k+1,n , r 2,n ], and using that F (u λn (t)) < 0 in this range and p (N -1) -1 = p p-1 (N -1) -1 ≥ p -1 > 0, we find that

H λn (r 2,n ) -H λn (z k+1,n ) = -p (N -1) r 2,n z k+1,n t p (N -1)-1 |F (u λn (t))| dt ≤ -p (N -1)(z k+1,n ) p (N -1)-1 r 2,n z k+1,n |F (u λn (t))| dt ≤ -p (N -1)(z k+1,n ) p (N -1)-1 r 2,n r 1,n |F (u λn (t))| dt ≤ -C p (N -1)(z k+1,n ) p (N -1)-1 (r 2,n -r 1,n ) , where C := inf s∈[ B 2 , B 4 ] |F (s)| .
But from the mean value theorem, and for n large enough, we have that

|B| 4 = |u λn (r 2,n ) -u λn (r 1,n )| ≤ C λ 0 +1 (r 2,n -r 1,n ) , and λ 0 2 ≤ λ n = |u λn (0) -u λn (z 1,n )| ≤ C λ 0 +1 z 1,n ≤ C λ 0 +1 z k+1,n , hence H λn (r 2,n ) ≤ 2 ε -C p (N -1) (z k+1,n ) p (N -1)-1 |B| 4 C λ 0 +1 ≤ 2 ε -C p (N -1) λ 0 2 C λ 0 +1 p (N -1)-1 |B| 4 C λ 0 +1
.

By choosing from the beginning ε ∈ 0, C p (N -1)

λ 0 2 C λ 0 +1 p (N -1)-1 |B| 8C λ 0 +1 we obtain that H λn (r 2,n ) = r p (N -1) 2,n E λn (r 2,n ) < 0 , contradicting the fact that E λn (r 2,n ) ≥ E λn (z k+2,n ) ≥ 0 .
A similar computation provides a contradiction if we assume that u λ 0 is increasing in (r 0 -2 ε 0 , r 0 ) for some ε 0 > 0. Altogether (iii) is established.

(iv) Assume next that A k = ∅, let λ 0 = sup A k and set r 0 = r λ 0 (0). As A j is open for every j ∈ N 0 , λ 0 ∈ A j for any j hence λ 0 ∈ I j for some j, and by continuous dependence of the solutions in the initial data in [0, r 0 -ε] for ε > 0 small enough, j ≤ k. By (iii), there is δ > 0 such that (λ 0 -δ, λ 0 ] ⊂ A j ∪ A j+1 ∪ I j , and since A k ∩ (λ 0 -δ, λ 0 ] = ∅, it must be that

A k ∩ (A j ∪ A j+1 ∪ I j ) = ∅ , hence j = k or j = k -1. (v) sup I k ∈ I k : It follows directly from (iii).
Proof of Theorem 5.1. With the notation of the previous lemma one shows by induction that there exists an increasing sequence {λ k }, λ k → +∞, such that λ k ∈ I k .

As A ∈ A 0 , by (ii) we can set λ 0 = sup A 0 , and by (iv) and (v), λ 0 ∈ I 0 and λ 0 ≤ sup I 0 ∈ I 0 . We use now (iii) and find δ > 0 such that

(sup I 0 -δ, sup I 0 + δ) ⊂ A 0 ∪ A 1 ∪ I 0 .
Since (sup I 0 , sup I 0 +δ)∩A 0 = ∅ by the definition of λ 0 and (sup I 0 , sup I 0 +δ)∩I 0 = ∅ by the definition of sup I 0 , it must be that (sup I 0 , sup I 0 + δ) ⊂ A 1 implying that A 1 = ∅ and λ 0 ≤ sup I 0 < λ 1 := sup A 1 . By (iv), λ 1 ∈ I 0 ∪ I 1 , but as sup I 0 < λ 1 , it must be that sup A 1 ∈ I 1 . Then I 1 is not empty and λ 1 ≤ sup I 1 .

We use again (iii) to find δ > 0 such that

(sup I 1 -δ, sup I 1 + δ) ⊂ A 1 ∪ A 2 ∪ I 1 ,
and again deduce that (sup I 1 , sup I 1 + δ) ⊂ A 2 , hence A 2 = ∅ and thanks to (ii) we can set λ 2 = sup A 2 , λ 0 < λ 1 ≤ sup I 1 < λ 2 and λ 2 ∈ I 2 . We continue this procedure to obtain the infinite strictly increasing sequence {λ k }, defined by λ k = sup A k with λ k ∈ I k .

Qualitative properties of the solutions

Several qualitative properties can be deduced from our intermediate results and from their proofs. Without entering the details let us summarize the most striking ones.

When λ varies, the number of nodes changes of at most one. The energy of any solution decreases as r increases and converges to a finite limit as r → ∞. More precisely, solutions are of two types: either the limit of their energy is negative or the limit of the energy is zero, and the corresponding solutions are compactly supported.

Solutions which have a double zero can be compactly supported or not, as in this case uniqueness may be lost.

For solutions with compact support, the size of the support increases with the number of nodes, and diverges as the number of nodes goes to infinity. This is a consequence of Lemma 4.1 and Proposition 5.2, as can be easily proved arguing by contradiction. With the generality of Theorem 5.1, it is not easy to give quantitative results but one can estimate the size of the support of the solutions and the number of nodes for large values of λ, as the following proposition shows. Proof. Let θ ∈ (0, 1) be as in (H6), and for λ > 0, let S θ,λ := inf{r > 0 : u λ (r) = θ λ}.

