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Nonparametric regression on hidden Φ-mixing variables:

identifiability and consistency of a pseudo-likelihood based

estimation procedure

Thierry Dumont ∗and Sylvain Le Corff †

October 22, 2014

Abstract

This paper outlines a new nonparametric estimation procedure for unobserved Φ-mixing processes. It
is assumed that the only information on the stationary hidden states (Xk)k≥0 is given by the process
(Yk)k≥0, where Yk is a noisy observation of f⋆(Xk). The paper introduces a maximum pseudo-likelihood
procedure to estimate the function f⋆ and the distribution ν⋆,b of (X0, . . . , Xb−1) using blocks of obser-
vations of length b. The identifiability of the model is studied in the particular cases b = 1 and b = 2
and the consistency of the estimators of f⋆ and of ν⋆,b as the number of observations grows to infinity is
established.

1 Introduction

The model considered in this paper is made of a bivariate stochastic process ((Xk, Yk))k≥0 where only the
observation sequence (Yk)k≥0 is available. These observations are given by

Yk = f⋆(Xk) + ǫk ,

where f⋆ is a function defined on a space X and taking values in R
ℓ. The measurement noise (ǫk)k≥0 is an

independent and identically distributed (i.i.d.) sequence of Gaussian random vectors of Rℓ.
This paper proposes a method to estimate the function f⋆ and the distribution of the hidden states using

only the observations (Yk)k≥0. Note that the setting introduced here encompasses the i.i.d. case and the
case of hidden Markov models in which the state sequence (Xk)k≥0 is a Markov chain, the observations
(Yk)k≥0 are independent conditionally on (Xk)k≥0 and the conditional distribution of Yk given the state
sequence depends only on Xk. These hidden models can be applied in a large variety of disciplines such
as financial econometrics [24], biology [4] or speech recognition [18] (see [10] for a recent overview on these
models). Such a model is used in [12] to solve a simultaneous localization and mapping problem. In this
framework, the observation Yk is the signal strength received by a mobile device from different WiFi access
points and f⋆(Xk) is the expected signal strength at the device position Xk. In this particular case, (Xk)k≥0

is a Markov chain on a compact set X of R2 (the map) with a transition kernel that involves the distance
between two consecutive positions.

It is clear that the model considered in this paper is not identifiable with no additional assumptions. For
instance, if X̃k = σ(Xk) where σ : X → X is a bijective function, then Yk = f⋆◦σ−1(X̃k)+ǫk. Therefore, there
exist a function f̃ and a process (X̃k)k≥0 on X fully characterizing the distribution of the observation process
(Yk)k≥0 and it is not possible to define a consistent estimator of f⋆ using the observations (Yk)k≥0 only. It is
then natural to study the assumptions under which it is possible to separate the distribution of the hidden
states (Xk)k≥0 and the function f⋆ using the distribution of (f⋆(Xk))k≥0. The identifiability of the model is
addressed in the particular case where X ⊂ R

m for some m ≥ 1 in Proposition 4.1 and Proposition 4.3. To
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our best knowledge, these are the most general results about the identifiability of nonparametric regression
models on hidden variables. It is assumed that the state-space X is a compact subset of Rm and that f⋆ is a
C1-diffeomorphism. The C1 regularity hypothesis on the target function f⋆ allows to perform the estimation
procedure in a Sobolev setting such as in classical regression frameworks. The invertibility of f⋆ is a strong
assumption. Nevertheless, in the case ℓ ≥ 2m+ 1, this assumption is satisfied for a dense class of functions
in C1. Moreover, only f⋆ is assumed to be invertible and this assumption is enough to prove identifiability
results on a wider class of C1 candidate functions. Proposition 4.1 establishes that if X̃0 has a distribution
with probability density ν and if f̃ : X → R

ℓ is such that f̃(X̃0) and f⋆(X0) have the same distribution then:

(a) f̃ = f⋆ ◦ φ with φ : X → X a bijective function ;

(b) ν is obtained by a transformation of the density of X0 involving φ.

As a consequence, it is shown that if X0 is uniformly distributed on X = [0, 1] then φ is an isometric
transformation of [0, 1] (φ = id or φ = 1− id) and the model is almost identifiable. Proposition 4.3 states a
similar result on f⋆ and on the distribution of (X0, X1) when (f̃(X̃0), f̃(X̃1)) and (f⋆(X0), f⋆(X1)) have the
same distribution. As a striking consequence, Corollary 4.4 shows that if the density of the distribution of
X1 conditionally on X0 = x is of the form q⋆(x, x

′) = c⋆(x)ρ⋆(‖x− x′‖), then q⋆ and the full distribution of
(X0, X1) are identifiable. In addition, f̃ = f⋆ ◦ φ with φ : X → X an isometric function.

The paper proposes a method to estimate the function f⋆ and the distribution νb,⋆ of the hidden states
(X0, . . . , Xb−1) for a fixed parameter b using only the observations (Yk)k≥0. Note that this nonparametric
estimation problem differs from classical regression settings since the variables (Xk)k≥0 are not observed. In
errors-in-variables models, the random variables (Xk)k≥0 are i.i.d. and observed through a sequence (Zk)k≥0,
i.e. Zk = Xk + ηk and Yk = f⋆(Xk) + ǫk, where the variables (ηk)k≥0 are i.i.d with known distribution.
Many solutions have been proposed to solve this problem, see [14] and [17] for a ratio of deconvolution kernel
estimators, [20] for B-splines estimators and [6] for a procedure based on the minimization of a penalized
contrast. In the case where the hidden state is a Markov chain, [22] and [23] considered the following
convolution model Yk = Xk+ ǫk, where the random variables (ǫk)k≥0 are i.i.d. with known distribution. [22]
(resp. [23]) proposed an estimate of the transition density (resp. the stationary density and the transition
density) of the Markov chain (Xk)k≥0 based on the minimization of a penalized L2 contrast. However, there
does not exist any result on the nonparametric estimation problem studied in this paper with unobserved
states (Xk)k≥0.

The estimation procedure is based on the maximization of a penalized pseudo-likelihood over a class
of functions F and a class of densities Db where the penalty term involves the ”complexity” of the func-
tions in F . The observations are decomposed into non-overlapping blocks (Ykb, . . . , Y(k+1)b−1) and the
pseudo-loglikelihood of the observations (Y0, . . . , Ynb−1) considered in this paper is given by the sum of the

loglikelihood of (Ykb, . . . , Y(k+1)b−1) for k ∈ {0, . . . , n − 1}. The estimator (f̂n, ν̂n) of (f⋆, νb,⋆) is defined
as a maximizer of the penalized version of the pseudo-likelihood of the observations (Y0, . . . , Ynb−1). This
estimator of f⋆ can be used to define an estimator p̂n of the density of the distribution of (Y0, . . . , Yb−1).
Theorem 3.1 states that the Hellinger distance between p̂n and the true distribution of a block of observations
vanishes as the number of observations grows to infinity. More precisely, this Hellinger distance converges
at a rate which can be chosen as close as possible to n−1/4. To establish this result, the complexity function
needs only to be lower bounded by a power of the supremum norm. We believe that this rate of convergence
could be improved but this would require a better understanding of the dependency between the Hellinger
distance and a well chosen distance on F . The consistency of (f̂n, ν̂n) follows as a consequence together with

some continuity properties (see Corollary 3.3). The rate of convergence of f̂n to f⋆ remains an open problem
and seems to be very challenging.

It is also proven that the results presented in this paper hold in the special case where the function f⋆
belongs to a Sobolev space. Proposition 5.1 establishes the consistency of the estimator of f⋆ when the
penalization function is based on a Sobolev norm. An important consequence of this result is that the image
f⋆(X) ⊂ R

ℓ of f⋆ (which is the compact sub-manifold of dimension m in R
ℓ where the process (f⋆(Xk))k≥0

lies) can be consistently approximated by the sub-manifold f̂n(X) (see Corollary 5.2).

The proof of the convergence of the Hellinger distance between p̂n and the true distribution of a block
of observations relies on a concentration inequality for the empirical process of the observations. This result
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is obtained by an extension of the concentration inequality for Φ-mixing processes given in [28, Theorem 3].
The inequality of [28, Theorem 3] holds for empirical processes based on uniformly bounded functions which
is not the case in the model presented here but a similar control can be proven under the assumptions of this
paper. Then, the control of the expectation of the supremum of the empirical process is given by a direct
application of the maximal inequality for dependent processes of [11].

The theoretical results given in the paper are supported by numerical experiments. An Expectation-
Maximization (see [9]) based algorithm is outlined to compute ν̂n and f̂n.

The model and the estimators are presented in Section 2. The consistency results are displayed in
Section 3. The identifiability in the cases b = 1 and b = 2 is addressed in Section 4. The application to a
Sobolev class of function is detailed in Section 5 and the algorithm and numerical experiments are displayed
in Section 6. Section 8 gathers important proofs on the identifiability and consistency needed to state the
main results.

