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Nonparametric regression on hidden Φ-mixing variables:

identifiability and consistency of a pseudo-likelihood

based estimation procedure

Thierry Dumont ∗and Sylvain Le Corff †

August 10, 2015

Abstract

This paper outlines a new nonparametric estimation procedure for unobserved Φ-
mixing processes. It is assumed that the only information on the stationary hidden
states (Xk)k≥0 is given by the process (Yk)k≥0, where Yk is a noisy observation of
f?(Xk). The paper introduces a maximum pseudo-likelihood procedure to estimate
the function f? and the distribution νb,? of (X0, . . . , Xb−1) using blocks of observations
of length b. The identifiability of the model is studied in the particular cases b = 1
and b = 2 and the consistency of the estimators of f? and of νb,? as the number of
observations grows to infinity is established.

1 Introduction

The model considered in this paper consists of a bivariate stochastic process {(Xk, Yk)}k≥0
where only the sequence (Yk)k≥0 is observed. These observations are given by

Yk = f?(Xk) + εk , (1)

where f? is a function defined on a space X and taking values in R`. The measurement
noise (εk)k≥0 is an independent and identically distributed (i.i.d.) sequence of Gaussian
random vectors of R`. This paper proposes a new method to estimate the function f? and
the distribution of the hidden states using only the observations (Yk)k≥0. Nonparametric
estimation with latent random variables is a challenging task and most of the existing
results in this context use additional assumptions on the sequence (Xk)k≥0. For instance, in
errors-in-variables models, the random variables (Xk)k≥0 are observed through a sequence
(Zk)k≥0, i.e. Zk = Xk + ηk and Yk = f?(Xk) + εk, where the variables (ηk)k≥0 are i.i.d
with known distribution. Many solutions have been proposed to solve this problem, see
[12] and [15] for a ratio of deconvolution kernel estimators, [17] for B-splines estimators and
[5] for a procedure based on the minimization of a penalized contrast. In the case where
the hidden state is a Markov chain, [20, 19] considered the following observation model
Yk = Xk + εk, where the random variables {εk}k≥0 are i.i.d. with known distribution. [20]
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(resp. [19]) proposed an estimator of the transition density (resp. the stationary density
and the transition density) of the Markov chain (Xk)k≥0 based on the minimization of a
penalized L2 contrast.

Recently, [10] used the model (1) for indoor simultaneous localization and mapping
based on WiFi signals. In this framework, the process (Xk)k≥0 is the position of a mobile
device evolving in a building and it is assumed to be a Markov chain with transition density
depending only on the distance between two consecutive states. Yk denotes the signal
strengths measured by the device at time step k. Only (Yk)k≥0 is observed and inference on
the hidden positions (Xk)k≥0 (localization) requires an efficient estimation of f? (mapping).

In this paper, the random process (Xk)k≥0 is assumed to be Φ-mixing and stationary
which encompasses the i.i.d. case and the hidden Markov model setting of [10]. We propose
a new approach to estimate the function f? and the distribution νb,? of the hidden states
(X0, . . . , Xb−1) for a given b using only the observations (Yk)k≥0. The identifiability of the
model is studied and we show that for some particular cases, f? may be recovered up to
an isometric transformation of X. The observations are decomposed into non-overlapping
blocks (Ykb, . . . , Y(k+1)b−1) to define a pseudo likelihood function. The estimator (f̂n, ν̂n)
of (f?, νb,?) is defined as a maximizer of a penalized version of the pseudo-likelihood of the
observations (Y0, . . . , Ynb−1) over a class of functions F and a class of densities Db on Xb.
These estimators of f? and νb,? may then be used to define an estimator p̂n of the density
of the distribution of (Y0, . . . , Yb−1). It is proved in Section 3 that the Hellinger distance
between p̂n and the true distribution of a block of observations vanishes as the number of
observations grows to infinity. This result is established using few assumptions on the model:
the penalization function needs only to be lower bounded by a power of the supremum norm
and no topological restrictions are made on X. Under compacity assumptions on F and Db
the consistency of (f̂n, ν̂n) is derived although the rate of convergence of (f̂n, ν̂n) remains
an open problem and seems to be very challenging.

In Section 4, we discuss the identifiability issues raised by the model (1). When b = 1,
the identifiability is studied in the particular case where X is a subset of Rm for some m > 0,
f? is a C1 diffeomorphism and F is a subset of continuously differentiable functions on X.
We establish that if X̃0 has a distribution with probability density ν and if f̃ ∈ F is such
that f̃(X̃0) and f?(X0) have the same distribution then f̃ = f? ◦ φ and ν = |Jφ| · ν1,? ◦ φ
where φ : X → X is a bijective function (|Jφ| denotes the determinant of the Jacobian
matrix of φ). This result only requires regularity assumptions on the unknown function f?
and not on the candidate function f̃ , which in particular is not assumed to be one-to-one.
This implies that the inference task may be performed within a larger class of functions. A
similar result is obtained when b = 2 to establish that the model is identifiable up to an
isometric transformation of X in the context of [10].

The consistency and identifiability results are applied in Section 5 when F is assumed to
be a Sobolev class of functions. In this setting, the supremum norm in F may be controlled
by the penalty term to ensure that p̂n is consistent. Moreover, this framework satisfies the
compacity assumption needed in Section 3 to derive the consistency of (f̂n, ν̂n). Section 6
provides numerical experiments to illustrate our estimation approach and the identifiability
results of Section 4. Proofs and technical results are postponed to Section 7 and to the
appendices.
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2 Model and definitions

Let (Ω, E ,P) be a probability space and (X,X ) be a general state-space endowed with a
measure µ. Let (Xk)k≥0 be a stationary process defined on Ω and taking values in X. This
process is only partially observed through the sequence (Yk)k≥0 which takes values in R`,
` ≥ 1. In the sequel, for any 0 ≤ k ≤ k′, the sequence (xk, . . . , x

′
k) is written xk:k′ . The

observations (Yk)k≥0 are given by (1) where f? : X → R` is a measurable function and the
random variables (εk)k≥0 are i.i.d. with density ϕ with respect to the Lebesgue measure λ
of R`, given, for any z1:` ∈ R`, by:

ϕ(z1:`)
def
= (2π)

−`/2
exp

−1

2

∑̀
j=1

z2j

 . (2)

In this paper, ε0 is assumed to be distributed according to a standard normal distribution.
Note that this setting is enough to deal with a known and nonsingular covariance matrix
Σ. In this case, (Yk)k≥0 may be replaced by (Σ−1/2Yk)k≥0 and the modified noise Σ−1/2ε0
is then a standard normal random vector.

This paper proposes a method to estimate the target function f? ∈ F , where F is a set of
functions from X to R`, and the distribution of the hidden states using only the observations
(Yk)k≥0. This problem could be interpreted as a deconvolution problem where it is usual to
assume that the noise distribution is known, see for instance [3, 16, 18]. Here, the density ϕ
is assumed to be known to simplify the proof of identifiability (Section 4). This proof only
needs the characteristic function of ε0 to be known and non zero. Note that the Gaussian
assumption is only used to establish the consistency result (Theorem 3.1) which relies on an
entropy control written for this particular choice of density function. A few authors have
studied the deconvolution problem with unknown noise distribution. In [4], the estimation
of the density of X in the model Y = X + ε is performed without knowing the distribution
ε and under mild assumptions on the smoothness of the underlying densities. However, [4]
only considered real valued random variables and the estimation based on Fourier transform
and bandwidth selection is hardly relevant in our model. The main difference between the
model studied in this paper and classical convolution models is that the random vector
f?(Xk) does not necessarily have a density with respect to the Lebesgue measure on R`. As
discussed in Section 5 (Corollary 5.2), under some assumptions on f?, if the state-space X
is a subset of Rm with m < `, f?(Xk) lies in a sub-manifold of dimension m in R` which
has a null Lebesgue measure and then classical deconvolution tools do not apply here.

Let b be a positive integer. For any sequence (xk)k≥0, define xk
def
= (xkb, . . . , x(k+1)b−1)

and for any function f : X→ R`, define f : Xb → Rb` by

x = (x0, . . . , xb−1) 7→ f(x)
def
= (f(x0), . . . , f(xb−1)) .