It can be easily shown that a solution of (4) satisfies If δ is small so that δ p m p -1 p N p -1 ≤ ε, we have that T (B(λ, ε)) ⊂ B(λ, ε). To show that T is completely continuous, let {u k } be a sequence in B(λ, ε) and consider s, t ∈ [0, δ]. Then |T (u k )(t) -T (u k )(s)| ≤ δ p -1 m p -1 N p -1 |t -s| . From Ascoli-Arzela theorem it follow that T is compact on B(λ, ε). To show that T is continuous let {u k } be a sequence in B(λ, ε) such that u k → u ∈ B(λ, ε), as k → ∞. Then by the Schauder fixed point theorem, T possesses a fixed point in B(λ, ε) which is what we wanted to prove.

An application of Lebesgue

The last proposition states a unique extendibility result for solutions to the initial value problem (4); this result has been proved in [START_REF] Cortázar | On the existence of sign changing bound state solutions of a quasilinear equation[END_REF].

Proposition A.2. Let f satisfy (H1)-(H2). Then solutions to (4) are unique at least until they reach a double zero or a point u 0 = u λ (r 0 ), where u λ (r 0 ) = 0 and u 0 is a local maximum of F .

(

  H5) The function u → f (u) is nondecreasing for large values of u and satisfies lim inf |u|→∞ f (u) |u| p-2 u = ∞ .

  + k T )| p ds = 0 , hence there is a subsequence {n k } of natural numbers such that lim k→∞ T 0 |u (s + n k T )| p ds = 0 . From Proposition 3.4, v k (r) := u(r + n k T ) has a subsequence, still denoted the same, such that lim k→∞ v k (r) = v(r) and lim k→∞ v k (r) = v (r)

Figure 1 .

 1 Figure 1. Case of f with three positive zeros and F (u 1 ) = F (u 3 ).

Figure 2 .

 2 Figure 2. Case of f with three positive zeros and F (u 1 ) > F (u 3 ).

Figure 3 .

 3 Figure 3. Definition of the points r 1,n , r 2,n .

Figure 4 .

 4 Figure 4. If 1 = 2 , then 0 < 1 < u 1 and u 3 < 2 < A.

Lemma 5. 4 .

 4 Under assumptions (H1) through (H6), lim λ→+∞ N (λ) = +∞ .

  Proposition 6.1. Let 1 < p < N . Under the assumptions of Theorem 5.1, we have that r λ (0) and N (λ) are bounded below byC λ N (p-1) N -p f (λ) N -p p(N -1)where C is a positive constant independent of λ.In particular, if limλ→∞ λ N (p-1) N -p f (λ) = ∞, then r λ (0) → ∞ and N (λ) → ∞ as λ → ∞.

( 1 -sF

 1 θ) λ = λ -u λ (S θ,λ ) = N -1 f (u λ (s)) ds 1/(p-1)dr .As a consequence of the monotonicity of u λ in [0, S θ,λ ] and (H5), for θλ large enough we obtainN 1/(p-1) p (1 -θ) λ [f (λ)] 1/(p-1) ≤ (S θ,λ ) p ≤ N 1/(p-1) p (1 -θ) λ [f (θ λ)] 1/(p-1) . (24)On the other hand, sinced dr (E λ + F ) = -N -1 r |v| p ≥ -N -1 r p (E λ + F ) ,for S θ,λ ≤ r ≤ r λ (0), we obtainE λ (r) + FThis proves the assertion on the size of the support. The conclusion on the number of nodes follows from Lemma 4.1.Consider therefore the Banach space C := C([0, δ]; R) of continuous functions on [0, δ], endowed with the sup norm • ∞ . A solution in C will exist if and only if the operator T defined on C byT (u)(r) := λτ N -1 f (u(s)) ds dτ(25)has a fixed point. For ε > 0 given, let B(λ, ε) be the ball in C with center λ and radius ε. Then if u ∈ B(λ, ε) we have that for all r ∈ [0, δ] it holds that -ε + λ ≤ u(r) ≤ ε + λ. Let us set m := max |u-λ|≤ε |f (u)|. Then from (25), we find the estimate |T (u)(r) -≤ δ p m p -1 p N p -1 .

  's dominated theorem toT (u k )(r) := λτ N -1 f (u k (s)) ds dτ , shows that T (u k ) → T (u) in C as k → ∞.
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Appendix A.

In this Appendix, for sake of completeness, we state some basic results concerning the initial value problem (4). We begin with a result on the existence of solutions.

Proposition A.1. Suppose that assumption (H1) holds. If lim u→±∞ f (u) = ±∞, for any fixed λ ∈ R, then (4) has a solution defined in [0, ∞).

and suppose that u is a solution to (3) such that u(0) = λ. Then u satisfies

Hence |u | ≤ (p C λ ) 1/p with C λ = F (λ) + F and |u| ≤ |λ| + (p C λ ) 1/p r for r > 0 in the domain of definition of u. These estimates tell us that if u can be defined in an interval of the form [0, δ] for δ > 0 and small, then this solution can be extended to [0, ∞).