2 Model and definitions

Let (Ω, E ,P) be a probability space and (X,X ) be a general state-space equipped with a measure µ. Let
(Xk)k≥0 be a stationary process defined on Ω and taking values in X. This process is only partially observed
through the sequence (Yk)k≥0 which takes values in R

ℓ, ℓ ≥ 1. For any k ≥ 1, the sequence (x1, . . . , xk) is
denoted by x1:k. The observations (Yk)k≥0 are given by

Yk
def
= f⋆(Xk) + ǫk , (1)

where f⋆ : X → R
ℓ is a measurable function and (ǫk)k≥0 are i.i.d. with density ϕ with respect to the Lebesgue

measure λ of Rℓ, given, for any z1:ℓ ∈ R
ℓ, by:

ϕ(z1:ℓ)
def
= (2π)

−ℓ/2
exp


−1

2

ℓ∑

j=1

z2j


 . (2)

By (2), the distribution of the random vector ǫ0 is known and Gaussian with identity covariance matrix.
This setting covers the case of a known and non singular covariance matrix Σ. Indeed, if (Yk)k≥0 is replaced by
(Σ−1/2Yk)k≥0, the modified noise Σ−1/2ǫ0 is distributed according to the multivariate Gaussian distribution
with identity covariance matrix.

The problem studied in the paper could be interpreted as a deconvolution problem where the complete
knowledge of the noise distribution is a rather classical assumption (see for instance [3, 19, 21]). Here,
the density ϕ is assumed to be known to simplify the proof of the identifiability of the model (Section 4).
This proof only needs the characteristic function of ǫ0 to be known and non zero. Note that the Gaussian
assumption is only used to establish the consistency result (Theorem 3.1) which relies on an entropy control
written for this particular choice of density function ϕ. A few authors have studied the deconvolution
problem with unknown noise distribution. In [5], the estimation of the density of X in the model Y = X + ǫ
is performed without knowing the distribution ǫ and under mild assumptions on the smoothness of the
underlying densities. However, [5] only considered real valued random variables and the estimation based
on Fourier transform and bandwidth selection is hardly transposable to our model. The main difference
between the model studied in this paper and classical convolution models is that the random vector f⋆(Xk)
does not necessarily have a density with respect to the Lebesgue measure on R

ℓ. Indeed, as discussed in
Section 5 (Corollary 5.2), under some assumptions on f⋆, if the state-space X is a subset of Rm with m < ℓ,
f⋆(Xk) lies in a sub-manifold of dimension m in R

ℓ which has a null Lebesgue measure. Therefore, classical
deconvolution tools do not apply here.

One of the objectives of this paper is the estimation of the target function f⋆ ∈ F where F is a set of
functions from X to R

ℓ. The results presented in Sections 3 and 4 are applied in Section 5 when F is a
Sobolev space.

Let b be a positive integer. For any sequence (xk)k≥0, define xk
def
= (xkb, . . . , x(k+1)b−1) and for any

function f : X → R
ℓ, define f : Xb → R

bℓ by

x = (x0, . . . , xb−1) 7→ f(x)
def
= (f(x0), . . . , f(xb−1)) .
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The distribution of X0 is assumed to have a density νb,⋆ with respect to the measure µ⊗b on X
b which is

assumed to lie in a set of probability densities Db. For all f ∈ F and ν ∈ Db, let pf,ν be defined, for all
y ∈ R

bℓ, by

pf,ν(y)
def
=

∫
ν(x)

b−1∏

k=0

ϕ(yk − f(xk))µ
⊗b (dx) . (3)

Note that p⋆
def
= pf⋆,νb,⋆

is the probability density of Y0 defined in (1). The function

y0:nb−1 7→
n−1∑

k=0

ln pf,ν (yk)

is referred to as the pseudo log-likelihood of the observations up to time nb− 1.
This paper introduces an estimation procedure based on the method of M-estimation presented in [30]

and [29]. Consider a function I : F → R
+ which characterizes the complexity of functions in F and let ρn and

λn be some positive numbers. Define the following ρn-Maximum Pseudo-Likelihood Estimator (ρn-MPLE)
of (f⋆, νb,⋆):

(
f̂n, ν̂n

)
def
= argmaxρn

f∈F, ν∈Db

{
n−1∑

k=0

ln pf,ν (Yk)− λnI(f)

}
, (4)

where argmaxρn

f∈F, ν∈Db

is one of the pairs (f ′, ν′) such that

n−1∑

k=0

ln pf ′,ν′ (Yk)− λnI(f
′) ≥ sup

f∈F, ν∈Db

{
n−1∑

k=0

ln pf,ν (Yk)− λnI(f)

}
− ρn .

The consistency of the estimators is established using a control for empirical processes associated with mixing
sequences. The Φ-mixing coefficient between two σ-fields U ,V ⊂ E is defined in [8] by

Φ(U ,V) def
= sup

U∈U,V ∈V,
P(U)>0

∣∣∣∣
P (U ∩ V )

P(U)
− P(V )

∣∣∣∣ .

The stationary process (Xk)k≥0 can be extended to a two-sided process (Xk)k∈Z which is said to be Φ-mixing
when limi→∞ ΦX

i = 0 where, for all i ≥ 1,

ΦX
i

def
= Φ(σ (Xk ; k ≤ 0) , σ (Xk ; k ≥ i)) , (5)

σ (Xk ; k ∈ C) being the σ-field generated by (Xk)k∈C for any C ⊂ Z. As in [28], the required concentration
inequality for the empirical process is established under the following assumption on the Φ-mixing coefficients
of (Xk)k≥0.

H1 The stationary process (Xk)k≥0 satisfies

Φ
def
=

∞∑

i=1

(ΦX
i )1/2 <∞ , (6)

where ΦX
i is given by (5).

Remark 2.1. 1. If (Xk)k≥0 is i.i.d., then ΦX
i = 0 for all i ≥ 1 and H1 is satisfied.

2. Assume (Xk)k≥0 is a stationary Markov chain with transition kernel Q and stationary distribution π
such that there exist ǫ > 0 and a measure ϑ on X satisfying, for all x ∈ X and all A ∈ X ,

Q(x,A) ≥ ǫϑ(A) .
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Then, by [26, Theorem 16.2.4], there exists ρ ∈ (0, 1) such that, for all x ∈ X and all A ∈ X ,

|Qn(x,A)− π(A)| ≤ ρn .

Therefore, for all n, i > 0 and A,B ∈ X such that π(A) > 0,

|P (Xn+i ∈ B|Xn ∈ A)− P (Xn+i ∈ B)| = |P (Xn+i ∈ B|Xn ∈ A)− π (B)| ,

≤ 1

π(A)

∣∣∣∣
∫

A

(
Qi(x,B)− π(B)

)
π(dx)

∣∣∣∣ ,

≤ ρi .

The Φ-mixing coefficients associated with (Xk)k≥0 decrease geometrically and H1 is satisfied.

3 General convergence results

Denote by p̂n the estimator of p⋆ defined by

p̂n
def
= pf̂n,ν̂n

. (7)

The first step to prove the consistency of the estimators is to establish the convergence of p̂n to p⋆ using a
suitable metric. This is done in Theorem 3.1 where the only assumption related to the penalization procedure
is that the complexity function I is lower bounded by a power of the supremum norm. Consider the following
assumptions.

H2 There exist C > 0 and υ > 0 such that for all f ∈ F ,

‖f‖∞ ≤ CI(f)υ , (8)

with, for any f ∈ F , ‖f‖∞ def
= max

1≤j≤ℓ
ess sup

x∈X

|fj(x)|.

Where ess sup denotes the essential supremum with respect to the measure µ on X. Hence, if H2 holds, since
I : F → R

+, for all f ∈ F , ‖f‖∞ ≤ CI(f)υ <∞ .

H3 There exist 0 < ν− < ν+ < +∞ such that, for all ν ∈ Db ν− ≤ ν ≤ ν+.

The convergence of p̂n to p⋆ is established using the Hellinger metric defined, for any probability densities
p1 and p2 on R

bℓ, by

h(p1, p2)
def
=

[
1

2

∫ (
p
1/2
1 (y)− p

1/2
2 (y)

)2
dy

]1/2
. (9)

Theorem 3.1 provides a rate of convergence of p̂n to p⋆ and a bound for the complexity I(f̂n) of the estimator

f̂n.