The distribution of X0 is assumed to have a density νb,? with respect to the measure µ⊗b

on Xb which lies in a set of probability densities Db. For all f ∈ F and ν ∈ Db, let pf,ν be
defined, for all y ∈ Rb`, by

pf,ν(y)
def
=

∫
ν(x)

b−1∏
k=0

ϕ(yk − f(xk))µ⊗b (dx) . (3)
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Note that pf?,νb,? is the probability density of Y0 defined in (1): for all y ∈ Rb`,

p?(y)
def
= pf?,νb,?(y) =

∫
νb,?(x)

b−1∏
k=0

ϕ(yk − f?(xk))µ⊗b (dx) . (4)

The function y0:nb−1 7→
∑n−1
k=0 ln pf,ν (yk) is referred to as the pseudo log-likelihood of the

observations up to time nb−1. This paper introduces an estimation procedure based on the
method of M-estimation presented in [26] and [25]. Consider a function I : F → R+ which
characterizes the complexity of functions in F and let δn and λn be some positive numbers.
Define the following δn-Maximum Pseudo-Likelihood Estimator (δn-MPLE) of (f?, νb,?):

(
f̂n, ν̂n

)
def
= argmaxδn

f∈F, ν∈Db

{
n−1∑
k=0

ln pf,ν (Yk)− λnI(f)

}
, (5)

where argmaxδn
f∈F, ν∈Db

is one of the pairs (f ′, ν′) such that

n−1∑
k=0

ln pf ′,ν′ (Yk)− λnI(f ′) ≥ sup
f∈F, ν∈Db

{
n−1∑
k=0

ln pf,ν (Yk)− λnI(f)

}
− δn .

The consistency of the estimators is established using a control for empirical processes
associated with mixing sequences. The Φ-mixing coefficient between two σ-fields U ,V ⊂ E
is defined in [7] by

Φ(U ,V)
def
= sup

U∈U,V ∈V,
P(U)>0

∣∣∣∣P (U ∩ V )

P(U)
− P(V )

∣∣∣∣ .
The stationary process (Xk)k≥0 can be extended to a two-sided process (Xk)k∈Z which is
said to be Φ-mixing when limi→∞ΦXi = 0 where, for all i ≥ 1,

ΦXi
def
= Φ (σ (Xk ; k ≤ 0) , σ (Xk ; k ≥ i)) , (6)

σ (Xk ; k ∈ C) being the σ-field generated by (Xk)k∈C for any C ⊂ Z. As in [24], the
required concentration inequality for the empirical process is established under the following
assumption on the Φ-mixing coefficients of (Xk)k≥0.

H1 The stationary process (Xk)k≥0 satisfies Φ
def
=
∑∞
i=1(ΦXi )1/2 < ∞ where ΦXi is given

by (6).

Remark 2.1. - If (Xk)k≥0 is i.i.d., then ΦXi = 0 for all i ≥ 1 and H1 is satisfied.

- Assume (Xk)k≥0 is a stationary Markov chain with transition kernel Q and stationary
distribution π such that there exist ε > 0 and a probability measure ϑ on X satisfying, for
all x ∈ X and all A ∈ X ,

Q(x,A) ≥ εϑ(A) .

Then, by [22, Theorem 16.2.4], for all x ∈ X and all A ∈ X ,

|Qn(x,A)− π(A)| ≤ (1− ε)n .
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Therefore, for all n, k > 0 and A,B ∈ X such that π(A) > 0,

|P (Xk+n ∈ B|Xk ∈ A)− P (Xk+n ∈ B)| = |P (Xk+n ∈ B|Xk ∈ A)− π (B)| ,

≤ 1

π(A)

∣∣∣∣∫
A

(Qn(x,B)− π(B))π(dx)

∣∣∣∣ ,
≤ (1− ε)n .

The Φ-mixing coefficients associated with (Xk)k≥0 decrease geometrically and H1 is sat-
isfied.

3 General convergence results

Denote by p̂n the estimator of p? (defined in (4)), given by

p̂n
def
= pf̂n,ν̂n

, (7)

where (f̂n, ν̂n) is defined in (5). The first step to prove the consistency of the estimators is
to establish the convergence of p̂n to p?. The only assumption required on the penalization
procedure is that the function I is lower bounded by a power of the supremum norm.

H2 There exist C > 0 and υ > 0 such that for all f ∈ F ,

‖f‖∞ ≤ CI(f)υ , (8)

with, for any f ∈ F , ‖f‖∞
def
= max

1≤j≤`
ess sup
x∈X

|fj(x)|.

Here, ess sup denotes the essential supremum with respect to the measure µ on X. Note
that if H2 holds, since I : F → R+, for all f ∈ F , ‖f‖∞ ≤ CI(f)υ < ∞. This is the only
restrictive assumption on the penalty I(f) which may be chosen arbitrarily as long as H2
holds.

H3 There exist 0 < ν− < ν+ <∞ such that, for all ν ∈ Db, ν− ≤ ν ≤ ν+.

The convergence of p̂n to p? is established using the Hellinger metric defined, for any prob-
ability densities p1 and p2 on Rb`, by

h(p1, p2)
def
=

[
1

2

∫ (
p
1/2
1 (y)− p1/22 (y)

)2
dy

]1/2
. (9)

Theorem 3.1 provides a rate of convergence of p̂n to p? and a bound for the complexity
I(f̂n) of the estimator f̂n.

Theorem 3.1. Assume H1-3 hold for some υ such that b`υ < 1. Assume also that λn and
δn satisfy

λnn
−1 −→

n→+∞
0, λnn

−1/2 −→
n→+∞

+∞ and δn = O

(
λn
n

)
. (10)

Then,

h2(p̂n, p?) = OP

(
λn
n

)
and I(f̂n) = OP(1) . (11)
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Condition (10) implies that the rate of convergence of the Hellinger distance between p̂n
and the true density p? is slower than n−1/4. The proof of the consistency of p̂n relies on
the control of the empirical process:

sup
f,ν

∫
1

2
ln [(pf,ν + p?)/(2p?)] d (Pn − P?) ,

where P? is the law of Y0 and Pn is the empirical distribution of the observations {Yk}n−1k=0 ,
given for any measurable set A of Rb` by

Pn(A)
def
=

1

n

n−1∑
k=0

1A(Yk) .

A weaker condition on λn could be obtained with a sharper deviation inequality on the
empirical process. For instance, [25, Theorem 10.6] estimates the density of a random
variable Y using i.i.d. samples and the penalized loglikelihood p 7→

∫
log p dPn − λnI(p),

where I(p) =
∫
R(p(m)(y))2dy penalizes the m-th derivative of p. The proof of [25, equation

(10.34)] establishes that

sup
p∈An(p?)

∫
ln [(p+ p?)/(2p?)] d (Pn − P?)

1 + I(p) + I(p?)
= OP(n−2m/(2m+1)) ,

where
An(p?)

def
=
{
p ; h(p, p?) ≤ n−m/(2m+1) [1 + I(p) + I(p?)]

}
to obtain n−m/(2m+1) as rate of convergence for h(p̂n, p?). [13] also use a localization
technique to derive the minimal penalty which ensures the convergence of the estimate
of the number of components in a general mixture model. In our case, Proposition 3.2
establishes a deviation result on the empirical process on the whole class of functions
{pf,ν ; f ∈ F , ν ∈ Db}. We consider a general setting where F , Db and the complexity
function I(f) are all non specified. Theorem 3.1 is established under the relatively mild as-
sumptions H1-3. Hence, the rate n−1/4 corresponds to the ”worst case” rate. However, even
in a less general context such as in Section 5, controlling a localized version of the empirical
process in order to improve the rate of convergence of p̂n remains a difficult problem.

The proof of Theorem 3.1 relies on a basic inequality which provides a simultaneous
control of the Hellinger risk h2(p̂n, p?) and of I(f̂n). Define for any density function p on
Rb`,

gp
def
=

1

2
ln
p+ p?

2p?
. (12)

By (5) and (7), following the proof of [25, Lemma 10.5]:

h2(p̂n, p?) + 4λnn
−1I(f̂n) ≤ 16

∫
gp̂nd(Pn − P?) + 4λnn

−1I(f?) + δn . (13)

Therefore, a control of
∫
gp̂nd(Pn−P?) in the right hand side of (13) provides upper bounds

for both h2(p̂n, p?) and I(f̂n). This control is given in Proposition 3.2.
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Proposition 3.2. Assume H1-3 hold. There exists a positive constant c such that, for any
η > 0, there exist A and N such that for any n ≥ N and any x > 0,

P
[

sup
f∈F, ν∈Db

∣∣∫ gpf,ν d(Pn − P?)
∣∣

1 ∨ I(f)γ
≥ cΦ×

(√
x

n
+
x

n

)
+

A√
n

]
≤ 2e−αx

1− e−αx
,

where γ
def
= b`υ + η and α

def
= 2−2γ(γ − υ) log(2) = 2−2(b`υ+η) [(b`− 1)υ + η] log(2).

Proposition 3.2 is proven in Section. 7.1.

Proof of Theorem 3.1. Since υ−1 > b`, η > 0 in Proposition 3.2 can be chosen such that
γ = b`υ + η = 1. For this choice of η, Proposition 3.2 implies that∫

gp̂nd(Pn − P?)
1 ∨ I(f̂n)

= OP(n−1/2) .

Combined with (13), this yields

h2(p̂n, p?) + 4λnn
−1I(f̂n) ≤ (1 ∨ I(f̂n))OP(n−1/2) + 4λnn

−1I(f?) + δn . (14)

Then, (14) directly implies that

4 I(f̂n) ≤ (1 ∨ I(f̂n))OP(n1/2λ−1n ) + 4I(f?) + δnnλ
−1
n ,

which, together with (10), gives

I(f̂n) = OP(1) .