Theorem 3.1. Assume H1-3 hold for some υ such that bℓυ < 1. Assume also that λn and ρn satisfy

λnn
−1 −→

n→+∞
0, λnn

−1/2 −→
n→+∞

+∞ and ρn = O

(
λn
n

)
. (10)

Then,

h2(p̂n, p⋆) = OP

(
λn
n

)
and I(f̂n) = OP(1) . (11)
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Condition (10) implies that the rate of convergence of the Hellinger distance between p̂n and the true
density p⋆ is slower than n−1/4. The proof of the consistency of p̂n relies on the control of the empirical
process:

sup
f,ν

∫
1

2
ln
pf,ν + p⋆

2p⋆
d (Pn − P⋆) ,

where Pn is the empirical distribution of the observations {Yk}n−1
k=0 . In Proposition 3.2, the deviation result

on the empirical process is established globally on the class of functions {pf,ν ; f ∈ F , ν ∈ Db}. A weaker
condition on λn could be obtained with a better deviation inequality on the empirical process when p remains
”close” to p⋆. For instance, [29, Theorem 10.6] estimated the distribution of a random variable Y using i.i.d.
samples Y1, . . . , Yn and the penalized loglikelihood p 7→

∫
log p dPn − λnI(p), where I(p) =

∫
R
(p(m)(y))2dy

penalizes the m-th derivative of p. The proof of [29, equation (10.34)] established that

sup
p∈An(p⋆)

∫
ln

pf,ν+p⋆

2p⋆
d (Pn − P⋆)

1 + I(p) + I(p⋆)
= OP(n

− 2m
2m+1 ) ,

where
An(p⋆)

def
=
{
p ; h(p, p⋆) ≤ n−

m
2m+1 [1 + I(p) + I(p⋆)]

}

to obtain n− m
2m+1 as rate of convergence for h(p̂n, p⋆) that depends on the order of derivation m considered

in the complexity function I(p). [15] also used a localization technique to calibrate the minimal penalty
which ensures the convergence of the estimate of the number of components in a general mixture model. In
our case, using a localization procedure of the empirical process around the true density is complicated. We
consider a general setting made of a class of functions F , a class of densities Db and a complexity function
I(f) that are all non specified. Therefore, Theorem 3.1 is established under the relatively mild assumptions
H1-3. Hence, the rate n−1/4 corresponds to the ”worst case” rate. However, even when the model is fully
specified such as in Section 5, controlling a localized version of the empirical process in order to improve the
rate of convergence of p̂n remains a difficult problem.

The proof of Theorem 3.1 relies on a basic inequality which provides a simultaneous control of the
Hellinger risk h2(p̂n, p⋆) and of the complexity of the estimator I(f̂n). Define for any density function p on
Y

bℓ,

gp
def
=

1

2
ln
p+ p⋆
2p⋆

. (12)

Let Pn be the empirical distribution based on the observations {Yk}n−1
k=0 , i.e., for any measurable set A of

R
bℓ,

Pn(A)
def
=

1

n

n−1∑

k=0

1A(Yk) .

By (4) and (7), following the proof of [29, Lemma 10.5], we get the basic inequality:

h2(p̂n, p⋆) + 4λnn
−1I(f̂n) ≤ 16

∫
gp̂n

d(Pn − P⋆) + 4λnn
−1I(f⋆) + ρn . (13)

Therefore, a control of
∫
gp̂n

d(Pn − P⋆) in the right hand side of (13) will simultaneously provide a bound

on the growth of h2(p̂n, p⋆) and of I(f̂n). This control is given in Proposition 3.2.

Proposition 3.2. Assume H1-3 hold. There exists a positive constant c such that, for any η > 0, there
exist A and N such that for any n ≥ N and any x > 0,

P

[
sup

f∈F, ν∈Db

∣∣∫ gpf,ν
d(Pn − P⋆)

∣∣
1 ∨ I(f)γ ≥ cΦ

(√
x

n
+
x

n

)
+

A√
n

]
≤ 2e−αx

1− e−αx
,

where

γ
def
= bℓυ + η and α

def
=

log(2)(γ − υ)

22γ
=

log(2)((bℓ− 1)υ + η)

22(bℓυ+η)
.
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Proposition 3.2 is proved in Section. 8.1.

Proof of Theorem 3.1. Since υ−1 > bℓ, η > 0 in Proposition 3.2 can be chosen such that γ = bℓυ + η = 1.
For this choice of η, Proposition 3.2 implies that

∫
gp̂n

d(Pn − P
⋆)

1 ∨ I(f̂n)
= OP(n

− 1
2 ) .

Combined with (13), this yields

h2(p̂n, p⋆) + 4λnn
−1I(f̂n) ≤ (1 ∨ I(f̂n))OP(n

− 1
2 ) + 4λnn

−1I(f⋆) + ρn . (14)

Then, (14) directly implies that

4 I(f̂n) ≤ (1 ∨ I(f̂n))OP(n
1
2λ−1

n ) + 4I(f⋆) + ρnnλ
−1
n ,

which, together with (10), gives

I(f̂n) = OP(1) .

Combining this result with (14) again leads to

h2(p̂n, p⋆) +OP(λnn
−1) ≤ OP(n

− 1
2 ) + 4λnn

−1I(f⋆) + ρn .

This concludes the proof of Theorem 3.1.

Theorem 3.1 shows that h2(p̂n, p⋆) vanishes as n → +∞. However, this does not imply the convergence

of (f̂n, ν̂n) to (f⋆, νb,⋆). The convergence of the estimators (f̂n, ν̂n) is addressed in the case where the set Db

may be written as
Db = {νa; a ∈ A} , (15)

where A is a parameter set not necessarily of finite dimension. The ρn-MPLE is then given by:

(f̂n, ân)
def
= argmaxρn

f∈F, a∈A

{
n−1∑

k=0

ln pf,νa
(Yk)− λnI(f)

}
.

Assume that A is equipped with a distance dA such that A is compact with respect to the topology defined

by dA. Assume also that F is equipped with a metric dF such that FM
def
= {f ∈ F ; I(f) ≤M} is compact

for all M > 0 with respect to the topology defined by dF . Let d be the product distance on F ×A. Assume
that the function (f, a) 7→ h2(pf,νa

, p⋆) is continuous with respect to the topology on F × A induced by d.

Corollary 3.3 establishes the convergence of (f̂n, ân) to the set E⋆ defined as:

E⋆ def
=
{
(f, a) ∈ F ×A; h(pf,νa

, pf⋆,νa⋆
) = 0

}
. (16)

Define for all (f, a) ∈ F ×A,

d ((f, a), E⋆) = inf
(f ′,a′)∈E⋆

d ((f, a), (f ′, a′)) .

Corollary 3.3. Assume H1-3 hold for some υ such that υbℓ < 1. Assume also that λn and ρn satisfy

λnn
−1 −→

n→+∞
0, λnn

−1/2 −→
n→+∞

+∞ and ρn = O

(
λn
n

)
.

Then,

d
(
(f̂n, ân), E⋆

)
= oP(1) .

Corollary 3.3 is a direct consequence of Theorem 3.1 and of the properties of dA and dF and its proof
is therefore omitted. The few assumptions on the model allow only to establish the convergence of the
estimators (f̂n, ân) to the set E⋆ in Corollary 3.3.
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4 Identifiability when X is a subset of Rm

The aim of this section is to characterize the set E⋆ given by (16) when b = 1 and when b = 2 (the
characterization of E⋆ when b > 2 follows the same lines) with some additional assumptions on the model,
on F and on Db. In the sequel, ν⋆ must satisfy 0 < ν− ≤ ν⋆ ≤ ν+ for some constants ν− and ν+.

It is assumed that X is a subset of Rm for some m ≥ 1 and that µ is the Lebesgue measure. For any

subset A of Rm,
◦

A stands for the interior of A and A for the closure of A. Consider the following assumptions
on the state-space X.

H4 a) X is non empty, compact and
◦

X = X,

b) X is arcwise and simply connected.

The compactness implies that X is closed and that continuous functions on X are bounded. By the last
assumption of H4a), the interior of X is not empty and any element in X is the limit of elements of the
interior of X. Finally, X is arcwise and simply connected to ensure topological properties used in the proofs
of the identifiability results below.

A function f : U → f(U) ⊂ R
ℓ defined on an open subset U of R

m is a C1-diffeomorphism if its
differential function x 7→ Dxf is continuous (f is C1) and if, for all x in U , rank(Dxf) = m. A function
f : X → f(X) is said to be C1 (resp. a C1-diffeomorphism) if f is the restriction to X of a C1 function (resp.
a C1-diffeomorphism) defined on an open neighborhood of X in R

m.

H5 f⋆ is a C1-diffeomorphism from X to f⋆(X).

H5 might be seen as a restrictive assumption. Nevertheless, when ℓ ≥ 2m+ 1, H5 is satisfied for almost
every continuous function form X to R

ℓ. Indeed, Whitney’s embedding theorem ([31]) states, in this case,
that any continuous function from X to R

ℓ can be approximated by a smooth embedding.
In the case b = 1, Proposition 4.1 discusses the identifiability when F is a subset of C1. For any differential

function φ : X → X, let Jφ be the determinant of the Jacobian matrix of φ: Jφ(x) = det (Dxφ).

Proposition 4.1 (b=1). Assume that H4 and H5 hold. Let f ∈ C1 and let ν be a probability density with
respect to µ such that 0 < ν− ≤ ν ≤ ν+. Then, h(pf,ν , pf⋆,ν⋆

) = 0 if and only if f⋆ and f have the same
image in R

ℓ, φ = f−1
⋆ ◦ f is bijective and, for µ almost every x ∈ X,

ν(x) = |Jφ(x)|ν⋆(φ(x)) .

The proof of Proposition 4.1 is given in Section 8.2. When F ⊂ C1, Proposition 4.1 and H3 implies that
the set E⋆ defined in (16) is given by

(f, a) ∈ E⋆ ⇔ There exists a bijective function φ ∈ C1(X,X) such that

f = f⋆ ◦ φ and νa = |Jφ| · ν⋆ ◦ φ µ almost everywhere in X .

Remark 4.2. Proposition 4.1 states that the candidates (f, ν) to characterize the distribution of Y0 are
necessarily related to (f⋆, ν⋆) through a state-space transformation denoted by φ. In the particular case
where X = [0, 1] (m = 1) and ν⋆ = 1, Proposition 4.1 implies a sharper result. Assuming that ν = ν⋆ (ν⋆
is known), Proposition 4.1 implies the existence of a C1 and bijective function φ satisfying f = f⋆ ◦ φ and
|Jφ| = 1. Therefore, φ : x 7→ x or φ : x 7→ 1−x which are the two possible isometric transformations of [0, 1].

Now, if X = [0, 1] and ν⋆ is unknown and continuous we can define the uniform random variable on
[0, 1]: X̃0 = F⋆(X0) where F⋆ is the C1 and strictly increasing cumulative distribution function of X0. The
observation Y0 can be written Y0 = f̃⋆(X̃0)+ǫ0 where f̃⋆ = f⋆◦F−1

⋆ satisfies the same hypothesis as f⋆. Thus,
from the preceding remark, the function f̃⋆ = f⋆ ◦ F−1

⋆ can be identified up to an isometric transformation
of [0, 1] from the distribution of Y0 only.

These results cannot be extended to the case m > 1 where |Jφ| = 1 does not necessarily imply that φ is
isometric but only that φ preserves the volumes.
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Proposition 4.3 discuss the identifiability when b = 2. In this case, ν2,⋆ can be written ν2,⋆(x, x
′) =

ν⋆(x)q⋆(x, x
′) where q⋆ is a transition density with stationary probability density ν⋆. For any transition

density q on X
2 satisfying

for all x, x′ ∈ X , 0 < q− ≤ q(x, x′) ≤ q+ , (17)

there exists a stationary density ν associated with q satisfying, for all x ∈ X, q− ≤ ν(x) ≤ q+. Denote by νq
this density.

Proposition 4.3 (b=2). Assume that H4 and H5 hold. Let f ∈ C1 and q be a transition density satisfying
(17). Let ν2(x, x

′) = νq(x)q(x, x
′). Then, h(pf,ν2

, pf⋆,ν⋆,2
) = 0 if and only if f⋆ and f have the same image

in R
ℓ, φ = f−1

⋆ ◦ f is bijective and µ⊗ µ almost everywhere in X
2,

q(x, x′) = |Jφ(x′)|q⋆(φ(x), φ(x′)) . (18)

Proposition 4.3 is proved in Section 8.3.

Corollary 4.4. Consider the same assumptions as in Proposition 4.3. Assume in addition that q⋆ and q
are of the form:

q⋆(x, x
′) = c⋆(x)ρ⋆(||x− x′||) , q(x, x′) = c(x)ρ(||x− x′||) ,

where ρ and ρ⋆ are two continuous functions defined on R+. Assume in addition that ρ⋆ is one-to-one.
Then, h(pf,ν2

, pf⋆,ν⋆,2
) = 0 if and only if f⋆ and f have the same image in R

ℓ, φ = f−1
⋆ ◦ f is an isometry

on X and q = q⋆.

The proof of Corollary 4.4 is given in Section 8.3. When F ⊂ C1 and for any a in A, νa ∈ D2 is of the
form

νa(x, x
′) = νqa(x)qa(x, x

′) with qa(x, x
′) = ca(x)ρa(||x− x′||) ,

where ρ− ≤ ρa ≤ ρ+, Corollary 4.4 implies that the set E⋆ defined in (16) is given by

(f, a) ∈ E⋆ ⇔ f = f⋆ ◦ φ with φ an isometry and qa = q⋆

Finally, if the only isometry of X is the identity function, and if there exists a unique a⋆ in A such that
qa⋆

= q⋆, then E⋆ = {(f⋆, a⋆)} and the model is fully identifiable.

5 Application when F is a Sobolev class of functions

In this section, X is a subset of Rm, m ≥ 1 and the results of Section 3 and Section 4 are applied to a specific
class of functions F with an example of complexity function I satisfying H2. Let p ≥ 1, define

Lp def
=

{
f : X → R

ℓ ; ‖f‖pLp =

∫

X

‖f(x)‖pµ(dx) <∞
}
.

For any f : X −→ R
ℓ and any j ∈ {1, · · · , ℓ}, the jth component of f is denoted by fj . For any vector

α
def
= {αi}mi=1 of non-negative integers, we write |α| def

=
∑m

i=1 αi and D
αf : X → R

ℓ for the vector of partial
derivatives of order α of f in the sense of distributions. Let s ∈ N and W s,p be the Sobolev space on X with
parameters s and p, i.e.,

W s,p def
= {f ∈ Lp; Dαf ∈ Lp, α ∈ N

m and |α| ≤ s} . (19)

W s,p is equipped with the norm ‖ · ‖W s,p defined, for any f ∈W s,p, by

‖f‖W s,p
def
=


 ∑

0≤|α|≤s

‖Dαf‖pLp




1/p

. (20)

The results of Section 3 and Section 4 can be applied to the class F =W s,p under the following assumption.
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H6 X has a locally Lipschitz boundary.

H6 means that all x on the boundary of X has a neighbourhood whose intersection with the boundary of
X is the graph of a Lipschitz function. For any j ∈ {1, · · · , ℓ} and f ∈ W s,p, fj belongs to W s,p(X,R),
the Sobolev space of real-valued functions with parameters s and p. Let k ≥ 0, by [1, Theorem 6.3], if
s > m/p+ k and if H4a) and H6 hold, W s,p(X,R) is compactly embedded into

(
Ck(X,R), ‖ · ‖Ck

)
. Arguing

component by component, W s,p is compactly embedded into Ck def
= Ck(X,Rℓ). Moreover, the identity

function id : W s,p → Ck being linear and continuous, there exists a positive coefficient κ such that, for any
f ∈W s,p,

‖f‖Ck ≤ κ‖f‖W s,p . (21)

Then, if s > m/p+ k, for any f ∈ F =W s,p,

‖f‖∞ ≤ κ‖f‖W s,p . (22)

In the following, dCk is the usual distance on Ck functions on X. If the complexity function is defined by

I(f) = ‖f‖1/υW s,p with υbℓ < 1, then H2 holds and Theorem 3.1 can be applied. Moreover, by [1, Theorem
6.3], the subspace FM , M ≥ 1 are quasi-compact in Ck. Let dA be a metric on the space A introduced
in (15) such that A is compact and that, for µ ⊗ µ almost every (x, x′) ∈ X

2, a 7→ νa(x, x
′) is continuous.

By applications of the dominated convergence theorem, this implies the continuity of (f, a) 7→ h(pf,νa
, p⋆).

Define
F⋆

def
= {f ∈W s,p; ∃a ∈ A such that (f, a) ∈ E⋆} .

Then, Proposition 5.1 is a direct application of Corollary 3.3.

Proposition 5.1 (F = Ws,p, s >m/p+ k, k ≥ 0). Assume that H1, H3, H4a) and H6 hold. Assume

also that I(f) = ‖f‖1/υW s,p for some υ such that υbℓ < 1 and that λn and ρn satisfy

λnn
−1 −→

n→+∞
0, λnn

−1/2 −→
n→+∞

+∞ and ρn = O

(
λn
n

)
.

Then,

dCk

(
f̂n,F⋆

)
= oP(1) .

Moreover, as shown in Section 8.2, the assumption
◦

X = X together with the continuity of the functions
in F provided by (21) imply that for any f in F⋆, f(X) = f⋆(X). Define the Hausdorff distance dH(A,B)
between two compact subsets A and B of Rℓ as

dH(A,B)
def
= max

(
sup
a∈A

inf
b∈B

||a− b||Rℓ , sup
b∈B

inf
a∈A

||a− b||Rℓ

)
.

Proposition 5.1 implies Corollary 5.2.