Combining this result with (14) again leads to

h2(p̂n, p?) +OP(λnn
−1) ≤ OP(n−1/2) + 4λnn

−1I(f?) + δn .

This concludes the proof of Theorem 3.1.

Theorem 3.1 shows that h2(p̂n, p?) vanishes as n goes to infinity. However, this does not

imply the convergence of (f̂n, ν̂n) to (f?, νb,?). The convergence of the estimators (f̂n, ν̂n) is
addressed in the case where the set Db may be written as

Db = {νa; a ∈ A} , (15)

where A is a parameter set not necessarily of finite dimension. The δn-MPLE is then given
by:

(f̂n, ân)
def
= argmaxδn

f∈F, a∈A

{
n−1∑
k=0

ln pf,νa (Yk)− λnI(f)

}
.

H4 a) A is endowed with a distance dA such that A is compact with respect to the
topology defined by dA,

b) F is endowed with a metric dF such that FM
def
= {f ∈ F ; I(f) ≤M} is compact

for all M > 0 with respect to the topology defined by dF ,

c) The function (f, a) 7→ h2(pf,νa , p?) is continuous with respect to the topology on
F ×A induced by the product distance d on F ×A.
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Corollary 3.3 establishes the convergence of (f̂n, ân) to the set E? defined as:

E?
def
=
{

(f, a) ∈ F ×A; pf,νa = pf?,νa?
}
. (16)

Define for all (f, a) ∈ F ×A,

d ((f, a), E?) = inf
(f ′,a′)∈E?

d ((f, a), (f ′, a′)) .

Corollary 3.3. Assume H1-4 hold for some υ such that υb` < 1. Assume also that λn and
δn satisfy

λnn
−1 −→

n→+∞
0, λnn

−1/2 −→
n→+∞

+∞ and δn = O

(
λn
n

)
.

Then,

d
(

(f̂n, ân), E?
)

= oP(1) .

Corollary 3.3 is a direct consequence of Theorem 3.1 and of the properties of dA and dF
and its proof is therefore omitted. The few assumptions on the model allow only to establish
the convergence of the estimators (f̂n, ân) to the set E? in Corollary 3.3.

4 Identifiability when X is a subset of Rm

The aim of this section is to characterize the set E? given by (16) when b = 1 and when
b = 2 (the characterization of E? when b > 2 follows the same lines) with some additional
assumptions on the model, on F and on Db. In the sequel, νb,? must satisfy 0 < ν− ≤ νb,? ≤
ν+ for some constants ν− and ν+. It is assumed that X is a subset of Rm for some m ≥ 1

and that µ is the Lebesgue measure. For any subset A of Rm,
◦
A stands for the interior of

A and A for the closure of A. Consider the following assumptions on the state-space X.

H5 a) X is non empty, compact and
◦
X = X,

b) X is arcwise and simply connected.

The compactness implies that X is closed and that continuous functions on X are
bounded. By the last assumption of H5a), the interior of X is not empty and any ele-
ment in X is the limit of elements of the interior of X. Finally, X is arcwise and simply
connected to ensure topological properties used in the proofs of the identifiability results
below.

A function f : U → f(U) ⊂ R` defined on an open subset U of Rm is a C1-diffeomorphism
if its differential function x 7→ Dxf is continuous and if, for all x in U , rank(Dxf) = m. A
function f : X → f(X) is said to be C1 (resp. a C1-diffeomorphism) if f is the restriction
to X of a C1 function (resp. a C1-diffeomorphism) defined on an open neighborhood of X in
Rm.

H6 f? is a C1-diffeomorphism from X to f?(X).

H6 might be seen as a restrictive assumption. Nevertheless, when ` ≥ 2m+ 1, by Whit-
ney’s embedding theorem ([27]) every continuous function from X to R` can be approximated
by a smooth embedding. In the case b = 1, Proposition 4.1 discusses the identifiability when
F is a subset of C1. For all differential function φ : X→ X, let Jφ be the determinant of the

Jacobian matrix of φ: Jφ(x)
def
= det (Dxφ).
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Proposition 4.1 (b=1). Assume that H3-6 hold. Let f ∈ C1 and let ν ∈ Db. Then,
pf,ν = pf?,ν1,? if and only if f? and f have the same image in R`, φ = f−1? ◦ f is bijective
and, for µ almost every x ∈ X,

ν(x) = |Jφ(x)|ν1,?(φ(x)) .

The proof of Proposition 4.1 is given in Section 7.2.

Remark 4.2. Proposition 4.1 states that (f, ν) is related to (f?, ν1,?) through the bijective
state-space transformation φ. In the particular case where X = [0, 1] (m = 1), Propo-
sition 4.1 implies a sharper result. Assume that D1 = {ν1,? = 1} (ν1,? is the uniform
distribution density and is known). Then, Proposition 4.1 implies the existence of a C1 and
bijective function φ satisfying f = f? ◦ φ and |Jφ| = 1. Hence, φ : x 7→ x or φ : x 7→ 1 − x
which are the two isometric transformations of [0, 1].

This cannot be extended to the case m > 1 where |Jφ| = 1 does not necessarily imply
that φ is isometric but only that φ preserves volumes.

Proposition 4.3 establishes the identifiability of the model when b = 2. In this case, ν2,?
can be written ν2,?(x, x

′) = ν?(x)q?(x, x
′) where q? is a transition density with (unique)

stationary probability density ν?. For any transition density q on X2 satisfying

for all x, x′ ∈ X , 0 < q− ≤ q(x, x′) ≤ q+ , (17)

there exists a stationary density ν associated with q satisfying, for all x ∈ X, q− ≤ ν(x) ≤ q+.
Denote by νq this density.

Proposition 4.3 (b=2). Assume that H5 and H6 hold. Let f ∈ C1 and q be a transition
density satisfying (17). Let ν2(x, x′) = νq(x)q(x, x′). Then, pf,ν2 = pf?,ν2,? if and only if f?
and f have the same image in R`, φ = f−1? ◦ f is bijective and µ⊗ µ almost everywhere in
X2,

q(x, x′) = |Jφ(x′)|q?(φ(x), φ(x′)) . (18)

Proposition 4.3 is proved in Section 7.3.

Corollary 4.4. Assume that the same assumptions as in Proposition 4.3 hold. Assume in
addition that q? and q are of the form:

q?(x, x
′) = c?(x)ρ?(||x− x′||) , q(x, x′) = c(x)ρ(||x− x′||) ,

where ρ and ρ? are two continuous functions defined on R+. If in addition ρ? is one-to-one
then, pf,ν2 = pf?,ν2,? if and only if f? and f have the same image in R`, φ = f−1? ◦ f is an
isometry on X and q = q?.

5 Application when F is a Sobolev class of functions

In this section, X is a subset of Rm, m ≥ 1 and the results of Section 3 and Section 4 are
applied to a specific class of functions F with an example of complexity function I satisfying
H2 and the compacity assumption H4-b). Let p ≥ 1, define

Lp
def
=

{
f : X→ R` ; ‖f‖pLp =

∫
X
‖f(x)‖pµ(dx) <∞

}
.
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For any f : X→ R` and any j ∈ {1, · · · , `}, the jth component of f is denoted by fj . For any

vector α
def
= {αi}mi=1 of non-negative integers, we write |α| def=

∑m
i=1 αi and Dαf : X → R`

for the vector of partial derivatives of order α of f in the sense of distributions. Let s ∈ N
and W s,p be the Sobolev space on X with parameters s and p, i.e.,

W s,p def
= {f ∈ Lp; Dαf ∈ Lp, α ∈ Nm and |α| ≤ s} . (19)

W s,p is endowed with the norm ‖ · ‖W s,p defined, for any f ∈W s,p, by

‖f‖W s,p
def
=

 ∑
0≤|α|≤s

‖Dαf‖pLp

1/p

. (20)

For any j ∈ {1, · · · , `} and f ∈ W s,p, fj belongs to W s,p(X,R), the Sobolev space of
real-valued functions with parameters s and p. For all k, q ≥ 0, define Ck(X,Rq), the set
of functions f : X → Rq which, together with all their partial derivatives Dαf of orders
|α| ≤ k are continuous on X. For any f ∈ Ck(X,Rq) define

‖f‖Ck(X,Rq)
def
= max

0≤|α|≤k
sup
x∈X
|Dαf(x)| .

In the particular case q = `, write Ck def
= Ck(X,R`). The results of Section 3 and Section 4

can be applied to the class F = W s,p under the following assumption.

H7 X has a locally Lipschitz boundary.

H7 means that all x on the boundary of X has a neighbourhood whose intersection with the
boundary of X is the graph of a Lipschitz function.