Corollary 5.2 (F = Ws,p, s >m/p). Assume that H1, H3, H4a) and H6 hold. Assume also that I(f) =

‖f‖1/υW s,p for some υ such that υbℓ < 1 and that λn and ρn satisfy

λnn
−1 −→

n→+∞
0, λnn

−1/2 −→
n→+∞

+∞ and ρn = O

(
λn
n

)
.

Then,

dH

(
f̂n(X), f⋆(X)

)
= oP(1) .

Corollary 5.2 establishes the consistency of the estimator f̂n(X) of the image of f⋆ in R
ℓ. This result is

particularly interesting since f⋆(X) is a manifold of dimension smaller than ℓ in R
ℓ. Thus, the proposed esti-

mation procedure allows to approximate such manifolds, possibly of low dimensions, that are only observed
with additive noise in R

ℓ. Moreover, this result holds under relatively weak assumptions on the manifold.
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Since the identifiability of f⋆ is not necessary to have the identifiability of f⋆(X), f⋆ is not assumed to be
bijective to establish this result.

Proposition 5.3 below states the consistency of the estimators (f̂n, ân) in the case b = 2 and F = W s,p.
Assume that for any a in A, νa ∈ D2 is of the form

νa(x, x
′) = νqa(x)qa(x, x

′) with qa(x, x
′) = ca(x)ρa(||x− x′||) ,

where ρ− ≤ ρa ≤ ρ+. It is also assumed that there exists a unique a⋆ ∈ A such that ν⋆ = νa⋆
and that ρa⋆

is one-to-one. Proposition 5.3 is a direct application of Corollary 3.3 and of Proposition 4.3 and is stated
without proof.

Proposition 5.3 (F = Ws,p, s >m/p+ k, k ≥ 1, b = 2). Assume that H1 and H3-6 hold. Assume also

that I(f) = ‖f‖1/υW s,p for some υ such that 2υℓ < 1 and that λn and ρn satisfy

λnn
−1 −→

n→+∞
0, λnn

−1/2 −→
n→+∞

+∞ and ρn = O

(
λn
n

)
.

Then,
F⋆ = {f⋆ ◦ φ; φ is an isometry of X} ,

and
dCk

(
f̂n,F⋆

)
= oP(1) and dA (ân, a⋆) = oP(1) ,

6 Numerical experiments

6.1 Proposed Expectation Maximization algorithm

This section introduces a practical algorithm to compute the estimators defined in (4) when ρn is set to zero.
It is assumed that the maximizer in (4) exists which is the case for instance in the Sobolev framework of
Section 5 and if Db is compact. This proposed Expectation-Maximization (EM) based procedure iteratively

produces a sequence of estimates ν̂t, f̂ t, t ≥ 0, see [9]. Assume that the current parameter estimates are

given by ν̂t and f̂ t. The estimates ν̂t+1 and f̂ t+1 are defined as one of the maximizers of the function Q:

(ν, f) 7→ Q((ν, f), (ν̂t, f̂ t))
def
=

n−1∑

k=0

Eν̂t,f̂t

[
ln pf,ν (Xk,Yk)

∣∣Yk

]
− λnI(f) ,

where Eν̂t,f̂t [·] denotes the conditional expectation under the model parameterized by ν̂t and f̂ t and where,

for any x = (x0, . . . , xb−1) ∈ X
b and any y = (y0, . . . , yb−1) ∈ R

ℓb,

pf,ν (x,y)
def
= ν(x)

b−1∏

i=0

ϕ(yi − f(xi)) .

Note that the intermediate quantity Q((ν, f), (ν̂t, f̂ t)) can be written:

Q((ν, f), (ν̂t, f̂ t)) = Q1
t (ν) +Q2

t (f) ,

where

Q1
t (ν)

def
=

n−1∑

k=0

Eν̂t,f̂t

[
ln {ν(Xk)}

∣∣Yk

]
, (23)

Q2
t (f)

def
=

n−1∑

k=0

Eν̂t,f̂t

[
ln

{
b−1∏

i=0

ϕ (Ybk+i − f(Xbk+i))

}∣∣∣∣∣Yk

]
− λnI(f) . (24)

Therefore ν̂t+1 is obtained by maximizing the function ν 7→ Q1
t (ν) and f̂ t+1 by maximizing the function

f 7→ Q2
t (f). Lemma 6.1 proves that the penalized pseudo-likelihood increases at each iteration of this EM

based algorithm.

11



Lemma 6.1. The sequences ν̂t and f̂ t satisfy

n−1∑

k=0

ln pf̂t+1,ν̂t+1 (Yk)− λnI(f̂
t+1) ≥

n−1∑

k=0

ln pf̂t,ν̂t (Yk)− λnI(f̂
t) .

Proof. The proof follows the same lines as the one for the usual EM algorithm. For all 0 ≤ k ≤ n − 1, all
f ∈ F and all ν ∈ Db,

ln
[
pf,ν (Yk) e

−λnI(f)/n
]
= ln

[∫
pf,ν (x,Yk) e

−λnI(f)/nµ⊗b(dx)

]
,

= ln

[∫
pf,ν (x,Yk) e

−λnI(f)/n
pf̂t,ν̂t (x|Yk)

pf̂t,ν̂t (x|Yk)
µ⊗b(dx)

]
,

= ln

[∫
pf̂t,ν̂t (x|Yk)

pf,ν (x,Yk) e
−λnI(f)/n

pf̂t,ν̂t (x|Yk)
µ⊗b(dx)

]
,

≥
∫
pf̂t,ν̂t (x|Yk) ln

[
pf,ν (x,Yk) e

−λnI(f)/n

pf̂t,ν̂t (x|Yk)

]
µ⊗b(dx) ,

where the last inequality comes from the concavity of x 7→ log x. Then,

ln
[
pf,ν (Yk) e

−λnI(f)/n
]
− ln

[
pf̂t,ν̂t (Yk) e

−λnI(f̂
t)/n

]

≥ Eν̂t,f̂t

[
ln pf,ν (Xk,Yk)− ln pf̂t,ν̂t (Xk,Yk)

∣∣∣Yk

]
− λn

n

(
I(f)− I(f̂ t)

)
.

The proof is concluded by definition of ν̂p+1 and f̂p+1.

Remark 6.2. Like for all EM or gradient based procedures, there is no guarantee that the sequence (f̂ t, ν̂t)t≥0

converges, when t grows to infinity, towards the target estimate:

(f̂n, ν̂n) = argmax
f,ν

{
n−1∑

k=0

ln pf,ν (Yk)− λnI(f)

}
.

Lemma 6.1 only ensures that (f̂ t, ν̂t)t≥0 converges towards a local maximum of the penalized pseudo likeli-
hood. This limitation is proper to models with hidden data.

6.2 Experimental results

This section illustrates the convergence of the estimates (4) using the EM procedure of Section 6.1. The
state-space is X = [0, 1] and the unknown function f⋆ is given by

f⋆ : [0, 1] → R
2

x 7→ (cos(πx), sin(πx)) .

Therefore, throughout this section m = 1 and ℓ = 2. As shown in Section 4, the identifiability of f⋆ up to
an isometric function of [0, 1] can be obtained:

- In the case b = 1 when ν⋆ is assumed to be known.

- In the case b = 2 when D2 is the set of probability densities defined on X
2 and of the form ν(x, x′) =

ν1(x) · c(x)ρ(|x− x′|).

The performance of the algorithm is assessed with two numerical experiments.

- First, (Xk)k≥0 is assumed to be i.i.d. uniformly distributed on [0, 1] and only f⋆ is estimated using b = 1
in (4).
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- Then, (Xk)k≥0 is assumed to be a Markov chain with density kernel given by

q⋆(x, x
′) = qa⋆

(x, x′)
def
= Ca⋆

(x)exp

(
−|x′ − x|

a⋆

)

and a⋆ and f⋆ are estimated using b = 2 in (4).

In both cases, we wish to use the Sobolev setting of Section 5 with λn such that λn ∝ log(n)n1/2 and

I(f) = ||f ||1/vW 2,2 with 1/v > bℓ = 2b so that the hypothesis of Propositions 5.1 and 5.3 are fulfilled. However,
as discussed in the next section, such a complexity function I may be intractable for the optimization
problem.

6.2.1 Approximations

The computation of the intermediate quantities (23) and (24) requires an approximation of the conditional
expectations Eν̂t,f̂t [h(Xk,Yk)|Yk]. For each 0 ≤ k ≤ n − 1, the approximation of the distribution of Xk

conditionally on Yk when the parameters are (ν̂tf̂ t) is dealt with Monte Carlo simulations. For each t ≥ 0
and each 0 ≤ k ≤ n − 1, the Monte Carlo approximation is based on a set of particles {Ξt,j

k }Nmc

j=1 , where

Ξt,j
k = (ξt,jk,0, . . . , ξ

t,j
k,b−1), associated with weights {ωt,j

k }Nmc

j=1 such that for any bounded function h:

Eν̂t,f̂t

[
h(Xk,Yk)

∣∣∣Yk

]
≈

Nmc∑

j=1

ωt,j
k h(Ξt,j

k ,Yk) .