Let k ≥ 0, by [1, Theorem 6.3], if s > m/p+ k and if H5-a) and H7 hold, W s,p(X,R) is
compactly embedded into

(
Ck(X,R), ‖ · ‖Ck(X,R)

)
. Arguing component by component, W s,p

is compactly embedded into Ck. Moreover, the identity function id : W s,p → Ck being linear
and continuous, there exists a positive coefficient κ such that, for any f ∈W s,p,

‖f‖Ck ≤ κ‖f‖W s,p . (21)

Then, if s > m/p+ k, for any f ∈ F = W s,p,

‖f‖∞ ≤ κ‖f‖W s,p . (22)

In the following, dCk is the usual distance on Ck associated with ‖ · ‖Ck . If F = W s,p and

if the complexity function is defined by I(f) = ‖f‖1/υW s,p with υb` < 1, then H2 holds and
Theorem 3.1 can be applied. Moreover, by [1, Theorem 6.3], the subspace FM , M ≥ 1 are
quasi-compact in Ck and H4-b) holds. Let dA be a metric on the space A introduced in
(15) such that H4-a) holds and that, for µ ⊗ µ almost every (x, x′) ∈ X2, a 7→ νa(x, x′) is
continuous. By the dominated convergence theorem, this implies that H4-c) holds. Define

F?
def
= {f ∈W s,p; there exists a ∈ A such that (f, a) ∈ E?} .

Then, Proposition 5.1 is a direct application of Corollary 3.3.
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Proposition 5.1 (F = Ws,p, s > m/p + k, k ≥ 0). Assume that H1, H3, H5a) and H7

hold. Assume also that I(f) = ‖f‖1/υW s,p for some υ such that υb` < 1 and that λn and δn
satisfy

λnn
−1 −→

n→+∞
0, λnn

−1/2 −→
n→+∞

+∞ and δn = O

(
λn
n

)
.

Then,

dCk
(
f̂n,F?

)
= oP(1) .

Moreover, as shown in Section 7.2, the assumption
◦
X = X together with the continuity

of the functions in F provided by (21) imply that for any f in F?, f(X) = f?(X) (see the
proof in Section 7.2). Define the Hausdorff distance dH(A,B) between two compact subsets
A and B of R` as

dH(A,B)
def
= max

(
sup
a∈A

inf
b∈B
||a− b||R` , sup

b∈B
inf
a∈A
||a− b||R`

)
.

Proposition 5.1 implies Corollary 5.2.

Corollary 5.2 (F = Ws,p, s > m/p). Assume that H1, H3, H5a) and H7 hold. Assume

also that I(f) = ‖f‖1/υW s,p for some υ such that υb` < 1 and that λn and δn satisfy

λnn
−1 −→

n→+∞
0, λnn

−1/2 −→
n→+∞

+∞ and δn = O

(
λn
n

)
.

Then,

dH

(
f̂n(X), f?(X)

)
= oP(1) .

Corollary 5.2 establishes the consistency of the estimator f̂n(X) of the image of f? in R`.
This result is particularly interesting since f?(X) is a manifold of dimension smaller than `
in R`. The proposed estimation procedure allows to approximate such manifolds of possibly
low dimensions and only observed with additive noise in R`. Moreover, this result holds
under relatively weak assumptions on the manifold. Since the identifiability of f? is not
necessary to have the identifiability of f?(X), f? is not assumed to be bijective to establish
this result.

Proposition 5.3 below states the consistency of the estimators (f̂n, ân) in the case b = 2
and F = W s,p. Assume that for any a in A, νa ∈ D2 is of the form

νa(x, x′) = νqa(x)qa(x, x′) with qa(x, x′) = ca(x)ρa(||x− x′||) ,

where ρ− ≤ ρa ≤ ρ+. It is also assumed that there exists a unique a? ∈ A such that
ν2,? = νa? and that ρa? is one-to-one. Proposition 5.3 is a direct application of Corollary 3.3
and of Proposition 4.3 and is stated without proof.

Proposition 5.3 (F = Ws,p, s > m/p + k, k ≥ 1, b = 2). Assume that H1, H3 and H5

- 7 hold. Assume also that I(f) = ‖f‖1/υW s,p for some υ such that 2υ` < 1 and that λn and
δn satisfy

λnn
−1 −→

n→+∞
0, λnn

−1/2 −→
n→+∞

+∞ and δn = O

(
λn
n

)
.
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Then,
F? = {f? ◦ φ; φ is an isometry of X} ,

and
dCk

(
f̂n,F?

)
= oP(1) and dA (ân, a?) = oP(1) ,

6 Numerical experiments

This section provides a practical implementation of the estimation procedure proposed in
Section 2. The algorithm is applied in the cases b = 1 and b = 2 to assess the consis-
tency and identifiability results with simulated data. When b = 2, the hidden chain is
assumed to be a Markov chain with a parametric transition kernel of the form q?(x, x

′) =
Ca?(x)exp(−‖x′−x‖/a?). This particular case is motivated by the recent work of [10] where
the same assumption on the hidden chain is made to perform indoor simultaneous localiza-
tion and mapping based on WiFi signals. The process (Xk)k≥0 is the position of a mobile
evolving in a building and receiving the signal strengths Yk which satisfy (1) at each time
step k.

In Section 6.1, a generic EM based procedure is introduced to solve the inference problem
detailed in Section 2. In Section 6.2, we intend to apply this algorithm in the Sobolev
setting of Section 5 with a penalization function I(f) based on the Sobolev norm ‖ · ‖W 2,2 .
The assumptions required to obtain the identifiability and consistency results lead to a
penalization term of the form I(f) = ‖f‖ϑW 2,2 where ϑ > 2b. As explained in Section 6.2,
the M-step of the EM algorithm is intractable in this case while it can be efficiently performed
under weaker assumptions (e.g. when I(f) is based on the L2 norm of f ′′). Therefore, the
proposed procedure weakens this assumption to illustrate the identifiability and consistency
results. In particular, the convergence observed in the simulations of Section 6.2 seems to
indicate that assumption H2 could be weakened.

6.1 Proposed Expectation Maximization algorithm

This section introduces a practical algorithm to compute the estimators defined in (5) when
δn is set to zero. It is assumed that the maximizer in (5) exists which is the case for instance
in the Sobolev framework of Section 5 and if Db is compact. This proposed Expectation-
Maximization (EM) based procedure iteratively produces a sequence of estimates ν̂t, f̂ t,

t ≥ 0, see [8]. Assume that the current parameter estimates are given by ν̂t and f̂ t. The

estimates ν̂t+1 and f̂ t+1 are defined as one of the maximizers of the function Q:

(ν, f) 7→ Q((ν, f), (ν̂t, f̂ t))
def
=

n−1∑
k=0

Eν̂t,f̂t
[
ln pf,ν (Xk,Yk)

∣∣Yk

]
− λnI(f) ,

where Eν̂t,f̂t [·] denotes the conditional expectation under the model parameterized by ν̂t

and f̂ t and where, for any x = (x0, . . . , xb−1) ∈ Xb and any y = (y0, . . . , yb−1) ∈ R`b,

pf,ν (x,y)
def
= ν(x)

b−1∏
i=0

ϕ(yi − f(xi)) .

Note that the intermediate quantity Q((ν, f), (ν̂t, f̂ t)) can be written:

Q((ν, f), (ν̂t, f̂ t)) = Q1
t (ν) +Q2

t (f) ,

12



where

Q1
t (ν)

def
=

n−1∑
k=0

Eν̂t,f̂t
[
ln {ν(Xk)}

∣∣Yk

]
, (23)

Q2
t (f)

def
=

n−1∑
k=0

Eν̂t,f̂t

[
ln

{
b−1∏
i=0

ϕ (Ybk+i − f(Xbk+i))

}∣∣∣∣∣Yk

]
− λnI(f) . (24)

Therefore ν̂t+1 is obtained by maximizing the function ν 7→ Q1
t (ν) and f̂ t+1 by maximizing

the function f 7→ Q2
t (f). Lemma 6.1 proves that the penalized pseudo-likelihood increases

at each iteration of this EM based algorithm. Its proof is postponed to Appendix C.

Lemma 6.1. The sequences ν̂t and f̂ t satisfy

n−1∑
k=0

ln pf̂t+1,ν̂t+1 (Yk)− λnI(f̂ t+1) ≥
n−1∑
k=0

ln pf̂t,ν̂t (Yk)− λnI(f̂ t) .

Remark 6.1. Like for all EM or gradient based procedures, there is no guarantee that the
sequence (f̂ t, ν̂t)t≥0 converges, when t grows to infinity, towards the target estimate:

(f̂n, ν̂n) = argmax
f,ν

{
n−1∑
k=0

ln pf,ν (Yk)− λnI(f)

}
.

Lemma 6.1 only ensures that (f̂ t, ν̂t)t≥0 converges towards a local maximum of the penalized
pseudo likelihood. This limitation is proper to models with hidden data.

6.2 Experimental results

This section illustrates the convergence of the estimates (5) using the EM procedure of
Section 6.1. The state-space is X = [0, 1] and the unknown function f? is given by

f? : [0, 1] → R2

x 7→ (cos(πx), sin(πx)) .