Therefore, (23) and (24) are approximated by:

Q1
t (ν) ≈

n−1∑

k=0

Nmc∑

j=1

ωt,j
k ln

{
ν(Ξt,j

k )
}
, (25)

Q2
t (f) ≈ −1

2

n−1∑

k=0

Nmc∑

j=1

ωt,j
k

b−1∑

i=0

‖Ybk+i − f(ξt,jk,i)‖2 − λn‖f‖1/vW 2,2 . (26)

However, the maximization of (26) when 1/v > 2b may be complex. Relaxing the hypothesis 1/v > 2b by
choosing I(f) = ‖f‖2W 2,2 (1/v = 2) allows to compute the maximizer of (26) as in [7] where the setting is
similar except that I(f) = ‖f ′′‖2L2 . [7] shows that the optimization problem can be written as an orthogonal
projection in a Hilbert space. Nevertheless, using 1/v > 2b (where 2b = 2 in the first study and 2b = 4 in the
second one) as requested by Propositions 5.1 and 5.3 leads to a much more complicated optimization problem
since it can not be interpreted as an orthogonal projection in a Hilbert space. Moreover, the maximization

of (26) has been widely studied when I(f) = ‖f‖1/vW 2,2 is replaced by I(f) = ‖f ′′‖2L2 . In this setting, f̂p+1 is
then a regression spline (see for instance [7, 16]). Therefore, the constraints on I(f) required by Propositions
5.1 and 5.3 are relaxed in the simulations below where I(f) = ‖f ′′‖2L2 and where pre-built optimized routines

are used to compute f̂ t+1 given f̂ t.

6.2.2 Experiment 1: (Xk)k≥0 i.i.d.

In this section, b = 1 and ν⋆ = 1 is assumed to be known. The estimation of f⋆ is performed with Nmc = 100.
In this case, for each t ≥ 0, 0 ≤ k ≤ n− 1 and 1 ≤ j ≤ Nmc,

ξt,jk,0 = ξt,jk ∼ ν⋆ and ωt,j
k ∝ ϕ(Yk − f̂ t(ξt,jk )) .

Figure 1 displays the L2 error of the estimation of f⋆ after 100 iterations as a function of the number of
observations. The L2 estimation error decreases quickly for small values of n (lower than 5000) and then goes
on decreasing at a lower rate as n increases. It can be seen that even with a great number of observations, a
small bias still remains for both functions (with a mean a bit lower than 0.05). Indeed, there is always small
errors in the estimation of f⋆ around x = 0 and x = 1.
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(a) f1.

(b) f2.

Figure 1: L2 error after 100 iterations over 100 Monte Carlo runs.

Figure 2 shows the estimates after 100 iterations when n = 25.000. It can be seen that the second
component of f⋆ is estimated with accuracy while the first component of f⋆ is recovered up to the isometry
x 7→ 1 − x (the isometry is used in Figure 1 to compute the L2 error). This simulation illustrates the
identifiability results obtained in Section 4.
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(a) With no isometry for f1.
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(b) With the isometry x 7→ 1− x for f1.

Figure 2: True functions (bold lines) and estimates after 100 iterations (vertical lines) over 100 Monte Carlo
runs (n = 25.000).

6.2.3 Experiment 2: (Xk)k≥0 Markov chain

In this section, b = 2 and a⋆ and f⋆ are estimated. Define for any a > 0,

νa(x, x
′) = ν1,a(x) · ca(x) exp

(
−|x− x′|

a

)
,

ν1,a(x) ∝ c−1
a (x) =

∫

[0,1]

exp

(
−|x− x′|

a

)
dx′ .

ν̂t+1 is given by νât+1 where ât+1 is computed by maximizing the function

a 7→ log
(
a+ a2(exp(−1/a)− 1)

)
+

1

na

n−1∑

k=0

Nmc∑

j=1

ωt,j
k |ξt,jk,0 − ξt,jk,1| ,
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where, for all 0 ≤ k ≤ n−1, (ξt,jk,0, ξ
t,j
k,1)

Nmc

j=1 are independently sampled uniformly in [0, 1]×[0, 1] and associated
with the importance weights:

ωt,j
k ∝ νât(ξt,jk,0)qât(ξt,jk,0, ξ

t,j
k,1)ϕ(Y2k − f̂ t(ξt,jk,0))ϕ(Y2k+1 − f̂ t(ξt,jk,1)) . (27)

The Monte Carlo approximations are computed using Nmc = 200 and 20.000 observations (i.e. n = 10.000)
are sampled. Figure 3 displays the estimation a⋆ as a function of the number of iterations of the EM
algorithm over 50 independent Monte Carlo runs. The estimates converge to the true value of a⋆ after few
iterations (about 25).

10 20 30 40 50 60 70 80 90 100
0.5

1

1.5

2
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Figure 3: Estimation of a⋆ as a function of the number of iterations of the EM algorithm. The true value is
a⋆ = 1. Median (bold line) and upper and lower quartiles (dotted line) over 50 Monte Carlo runs.

Figure 4 illustrates Corollary 5.2. It displays the estimation of f⋆([0, 1]) after 100 iterations for several
Monte Carlo runs. It shows that despite the variability of the estimation, the image is well estimated with
few observations.
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Figure 4: True image f⋆([0, 1]) (red) and estimates after 100 iterations of the algorithm over 100 Monte
Carlo runs (grey).
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7 Conclusion

This paper deals with the estimation of the unknown function f⋆ in the model
Yk = f⋆(Xk) + ǫk when the regressors Xk are not observed. These regressors are assumed to be Φ-
mixing which covers in particular the i.i.d. case and some Markovian cases. The consistency of a penalized
pseudo-likelihood approach is first proved: the estimator of the density of a fixed number of observations
(Y0, . . . , Yb−1) converges towards the true density in Hellinger distance. Then, it is shown that the model is
not identifiable in general when the candidate functions are in C1(X) (X ⊂ R

m). Nevertheless, the candidate
functions and the hidden state densities are necessarily linked by a bijective function φ. In the special case
where the conditional density of X1 given X0 is of the form q⋆(x, x

′) = c⋆(x)q⋆(||x − x′||), this function φ
is an isometry of X. In the experimental section, the hypothesis on the penalty term assumed in the theo-
retical part is relaxed in order to ease the computation of the estimators. The estimation procedure seems
still to provide good results. These observations might indicate that the assumptions of our main results
are not optimal and that weaker penalty terms might ensure consistency. The assumptions could probably
be weakened by a sharper analysis of the empirical process described in Section 8.1 and, in particular, by
improving the bound on the bracketing entropy described in Section B.

8 Proofs

8.1 Proof of Proposition 3.2

The proof relies on the application of Proposition A.1 and Proposition A.2 to obtain first a concentration
inequality for the class of functions GM , where M ≥ 1, defined as:

GM
def
=
{
gpf,ν

; ν ∈ Db, f ∈ F and I(f) ≤M
}
,

where pf,ν is defined by (3) and gpf,ν
by (12). For any p > 0, denote by Lp(P⋆) the set of functions g : Rbℓ → R

such that E [|g(Y0)|p] < +∞. For any κ > 0 and any set G of functions from R
bℓ to R, let N(κ,G, ‖ · ‖Lp(P⋆))

be the smallest integer N such that there exists a set of functions
{(
gLi , g

U
i

)}N
i=1

for which:

a) ‖gUi − gLi ‖Lp(P⋆) ≤ κ for all i ∈ {1, · · · , N};

b) for any g in G, there exists i ∈ {1, · · · , N} such that

gLi ≤ g ≤ gUi .

N(κ,G, ‖ · ‖Lp(P⋆)) is the κ-number with bracketing of G, and H(κ,G, ‖ · ‖Lp(P⋆))
def
= lnN(κ,G, ‖ · ‖Lp(P⋆)) is

the κ-entropy with bracketing of G. For any bounded function g, define

Sn(g)
def
= n

∫
g d(Pn − P⋆) . (28)

Application of Proposition A.1 Proposition A.1 is applied to the class of functions GM defined as

GM
def
= {g − E⋆ [g] ; g ∈ GM} .

Since (ǫk)k≥0 is i.i.d. and (Xk)k≥0 is Φ-mixing, (Yk)k≥0 is also Φ-mixing with mixing coefficients (φYi )i≥0

satisfying, for all i ≥ 1,
φYi ≤ φXi = φX(i−1)b+1 .

Therefore ΦY =
∑

i≥1(φ
Y
i )1/2 <∞. By H2, there exists C > 0 such that for any i ≥ 0, and any g ∈ GM ,

|g (Yi)| ≤ CMυ (1 + ‖Yi‖) ≤ CMυ (1 + ||f⋆(Xi)‖+ ‖ǫi‖) ,
≤ CMυ (1 + ‖f⋆‖∞ + ‖ǫi‖) ,
≤ CMυ (1 + ‖ǫi‖) .
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Define Ui
def
= CMυ (1 + ‖ǫi‖). Then (Ui)i≥0 is i.i.d., g (Yi) ≤ Ui+E [U0] and there exist positive constants

ν and c such that
E
[
(Ui + E [U0])

2k
]
≤ k!νck−1 ,

where ν = CM2υ and c = CM2υ. Then, by Proposition A.1, there exists a positive constant c such that for
any positive x,

P

[
sup
g∈GM

|Sn(g)| ≥ E

[
sup
g∈GM

|Sn(g)|
]
+ cΦY

(√
nx+ x

)
Mυ

]
≤ e−x . (29)

Application of Proposition A.2 Proposition A.2 is used to control the inner expectation in (29). Let
r > 1. By [25, Lemma 7.26] and since the Hellinger distance is bounded by 1, there exists a constant δ such
that for any g = gpf,ν

∈ GM .

‖g‖2rL2r(P⋆)
≤ Ch2(pf,ν , p⋆) ≤ δ .

By Lemma B.1, for any p′ ≥ 1, and any s′ > bℓ/p′, provided that d > s′ + bℓ(1 − 1
p′
), there exists a

constant C such that, for all u > 0,

H(u, ‖ · ‖L2r(P⋆),GM ) ≤ C

(
M

υ(s′+d+ bℓ
p′

)

u2r

)bℓ/s′

. (30)

For any p′ ≥ 1, and any s′ > bℓ/p′, provided that d > s′ + bℓ(1− 1
p′
), there exists a constant C such that

ϕ(δ)
def
=

∫ δ

0

H1/2(u, ‖ · ‖L2r(P⋆),GM )du ,

≤ CM (s′+d+bℓ/p′) bℓυ
2s′

∫ δ

0

u−rbℓ/s′du .

Choosing d ≤ s′ + bℓ(1 − 1
p′
) + 2, if s′ grows to +∞ then the last integral is finite, and (s′ + d + bℓ/p′) bℓυ2s′

tends to bℓυ, so that for any η > 0 there exists a positive constant C such that

ϕ(δ) ≤ CM bℓυ+η .

Finally, by Proposition A.2 for any η > 0, there exists a constant A such that for n large enough

E

[
sup
g∈GM

|Sn(g)|
]
≤ A

√
nM bℓυ+η .

Then, by (29), this yields

P

[
sup
g∈GM

|Sn(g)| ≥ cΦY
(√
nx+ x

)
Mυ +A

√
nM bℓυ+η

]
≤ e−x . (31)

Proposition 3.2 is then proved using a peeling argument. By (28) and (31), for any M ≥ 1, any n ≥ N
and any x > 0, if γ = bℓυ + η,

P

[
sup
g∈GM

∣∣∫ g d(Pn − P⋆)
∣∣

Mγ
≥ cΦY

(√
x

n
+
x

n

)
+

A√
n

]
≤ e−Mγ−υx . (32)

We can write

P

[
sup

f∈F, ν∈Db

∣∣∫ gpf,ν
d(Pn − P⋆)

∣∣
1 ∨ I(f)γ ≥ cΦY

(√
x

n
+
x

n

)
+

(2γ ∨ 1)A√
n

]
≤ P1 +

+∞∑

k=0

Tk ,
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where

P1
def
= P


 sup
f∈F ; I(f)≤1,

ν∈Db

∣∣∫ gpf,ν
d(Pn − P⋆)

∣∣
1 ∨ I(f)γ ≥ cΦY

(√
x

n
+
x

n

)
+

(2γ ∨ 1)A√
n


 ,

Tk
def
= P


 sup
f∈F ; 2k<I(f)≤2k+1,

ν∈Db

∣∣∫ gpf,ν
d(Pn − P⋆)

∣∣
1 ∨ I(f)γ ≥ cΦY

(√
x

n
+
x

n

)
+

(2γ ∨ 1)A√
n


 .

By (32),

P1 ≤ P

[
sup
g∈G1

∣∣∣∣
∫
g d(Pn − P⋆)

∣∣∣∣ ≥ cΦY

(√
x

n
+
x

n

)
+

(2γ ∨ 1)A√
n

]
,

≤ P

[
sup
g∈G1

∣∣∣∣
∫
g d(Pn − P⋆)

∣∣∣∣ ≥ cΦY

(√
x

n
+

√
cx

n

)
+

A√
n

]
,

≤ e−x

and for all k ≥ 0,

Tk ≤ P

[
sup

g∈G
2k+1

∣∣∫ g d(Pn − P⋆)
∣∣

2γ(k+1)
≥ c

2γ
ΦY

(√
x

n
+
x

n

)
+

(2γ ∨ 1)A

2γ
√
n

]
,

≤ P

[
sup

g∈G
2k+1

∣∣∫ g d(Pn − P⋆)
∣∣

2γ(k+1)
≥ cΦY

(√
x

22γn
+

x

22γn

)
+

A√
n

]
,

≤ e−2(γ−υ)(k+1)x/22γ .

Using (32),

P

[
sup

f∈F, ν∈Db

∣∣∫ gpf,ν
d(Pn − P⋆)

∣∣
1 ∨ I(f)γ ≥ cΦY

(√
x

n
+
x

n

)
+

(2γ ∨ 1)A√
n

]

≤ e−x +

∞∑

k=0

e−2(γ−υ)(k+1)x/22γ

≤ e−x +

∞∑

k=0

e−(k+1)x log(2)(γ−υ)/22γ

≤ e−x +
e−αx

1− e−αx
,

which concludes the proof of Proposition 3.2.

8.2 Proof of Proposition 4.1

Assume that h(pf,ν , pf⋆,ν⋆
) = 0 (the proof of the converse proposition is straightforward). LetX ′

0 be a random
variable on X with distribution ν(x)µ(dx). Since ǫ0 is a Gaussian random variable, h(pf,ν , pf⋆,ν⋆

) = 0 implies
that f(X ′

0) has the same distribution as f⋆(X0).

Proof that f and f⋆ have the same image in R
ℓ. Let y ∈ f(X) and n ≥ 1. Using ν ≥ ν−, the

continuity of f and
◦

X = X, f(X ′
0) has the same distribution as f⋆(X0) implies that,

P
{
X0 ∈ f−1

⋆

(
B
(
y, n−1

))}
= P

{
X ′

0 ∈ f−1
(
B
(
y, n−1

))}
,

≥ ν− µ
{
f−1

(
B
(
y, n−1

))}
> 0 ,

as f−1(B(y, n−1)) is a nonempty open subset of X. Therefore f−1
⋆

(
B
(
y, n−1

))
is nonempty and for all

n ≥ 1, there exists xn ∈ X such that ‖y − f⋆(xn)‖ < n−1. For all n ≥ 1, f⋆(xn) is in the compact set f⋆(X)
which implies that y ∈ f⋆(X). The proof of the converse inclusion follows the same lines.
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Proof that φ is bijective. Since f(X ′
0) has the same distribution as f⋆(X0), X0 has the same distribution

as φ(X ′
0) where φ

def
= f−1

⋆ ◦ f . By H5 φ exists and is C1. We prove that |Jφ| > 0 using the following result
due to [13, Theorem 2, p.99].

Lemma 8.1. If φ : X → X is Lipschitz then, for any integrable function g,
∫

X

g(x) |Jφ(x)|µ(dx) =
∫

X

∑

x∈φ−1({y})

g(x)µ(dy) .

Define A
def
=
{
x ∈ X ; ∀x′ ∈ φ−1({x}), |Jφ(x′)| > 0

}
. Let h1 be a bounded measurable real function on

X and define h
def
= 1Ah1. By Lemma 8.1,

E [h ◦ φ(X ′
0)] =

∫

X

h1(φ(x
′))1A(φ(x

′))ν(x′)µ(dx′) ,

=

∫

X

h1(φ(x
′))1A(φ(x

′))
ν(x′)

|Jφ(x′)|
|Jφ(x′)|µ(dx′) ,

=

∫

X

h1(x)1A(x)
∑

x′∈φ−1({x})

ν(x′)

|Jφ(x′)|
µ(dx) .

Since X0 has the same distribution as φ(X ′
0),

∫

X

h1(x)1A(x)ν⋆(x)µ(dx) =

∫

X

h1(x)1A(x)
∑

x′∈φ−1({x})

ν(x′)

|Jφ(x′)|
µ(dx) .

Applying Lemma 8.1 with g
def
= 1|Jφ|=0 implies that 1A = 1 µ-a.s. in X and, µ-a.s.,

ν⋆(x) =
∑

x′∈φ−1({x})

ν(x′)

|Jφ(x′)|
. (33)

Therefore, for µ almost every x ∈ X and for all x′ ∈ φ−1({x}),

|Jφ(x′)| ≥
ν−
ν+

.