Therefore, throughout this section m = 1 and ` = 2. As shown in Section 4, the identifia-
bility of f? up to an isometric function of [0, 1] can be obtained:

- In the case b = 1 when ν1,? is assumed to be known.

- In the case b = 2 when D2 is the set of probability densities defined on X2 and of the form
ν(x, x′) = c(x)ρ(‖x− x′‖).

The performance of the algorithm is assessed with two numerical experiments.

- First, (Xk)k≥0 is assumed to be i.i.d. uniformly distributed on [0, 1] and only f? is esti-
mated using b = 1 in (5).

- Then, (Xk)k≥0 is assumed to be a Markov chain with density kernel given by

q?(x, x
′) = qa?(x, x′)

def
= Ca?(x)exp

(
−‖x

′ − x‖
a?

)
and a? and f? are estimated using b = 2 in (5).
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In both cases, we wish to use the Sobolev setting of Section 5 with λn such that λn ∝
log(n)n1/2 and I(f) = ||f ||1/vW 2,2 with 1/v > b` = 2b so that the hypothesis of Propositions
5.1 and 5.3 are fulfilled. However, as discussed in the next section, such a complexity
function I may be intractable for the optimization problem.

6.2.1 Approximations

The computation of the intermediate quantities (23) and (24) requires an approxima-
tion of the conditional expectations Eν̂t,f̂t [h(Xk,Yk)|Yk]. For each 0 ≤ k ≤ n − 1,

the approximation of the distribution of Xk conditionally on Yk when the parameters
are (ν̂t, f̂ t) is dealt with Monte Carlo simulations. For each t ≥ 0 and each 0 ≤ k ≤
n − 1, the Monte Carlo approximation is based on a set of particles {Ξt,j

k }
Nmc
j=1 , where

Ξt,j
k = (ξt,jk,0, . . . , ξ

t,j
k,b−1), associated with weights {ωt,jk }

Nmc
j=1 such that for any bounded func-

tion h:

Eν̂t,f̂t
[
h(Xk,Yk)

∣∣∣Yk

]
≈
Nmc∑
j=1

ωt,jk h(Ξt,j
k ,Yk) .

Therefore, (23) and (24) are approximated by:

Q1
t (ν) ≈

n−1∑
k=0

Nmc∑
j=1

ωt,jk ln
{
ν(Ξt,j

k )
}
, (25)

Q2
t (f) ≈ −1

2

n−1∑
k=0

Nmc∑
j=1

ωt,jk

b−1∑
i=0

‖Ybk+i − f(ξt,jk,i)‖
2 − λn‖f‖1/vW 2,2 . (26)

However, the maximization of (26) when 1/v > 2b may be complex. Relaxing the hypothesis
1/v > 2b by choosing I(f) = ‖f‖2W 2,2 (1/v = 2) allows to compute the maximizer of
(26) as in [6] where the setting is similar except that I(f) = ‖f ′′‖2L2 . [6] shows that
the optimization problem can be written as an orthogonal projection in a Hilbert space.
Nevertheless, using 1/v > 2b (where 2b = 2 in the first study and 2b = 4 in the second one)
as requested by Propositions 5.1 and 5.3 leads to a much more complicated optimization
problem since it can not be interpreted as an orthogonal projection in a Hilbert space.

Moreover, the maximization of (26) has been widely studied when I(f) = ‖f‖1/vW 2,2 is replaced

by I(f) = ‖f ′′‖2L2 . In this setting, f̂p+1 is then a regression spline (see for instance [6, 14]).
Therefore, the constraints on I(f) required by Propositions 5.1 and 5.3 are relaxed in the
simulations below where I(f) = ‖f ′′‖2L2 and where pre-built optimized routines1 are used

to compute f̂ t+1 given f̂ t.

6.2.2 Experiment 1: (Xk)k≥0 i.i.d.

In this section, b = 1 and ν1,? = 1 is assumed to be known. The estimation of f? is performed
with Nmc = 100. In this case, for each t ≥ 0, 0 ≤ k ≤ n− 1 and 1 ≤ j ≤ Nmc,

ξt,jk,0 = ξt,jk ∼ ν1,? and ωt,jk ∝ ϕ(Yk − f̂ t(ξt,jk )) .

1In the following simulations, we use the csaps Matlab function from the Curve Fitting Toolbox to
perform the M-step based on smoothing splines.
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Figure 1 displays the L2 error of the estimation of f? after 100 iterations as a function of
the number of observations. The L2 estimation error decreases quickly for small values of n
(lower than 5000) and then goes on decreasing at a lower rate as n increases. It can be seen
that even with a great number of observations, a small bias still remains for both functions
(with a mean a bit lower than 0.05). Indeed, there are always small errors in the estimation
of f? around x = 0 and x = 1.

(a) f1.

(b) f2.

Figure 1: L2 error after 100 iterations over 100 Monte Carlo runs.
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Figure 2 shows the estimates after 100 iterations when n = 25.000. We observe on
this Monte Carlo study that all the runs converge towards the isometric transformation
x 7→ f?(1 − x). This can be explained by the choice of the starting point of the EM
algorithm. The isometry is used in Figure 1 to compute the L2 error. This simulation
illustrates the identifiability results obtained in Section 4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5
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1.5

(a) With no isometry for f1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5
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0

0.5

1

1.5

(b) With the isometry x 7→ 1− x for f1.

Figure 2: True functions (bold lines) and estimates after 100 iterations (vertical lines) over
100 Monte Carlo runs (n = 25.000).
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6.2.3 Experiment 2: (Xk)k≥0 Markov chain

In this section, b = 2 and a? and f? are estimated. Define for any a > 0,

νa(x, x′) = ν1,a(x) · ca(x) exp

(
−|x− x

′|
a

)
,

ν1,a(x) ∝ c−1a (x) =

∫
[0,1]

exp

(
−|x− x

′|
a

)
dx′ .

ν̂t+1 is given by νât+1 where ât+1 is computed by maximizing the function

a 7→ log
(
a+ a2(exp(−1/a)− 1)

)
+

1

na

n−1∑
k=0

Nmc∑
j=1

ωt,jk |ξ
t,j
k,0 − ξ

t,j
k,1| ,

where, for all 0 ≤ k ≤ n− 1, (ξt,jk,0, ξ
t,j
k,1)Nmcj=1 are independently sampled uniformly in [0, 1]×

[0, 1] and associated with the importance weights:

ωt,jk ∝ νât(ξ
t,j
k,0)qât(ξ

t,j
k,0, ξ

t,j
k,1)ϕ(Y2k − f̂ t(ξt,jk,0))ϕ(Y2k+1 − f̂ t(ξt,jk,1)) . (27)

The Monte Carlo approximations are computed using Nmc = 200 and 20.000 observations
(i.e. n = 10.000) are sampled. Figure 3 displays the estimation a? as a function of the
number of iterations of the EM algorithm over 50 independent Monte Carlo runs. The
estimates converge to the true value of a? after few iterations (about 25).

10 20 30 40 50 60 70 80 90 100
0.5

1

1.5

2

2.5

3

3.5

4

Number of iterations

a

Figure 3: Estimation of a? as a function of the number of iterations of the EM algorithm.
The true value is a? = 1. Median (bold line) and upper and lower quartiles (dotted line)
over 50 Monte Carlo runs.

Figure 4 illustrates Corollary 5.2. It displays the estimation of f?([0, 1]) after 100 itera-
tions for several Monte Carlo runs. It shows that despite the variability of the estimation,
the image is well estimated with few observations.
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Figure 4: True image f?([0, 1]) (red) and estimates after 100 iterations of the algorithm over
100 Monte Carlo runs (grey).

7 Proofs

7.1 Proof of Proposition 3.2

Recall that for any probability density function p on Rb`, gp is defined in (12) by

gp
def
=

1

2
ln
p+ p?

2p?
.

The proof relies on the application of Proposition A.1 and Proposition A.2 to obtain first a
concentration inequality for the class of functions GM , where M ≥ 1, defined as:

GM
def
=
{
gpf,ν ; ν ∈ Db, f ∈ F and I(f) ≤M

}
,

where pf,ν is defined by (3). For any p > 0, denote by Lp(P?) the set of functions g : Rb` → R
such that E [|g(Y0)|p] < +∞. For any κ > 0 and any set G of functions from Rb` to R,
let N[](κ,G, ‖ · ‖Lp(P?)) be the smallest integer N such that there exists a set of functions{(
gLi , g

U
i

)}N
i=1

for which:

a) ‖gUi − gLi ‖Lp(P?) ≤ κ for all i ∈ {1, · · · , N};

b) for any g in G, there exists i ∈ {1, · · · , N} such that

gLi ≤ g ≤ gUi .

N[](κ,G, ‖ · ‖Lp(P?)) is the κ-number with bracketing of G, and H[](κ,G, ‖ · ‖Lp(P?))
def
=

lnN[](κ,G, ‖ · ‖Lp(P?)) is the κ-entropy with bracketing of G. For any bounded function
g, define

Sn(g)
def
= n

∫
g d(Pn − P?) =

n−1∑
k=0

g(Yk)− nE[g(Y0)] . (28)
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Application of Proposition A.1 Proposition A.1 is applied to the class of functions
GM defined as

GM
def
= {g − E [g(Y0)] ; g ∈ GM} .

- By H2, there exists C > 0 such that for any i ≥ 0, and any g ∈ GM ,

|g (Yi)| ≤ CMυ (1 + ‖Yi‖) ≤ CMυ (1 + ||f?(Xi)‖+ ‖εi‖) ,
≤ CMυ (1 + ‖f?‖∞ + ‖εi‖) ,
≤ CMυ (1 + ‖εi‖) .

Define Ui
def
= CMυ (1 + ‖εi‖). Then, the random variables (Ui)i≥0 are i.i.d. and for all

i ≥ 0, |g (Yi)− E [g(Y0)] | ≤ Ui + E [U0]. Furthermore,

E
[
(Ui + E [U0])2k

]
≤ k!νck−1 with ν

def
= CM2υ and c

def
= CM2υ .

- On the other hand, since the random variables (εk)k≥0 are i.i.d. and (Xk)k≥0 is Φ-
mixing, (Yk)k≥0 is also Φ-mixing with mixing coefficients (φY

i )i≥0 satisfying, for all i ≥ 1,
φY
i ≤ φX

i = φX(i−1)b+1. Therefore ΦY =
∑
i≥1(φY

i )1/2 <∞.

By Proposition A.1, there exists a positive constant C such that for any positive x,

P
[

sup
g∈GM

|Sn(g)| ≥ E
[

sup
g∈GM

|Sn(g)|
]

+ CΦY ×
(√
nx+ x

)
Mυ

]
≤ e−x . (29)

Application of Proposition A.2 Proposition A.2 is used to control the inner expectation
in (29). Let r > 1. By [21, Lemma 7.26] and since the Hellinger distance is bounded by 1,
there exists a constant δ such that for any g = gpf,ν ∈ GM .

‖g‖2rL2r(P?) ≤ δ .

By Lemma B.1, for any q > 1, any s > b`/q and any β > s + b`(1 − 1/q), there exists a
constant c such that, for all u > 0,

H[](u, ‖ · ‖L2r(P?),GM ) ≤ c
(
Mυ(s+β+b`/q)

u2r

)b`/s
(30)

and

ϕ(δ)
def
=

∫ δ

0

H
1/2
[] (u, ‖ · ‖L2r(P?),GM )du ≤ cM (s+β+b`/q)b`υ/(2s)

∫ δ

0

u−rb`/sdu .

Choosing β ≤ s + b`(1 − 1/q) + 2, if s goes to +∞ then the last integral is finite, and
(s + β + b`/q)b`υ/(2s) converges to b`υ, so that for any η > 0 there exists a positive
constant c such that

ϕ(δ) ≤ cM b`υ+η .

Finally, by Proposition A.2 for any η > 0, there exists a constant A such that for n large
enough

E
[

sup
g∈GM

|Sn(g)|
]
≤ A
√
nM b`υ+η .
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Then, by (29), this yields

P
[

sup
g∈GM

|Sn(g)| ≥ cΦY ×
(√
nx+ x

)
Mυ +A

√
nM b`υ+η

]
≤ e−x . (31)

Proposition 3.2 is then proved using a peeling argument. By (28) and (31), for any M ≥ 1,
any large enough n and any x > 0, if γ = b`υ + η,

P

[
sup
g∈GM

∣∣∫ g d(Pn − P?)
∣∣

Mγ
≥ cΦY ×

(√
x

n
+
x

n

)
+

A√
n

]
≤ e−M

γ−υx . (32)

We can write

P

[
sup

f∈F, ν∈Db

∣∣∫ gpf,ν d(Pn − P?)
∣∣

1 ∨ I(f)γ
≥ cΦY ×

(√
x

n
+
x

n

)
+

2γA√
n

]
≤ P1 +

+∞∑
k=0

Tk ,

where

P1
def
= P

 sup
f∈F ; I(f)≤1,

ν∈Db

∣∣∫ gpf,ν d(Pn − P?)
∣∣

1 ∨ I(f)γ
≥ cΦY ×

(√
x

n
+
x

n

)
+

2γA√
n

 ,

Tk
def
= P

 sup
f∈F ; 2k<I(f)≤2k+1,

ν∈Db

∣∣∫ gpf,ν d(Pn − P?)
∣∣

1 ∨ I(f)γ
≥ cΦY ×

(√
x

n
+
x

n

)
+

2γA√
n

 .

By (32),

P1 ≤ P
[

sup
g∈G1

∣∣∣∣∫ g d(Pn − P?)
∣∣∣∣ ≥ cΦY ×

(√
x

n
+
x

n

)
+

2γA√
n

]
,

≤ P
[

sup
g∈G1

∣∣∣∣∫ g d(Pn − P?)
∣∣∣∣ ≥ cΦY ×

(√
x

n
+

√
cx

n

)
+

A√
n

]
≤ e−x

and for all k ≥ 0,

Tk ≤ P

[
sup

g∈G
2k+1

∣∣∫ g d(Pn − P?)
∣∣

2γ(k+1)
≥ c

2γ
ΦY ×

(√
x

n
+
x

n

)
+

A√
n

]
,

≤ P

[
sup

g∈G
2k+1

∣∣∫ g d(Pn − P?)
∣∣

2γ(k+1)
≥ cΦY ×

(√
x

22γn
+

x

22γn

)
+

A√
n

]
≤ e−2

(γ−υ)(k+1)x/22γ .

Using (32),

P
[

sup
f∈F, ν∈Db

∣∣∫ gpf,ν d(Pn − P?)
∣∣

1 ∨ I(f)γ
≥ cΦY ×

(√
x

n
+
x

n

)
+

2γA√
n

]
≤ e−x +

∞∑
k=0

e−2
(γ−υ)(k+1)x/22γ

≤ e−x +

∞∑
k=0

e−(k+1)x log(2)(γ−υ)/22γ

≤ e−x +
e−αx

1− e−αx
,
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which concludes the proof of Proposition 3.2.

7.2 Proof of Proposition 4.1

Assume that h(pf,ν , pf?,ν1,?) = 0 (the proof of the converse proposition is straightforward).
Let X ′0 be a random variable on X with distribution ν(x)µ(dx). Since ε0 is a Gaussian
random variable, h(pf,ν , pf?,ν1,?) = 0 implies that f(X ′0) has the same distribution as f?(X0).

Proof that f and f? have the same image in R`. Let y ∈ f(X), n ≥ 1 and B(y, n−1)
be the open Euclidean ball in R` centered at y with radius n−1. As y ∈ f(X) and f is
continuous, there exists a nonempty open subset O of Rm such that f−1(B(y, n−1)) = O∩X.

Since
◦
X = X,

◦
X is not empty and so is the interior of f−1(B(y, n−1)) (which is equal to

O∩
◦
X). Therefore, µ

{
f−1

(
B
(
y, n−1

))}
> 0. Then, using that ν ≥ ν− and that f(X ′0) has

the same distribution as f?(X0),

P
{
X0 ∈ f−1?

(
B
(
y, n−1

))}
= P

{
X ′0 ∈ f−1

(
B
(
y, n−1

))}
≥ ν− µ

{
f−1

(
B
(
y, n−1

))}
> 0 ,

Hence, f−1?
(
B
(
y, n−1

))
is nonempty and for all n ≥ 1, there exists xn ∈ X such that

‖y − f?(xn)‖ < n−1. Moreover, for all n ≥ 1, f?(xn) lies in the compact set f?(X). This
implies that y ∈ f?(X). The proof of the converse inclusion follows the same lines.

Proof that φ is bijective. Since f(X ′0) has the same distribution as f?(X0), X0 has the

same distribution as φ(X ′0) where φ
def
= f−1? ◦ f . By H6 φ exists and is C1. We prove that

|Jφ| > 0 using the following result due to [11, Theorem 2, p.99].

Lemma 7.1. If φ : X→ X is Lipschitz then, for any integrable function g,∫
X
g(x) |Jφ(x)|µ(dx) =

∫
X

∑
x∈φ−1({y})

g(x)µ(dy) .

Define A
def
=
{
x ∈ X ; ∀x′ ∈ φ−1({x}), |Jφ(x′)| > 0

}
. Let h1 be a bounded measurable

real function on X and define h
def
= 1Ah1. By Lemma 7.1,

E [h ◦ φ(X ′0)] =

∫
X
h1(φ(x′))1A(φ(x′))ν(x′)µ(dx′) ,

=

∫
X
h1(φ(x′))1A(φ(x′))

ν(x′)

|Jφ(x′)|
|Jφ(x′)|µ(dx′) ,

=

∫
X
h1(x)1A(x)

∑
x′∈φ−1({x})

ν(x′)

|Jφ(x′)|
µ(dx) .

Since X0 has the same distribution as φ(X ′0),∫
X
h1(x)1A(x)ν1,?(x)µ(dx) =

∫
X
h1(x)1A(x)

∑
x′∈φ−1({x})

ν(x′)

|Jφ(x′)|
µ(dx) .
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Applying Lemma 7.1 with g
def
= 1|Jφ|=0 implies that 1A = 1 µ-a.s. in X and, µ-a.s.,

ν1,?(x) =
∑

x′∈φ−1({x})

ν(x′)

|Jφ(x′)|
. (33)

Therefore, for µ almost every x ∈ X and for all x′ ∈ φ−1({x}),

|Jφ(x′)| ≥ ν−
ν+

.

By continuity of Jφ and using that
◦
X = X, |Jφ(x)| > 0 for all x ∈ X. Therefore, φ is locally

invertible and, since X is compact, simply connected and arcwise connected, φ is bijective
by [2, Theorem 1.8, p.47]. Then (33) ensures that for µ almost every x ∈ X,

ν1,?(φ(x)) =
ν(x)

|Jφ(x)|
,

which concludes the proof of Proposition 4.1.

7.3 Proof of Proposition 4.3 and Corollary 4.4

Proof of Proposition 4.3 The proof of (18) follows the same lines as the proof of Propo-
sition 4.1. Let (X ′0, X

′
1) be a random variable on X2 with probability density ν(x)q(x, x′)

on X2. h(pf,ν2 , pf?,ν2,?) = 0 implies that h(pf,ν , pf?,ν?) = 0 and, by Proposition 4.1,
f(X) = f?(X) and φ = f−1? ◦ f is bijective. Moreover, since (ε0, ε1) has a Gaussian distribu-
tion, h(pf,ν2 , pf?,ν2

?
) = 0 implies that (φ(X ′0), φ(X ′1)) has the same distribution as (X0, X1)

so that for any x in X and any bounded measurable function f on X,

E
[
φ(X ′1)

∣∣X ′0 = φ−1(x)
]

= E [X1|X0 = x] .

Following the proof of Proposition 4.1, this gives (18).

Proof of Corollary 4.4 Assume that

q?(x, x
′) = c?(x)ρ?(||x− x′||) and q(x, x′) = c(x)ρ(||x− x′||) .

By (18),
c(x)ρ(||x− x′||) = |Jφ(x′)|c?(φ(x))ρ?(||φ(x)− φ(x′)||) . (34)

Applying (34) with x = x′ implies |Jφ(x)| = ρ(0)
ρ?(0)

c(x)
c?(φ(x))

. Therefore,

|Jφ(x)|
|Jφ(x′)|

=
c(x)c?(φ(x′))

c(x′)c?(φ(x))
=
|Jφ(x′)|
|Jφ(x)|

and then, there exists a constant C such that for all x ∈ X, |Jφ(x)| = C. As φ is bijective
we may write

µ(X) = µ(φ(X)) =

∫
φ(X)

µ(dx) =

∫
X
|Jφ(x)|µ(dx) = Cµ(X) ,
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which leads to C = 1 since 0 < µ(X) <∞. By (34), for any x and x′ in X,

ρ(||x− x′||) = ρ?(||φ(x)− φ(x′)||). (35)

Let x0 ∈
◦
X, y0 = φ(x0) and d0, d

′
0 > 0 be such that B(x0, d0)

def
= {x ∈ Rm , ||x0 − x|| <

d0} ⊂ X and φ(B(x0, d0)) ⊂ B(y0, d
′
0).

Let d < d0 and denote by S(x0, d) the set S(x0, d)
def
= {x ∈ Rm , ||x0 − x|| = d}. As ρ?

is one-to-one, write F = ρ−1? ◦ ρ. (35) implies that φ(S(x0, d)) ⊂ S(y0, F (d)). Furthermore,
using the compactness and the connectivity of S(x0, d), φ(S(x0, d)) = S(y0, F (d)) which,
together with the continuity of φ, guarantees that φ(B(x0, d)) = B(y0, F (d)). Finally,
because φ preserves the volumes, for any d < d0, F (d) = d and for any x ∈ X and any
x′ ∈ B(x, d0), ||x− x′|| = ||φ(x)− φ(x′)||. The proof is concluded using the connectivity of
X.

A Concentration results for the empirical process of un-
bounded functions

Proposition A.1 provides a concentration inequality on the empirical process over a class of
functions G for which |g(Zi)| can be bounded uniformly in g ∈ G by an independent process
Ui with bounded moments. This unusual condition is more general than [24, Theorem 3]
which considered a uniformly bounded class of functions.

Proposition A.1. Let (Zn)n≥0 be a Φ-mixing process taking values in a set Z. Assume
that the Φ-mixing coefficients associated with (Zn)n≥0 satisfy:

Φ
def
=

∞∑
i=1

φ
1/2
i <∞ .

Let G be some countable class of real valued measurable functions defined on Z. Assume
that there exists a sequence of independent random variables (Ui)i≥0 such that:

- for any g in G ,
|g(Zi)| ≤ Ui a.s. ; (36)

- there exists some positive numbers ν and c such that, for any k ≥ 1:

n−1∑
i=0

E
[
U2k
i

]
≤ k!nνck−1 . (37)

Then, for any positive x,

P
[
Sn ≥ 2Φ×

(
2
√
nνx+

√
cx
)]
≤ e−x ,

where

Sn = sup
g∈G

∣∣∣∣∣
n−1∑
i=0

g(Zi)

∣∣∣∣∣− E

[
sup
g∈G

∣∣∣∣∣
n−1∑
i=0

g(Zi)

∣∣∣∣∣
]
.

23



Proof. For any real valued random variable and for any real random variable X, define

ψX(λ)
def
= ln (E [exp (λX)]), Following the proof of [24, Theorem 3] together with the dis-

cussion about the dependence structure in [24, Section 2], we have

exp

(
ψSn

(
λ

4

))
≤ E

[
exp

[
λ2

Φ2

4
V 2

]] 1
2

exp

[
λ2

Φ2

8
E
[
V 2
]]

, (38)

where V 2 def
=
∑n
i=1 U

2
i . Using (36) and by independence of the (Ui)i≥0,

exp

(
ψSn

(
λ

4

))
≤ E

[
exp

[
λ2

Φ2

4

n∑
i=1

U2
i

]] 1
2

exp

[
λ2

Φ2

8

n∑
i=1

E[U2
i ]

]
,

≤
n∏
i=1

E
[
exp

[
λ2

Φ2

4
U2
i

]] 1
2

exp

[
λ2

Φ2

8

n∑
i=1

E[U2
i ]

]
.

Thus,

ψSn(λ/4) ≤ 1

2

n∑
i=1

ln

{
E
[
exp

(
λ2

Φ2

4
U2
i

)]}
+ λ2

Φ2

8

n∑
i=1

E
[
U2
i

]
.

Since for any u > 0, ln(u) ≤ u− 1, this yields

ψSn(λ/4) ≤ 1

2

∞∑
k=1

1

k!

[
λ2

Φ2

4

]k n∑
i=1

E
[
U2k
i

]
+ λ2

Φ2

8

n∑
i=1

E
[
U2
i

]
.

Then, by (37),

ψSn(λ/4) ≤ nν
[
λ2

Φ2

4

]
1

2

∞∑
k=0

[
λ2

Φ2

4
c

]k
+

[
λ2

Φ2

8
ν

]
.

If 0 < λ2Φ2c/4 < 1,

ψSn(λ/4) ≤ nνλ2 Φ2

8

1

1− λ2 Φ2

4 c
+ nνλ2

Φ2

8
,

≤ nνλ2 Φ2

4

1

1− λ2 Φ2

4 c
.

Define ν′
def
= 8nνΦ2 and c′

def
= 2Φ

√
c. Therefore,

ψSn(λ/4) ≤ ν′(λ/4)2

2(1− c′(λ/4))
. (39)

Hence, for all 0 < λ < 1/c′,

ψSn(λ) ≤ ν′λ2

2(1− c′λ)
. (40)

By the Bernstein type inequality (40), [21, Lemma 2.3] gives, for any measurable set A ⊂ Ω
with P(A) > 0,

E [Sn|A] ≤

√
2ν′ ln

(
1

P(A)

)
+ c′ ln

(
1

P(A)

)
.
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Hence, by [21, Lemma 2.4], for any positive x,

P
[
Sn ≥

√
2ν′x+ c′x

]
≤ e−x .

Proposition A.2 below provides a control on the expectation of the empirical process.
It introduces a β-mixing condition (see [7]) which is weaker than the Φ-mixing condition
considered in Proposition A.1. The β-mixing coefficient between two σ-fields U ,V ⊂ E is
defined in [7] by

β(U ,V)
def
=

1

2
sup

∑
(i,j)∈I×J

|P (Ui ∩ Vj)− P(Ui)P(Vj)| ,

where the supremum is taken over all finite partitions (Ui)i∈I and (Vj)j∈J respectively U
and V measurable. The corresponding mixing coefficients (βi)i≥0 associated with a process
(Xk)k≥0 satisfy βi < φi for all i ≥ 1.

Proposition A.2. Let (Zi)i≥0 be a stationary process taking values in a Polish space Z
and let P? be the distribution of Z0. Assume that the sequence (Zi)i≥0 is β-mixing and that

∞∑
i=1

βi <∞ .

Let G be a countable class of functions on Z. Assume that there exist r > 1 and δ > 0 such
that for any g ∈ G,

||g||L2r(P?)
def
= E

[
g(Z0)2r

]1/2r ≤ δ .
Assume also that the bracketing function satisfies∫ 1

0

√
H[](u, || · ||L2r(P?),G)du <∞ .

Then,

ϕ(δ) :=

∫ δ

0

√
H[](u, || · ||L2r(P?),G)du

is finite and there exists a constant A such that for n big enough

E
[
sup
g∈G
|Sn(g)|

]
≤
√
nAϕ(δ) , (41)

where, for all g ∈ G, Sn(g) =
∑n−1
i=0 g(Zi)− nE [g(Z0)].

Proof. This is a direct application of the remark following [9, Theorem 3].

B Entropy of the class GM
Lemma B.1. For any q > 1, any s > b`/q and any even integer β, provided that β >
s+ b`(1− 1/q), there exists a constant C such that for all u > 0,

H[](u, || · ||L2r(P?),GM ) ≤ C
(
Mυ(s+β+b`/q)

u2r

)b`/s
. (42)
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Proof. By [21, Lemma 7.26], for any probability densities p1 and p2 on Rb`,

||gp2 − gp1 ||2rL2r(P?) ≤ C||
√
p2 −

√
p1||2L2(Rb`) .

Since ||√p2 −
√
p1||2L2(Rb`) ≤ ||p2 − p1||L1(Rb`), this yields, for any u > 0,

H[](u, || · ||L2r(P?),GM ) ≤ H[]

(
u2r/C, || · ||L1(Rb`),PM

)
, (43)

where PM
def
= {pf,ν ; ν ∈ Db, f ∈ F and I(f) ≤M}. Thus, it remains to bound the entropy

with bracketing of PM associated with || · ||L1(Rb`) to control the entropy with bracketing of

GM associated with || · ||L2r(P?). For any q > 1 and s ≥ 0, define the Sobolev space on Rb`:

W s,q
(
Rb`,R

) def
=
{
h : Rb` → R; Dαh ∈ Lq, α ∈ Nb` and 0 ≤ |α| ≤ s

}
.

For any β > 0, let 〈·〉β be the polynomial function on Rb` given by y 7→ 〈y〉β def
=
(
1 + ‖y‖2

)β/2
and W s,q

(
Rb`, 〈·〉β

)
be the corresponding weighted Sobolev space:

W s,q
(
Rb`, 〈·〉β

) def
=
{
h : Rb` → R; y 7→ 〈y〉βh(y) ∈W s,q

(
Rb`,R

)}
.

Lemma B.2 establishes that, for any M ≥ 1, q > 1, s > b`/q and even integer β, the
normalized classes of functions PM/Mυ(s+β+b`/q) are in the same bounded subspace of
W s,q(Rb`, 〈y〉β). By [23, Corollary 4], for any q > 1, and any s > b`/q, provided that
β > s+ b`(1− 1/q), there exists a constant C such that, for all ε > 0,

H[]

(
ε, ‖ · ‖L1(Rb`),PM/Mυ(s+β+b`/q)

)
≤ Cε−b`/s .

The proof is concluded by (43).

Lemma B.2. Assume that H2 holds for some υ > 0. Then, for any q > 1, s > b`/q and
any even β > 0, there exists C > 0 such that for any f ∈ F and any ν ∈ Db,

‖y 7→ 〈y〉βpf,ν(y)‖W s,q(Rb`,R) ≤ C(1 ∨ I(f)υ)s+β+b`/q .

Proof. Let f be a function in F , for any ν ∈ Db,

‖y 7→ 〈y〉βpf,ν(y)‖q
W s,q(Rb`,R) =

∑
|α|≤s

‖Dα
(
〈y〉βpf,ν(y)

)
‖qLq .

Applying the general Leibniz rule component by component yields, for any α ∈ Nb`,

Dα
(
〈y〉βpf,ν(y)

)
=
∑
α′≤α

b∏̀
j=1

(
αj
α′j

)
Dα′(〈y〉β)Dα−α′(pf,ν(y)) . (44)

Then, Lemma B.2 requires to control ‖Dα(1)

(〈y〉β)Dα(2)

(pf,ν)‖Lp′ for any given α(1) and
α(2) in Nb`. For any α in Nb`, there exists a polynomial function Pα with degree lower than
|α| such that, for any y ∈ Rb`,

Dαpf,ν(y) =

∫
x∈Xb

Pα(f(x)− y) exp

{
−1

2
‖f(x)− y‖2

}
ν(x)µ⊗b(dx) . (45)
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Moreover, since β is an even number, for any α ∈ Nb` such that |α| ≤ β, Dα(〈y〉β) is a
polynomial function denoted by Pβ,α with degree lower than β − |α|. In the case where

|α| > β, Dα(〈y〉β) = 0. Define κ(υ, f)
def
= 1 ∨ I(f)υ. By H2, there exists a constant C > 0

such that, for any x ∈ Xb, ‖f(x)‖ ≤ CI(f)υ ≤ Cκ(υ, f). Since Pα(2) and Pβ,α(1) are both

polynomial functions, there exists a constant C depending on α(1), α(2) and β such that, for
any y ∈ Rb` and any x ∈ Xb,∣∣Pβ,α(1)(y)Pα(2)(f(x)− y)

∣∣ ≤ 1|α(1)|≤β

[
C(1 + ‖y‖)β−|α

(1)| × (κ(υ, f) + ‖y‖)|α
(2)|
]
.

Define the following subset of Rb`

Af
def
=
{
y ∈ Rb`; ‖y‖ ≤ Cκ(υ, f)

}
.

‖f(x)− y‖ can be lower bounded by 0 when y ∈ Af and by ‖y‖ − Cκ(υ, f) when y ∈ Acf .

Therefore, uniformly in x ∈ Xb,

exp
{
−‖f(x)− y‖2/2

}
≤ 1Af (y) + 1Acf (y) exp

{
− (Cκ(υ, f)− ‖y‖)2 /2

}
.

Then, there exists a constant C > 0, such that for any q > 1,

‖Dα(1)

(〈y〉β)Dα(2)

(pf,ν)‖qLq ≤ 1|α(1)|≤β

[
Cκ(υ, f)q|α

(2)| (I1 + I2)

]
,

where,

I1
def
=

∫
Af

(1 + ‖y‖)q(β−|α
(1)|)

(
1 +

‖y‖
κ(υ, f)

)q|α(2)|

λ⊗b(dy) ,

I2
def
=

∫
Acf

(1 + ‖y‖)q(β−|α
(1)|)

(
1 +

‖y‖
κ(υ, f)

)q|α(2)|

e−q(Cκ(υ,f)−‖y‖)
2/2λ⊗b(dy) .

By the change of variables z′ = (κ(υ, f))−1y in I1 and I2, there exists a constant C such
that

‖Dα(1)

(〈y〉β)Dα(2)

(pf,ν)‖qLq ≤ Cκ(υ, f)q(|α
(2)|−|α(1)|+β)+b` . (46)

Using (46) in (44) with α(1) = α′ and α(2) = α − α′ for any |α| ≤ s and α′ ≤ α concludes
the proof of Lemma B.2.
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C Proof of Lemma 6.1

The proof follows the same lines as the one for the usual EM algorithm. For all 0 ≤ k ≤ n−1,
all f ∈ F and all a ∈ A

ln
[
pf,a (Yk) e−λnI(f)/n

]
= ln

[∫
pf,a (x,Yk) e−λnI(f)/nµ⊗2(dx)

]
,

= ln

[∫
pf,a (x,Yk) e−λnI(f)/n

pf̂p,âp (x|Yk)

pf̂p,âp (x|Yk)
µ⊗2(dx)

]
,

= ln

[∫
pf̂p,âp (x|Yk)

pf,a (x,Yk) e−λnI(f)/n

pf̂p,âp (x|Yk)
µ⊗2(dx)

]
,

≥
∫
pf̂p,âp (x|Yk) ln

[
pf,a (x,Yk) e−λnI(f)/n

pf̂p,âp (x|Yk)

]
µ⊗2(dx) ,

where the last inequality comes from the concavity of x 7→ log x. Then,

ln
[
pf,a (Yk) e−λnI(f)/n

]
− ln

[
pf̂p,âp (Yk) e−λnI(f̂

p)/n
]

≥ Eâp,f̂p
[
ln pf,a (Xk,Yk)− ln pf̂p,âp (Xk,Yk)

∣∣∣Yk

]
− λn

n

(
I(f)− I(f̂p)

)
.

The proof is concluded by definition of âp+1 and f̂p+1.
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