By continuity of Jφ and using that
◦

X = X, |Jφ(x)| > 0 for all x ∈ X. Therefore, φ is locally invertible and,
since X is compact, simply connected and arcwise connected, φ is bijective by [2, Theorem 1.8, p.47]. Then
(33) ensures that for µ almost every x ∈ X,

ν⋆(φ(x)) =
ν(x)

|Jφ(x)|
,

which concludes the proof of Proposition 4.1.

8.3 Proof of Proposition 4.3 and Corollary 4.4

Proof of Proposition 4.3 The proof of (18) follows the same lines as the proof of Proposition 4.1. Let
(X ′

0, X
′
1) be a random variable on X

2 with probability density ν(x)q(x, x′) on X
2. h(pf,ν2 , pf⋆,ν2

⋆
) = 0 implies

that h(pf,ν , pf⋆,ν⋆
) = 0 and, by Proposition 4.1, f(X) = f⋆(X) and φ = f−1

⋆ ◦ f is bijective. Moreover, since
(ǫ0, ǫ1) has a Gaussian distribution, h(pf,ν2 , pf⋆,ν2

⋆
) = 0 implies that (φ(X ′

0), φ(X
′
1)) has the same distribution

as (X0, X1) so that for any x in X and any bounded measurable function f on X,

E
[
φ(X ′

1)
∣∣X ′

0 = φ−1(x)
]
= E [X1|X0 = x] .

Following the proof of Proposition 4.1, this gives (18).
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Proof of Corollary 4.4 Assume now that

q⋆(x, x
′) = c⋆(x)ρ⋆(||x− x′||) ,

q(x, x′) = c(x)ρ(||x− x′||) .
We may assume, using an eventual modification of c⋆ and c that ρ(0) = ρ⋆(0) = 1. By (18),

c(x)ρ(||x− x′||) = |Jφ(x′)|c⋆(φ(x))ρ⋆(||φ(x)− φ(x′)||) . (34)

Applying (34) with x = x′ implies |Jφ(x)| = c(x)/c⋆(φ(x)). Therefore,

|Jφ(x)|
|Jφ(x′)|

=
ρ⋆(||φ(x)− φ(x′)||)

ρ(||x− x′||) =
ρ⋆(||φ(x′)− φ(x)||)

ρ(||x′ − x||) =
|Jφ(x′)|
|Jφ(x)|

and then, for all x ∈ X, |Jφ(x)| = 1.
Now (34) implies that for any x and x′ in X,

ρ(||x− x′||) = ρ⋆(||φ(x)− φ(x′)||). (35)

Let x0 ∈
◦

X, y0 = φ(x0) and d0, d
′
0 > 0 be such that B(x0, d0)

def
= {x ∈ R

m , ||x0 − x|| < d0} ⊂ X and
φ(B(x0, d0)) ⊂ B(y0, d

′
0).

Let d < d0 and denote by S(x0, d) the set S(x0, d)
def
= {x ∈ R

m , ||x0 − x|| = d}. As ρ⋆ is one-to-one,
write F = ρ−1

⋆ ◦ρ. (35) implies that φ(S(x0, d)) ⊂ S(y0, F (d)). Furthermore, using the compactness and the
connectivity of S(x0, d), φ(S(x0, d)) = S(y0, F (d)) which, together with the continuity of φ, guarantees that
φ(B(x0, d)) = B(y0, F (d)). Finally, because φ preserves the volumes, for any d < d0, F (d) = d and for any
x ∈ X and any x′ ∈ B(x, d0), ||x−x′|| = ||φ(x)−φ(x′)||. The proof is concluded using the connectivity of X.

A Concentration results for the empirical process of unbounded

functions

Proposition A.1 provides a concentration inequality on the empirical process over a class of functions G for
which |g(Zi)| can be bounded uniformly in g ∈ G by an independent process Ui with bounded moments.
This unusual condition is more general than [28, Theorem 3] which considered a uniformly bounded class of
functions.

Proposition A.1. Let (Zn)n≥0 be a Φ-mixing process taking values in a set Z. Assume that the Φ-mixing
coefficients associated with (Zn)n≥0 satisfy:

Φ
def
=

∞∑

i=1

φ
1/2
i <∞ .

Let G be some countable class of real valued measurable functions defined on Z. Assume that there exists a
sequence of independent random variables (Ui)i≥0 such that:

- for any g in G ,
|g(Zi)| ≤ Ui a.s. ; (36)

- there exists some positive numbers ν and c such that, for any k ≥ 1:

n−1∑

i=0

E
[
U2k
i

]
≤ k!nνck−1 . (37)

Then, for any positive x,
P
[
Sn ≥ 2Φ

(
2
√
nνx+

√
cx
)]

≤ e−x ,

where

Sn = sup
g∈G

∣∣∣∣∣

n−1∑

i=0

g(Zi)

∣∣∣∣∣− E

[
sup
g∈G

∣∣∣∣∣

n−1∑

i=0

g(Zi)

∣∣∣∣∣

]
.
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Proof. For any real valued random variable and for any real random variableX, define ψX(λ)
def
= ln (E [exp (λX)]),

Following the proof of [28, Theorem 3] together with the discussion about the dependence structure in [28,
Section 2], we have

exp

(
ψSn

(
λ

4

))
≤ E

[
exp

[
λ2

Φ2

4
V 2

]] 1
2

exp

[
λ2

Φ2

8
E
[
V 2
]]

, (38)

where V 2 def
=
∑n

i=1 U
2
i . Using (36) and by independence of the (Ui)i≥0,

exp

(
ψSn

(
λ

4

))
≤ E

[
exp

[
λ2

Φ2

4

n∑

i=1

U2
i

]] 1
2

exp

[
λ2

Φ2

8

n∑

i=1

E[U2
i ]

]
,

≤
n∏

i=1

E

[
exp

[
λ2

Φ2

4
U2
i

]] 1
2

exp

[
λ2

Φ2

8

n∑

i=1

E[U2
i ]

]
.

Thus,

ψSn
(λ/4) ≤ 1

2

n∑

i=1

ln

{
E

[
exp

(
λ2

Φ2

4
U2
i

)]}
+ λ2

Φ2

8

n∑

i=1

E
[
U2
i

]
.

Since for any u > 0, ln(u) ≤ u− 1, this yields

ψSn
(λ/4) ≤ 1

2

∞∑

k=1

1

k!

[
λ2

Φ2

4

]k n∑

i=1

E
[
U2k
i

]
+ λ2

Φ2

8

n∑

i=1

E
[
U2
i

]
.

Then, by (37),

ψSn
(λ/4) ≤ nν

[
λ2

Φ2

4

]
1

2

∞∑

k=0

[
λ2

Φ2

4
c

]k
+

[
λ2

Φ2

8
ν

]
.

If 0 < λ2Φ2c/4 < 1,

ψSn
(λ/4) ≤ nνλ2

Φ2

8

1

1− λ2Φ2

4 c
+ nνλ2

Φ2

8
,

≤ nνλ2
Φ2

4

1

1− λ2Φ2

4 c
.

Define ν′
def
= 8nνΦ2 and c′

def
= 2Φ

√
c. Therefore,

ψSn
(λ/4) ≤ ν′(λ/4)2

2(1− c′(λ/4))
. (39)

Hence, for all 0 < λ < 1/c′,

ψSn
(λ) ≤ ν′λ2

2(1− c′λ)
. (40)

By the Bernstein type inequality (40), [25, Lemma 2.3] gives, for any measurable set A ⊂ Ω with P(A) > 0,

E [Sn|A] ≤
√
2ν′ ln

(
1

P(A)

)
+ c′ ln

(
1

P(A)

)
.

Hence, by [25, Lemma 2.4], for any positive x,

P

[
Sn ≥

√
2ν′x+ c′x

]
≤ e−x .
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Proposition A.2 below provides a control on the expectation of the empirical process. It introduces a
β-mixing condition (see [8]) which is weaker than the Φ-mixing condition considered in Proposition A.1. The
β-mixing coefficient between two σ-fields U ,V ⊂ E is defined in [8] by

β(U ,V) def
=

1

2
sup

∑

(i,j)∈I×J

|P (Ui ∩ Vj)− P(Ui)P(Vj)| ,

where the supremum is taken over all finite partitions (Ui)i∈I and (Vj)j∈J respectively U and V measurable.
The corresponding mixing coefficients (βi)i≥0 associated with a process (Xk)k≥0 satisfy βi < φi for all i ≥ 1.

Proposition A.2. Let (Zi)i≥0 be a stationary process taking values in a Polish space Z. Denote by P⋆ the
distribution of Z0 and by E⋆ the expectation under P⋆. Assume that (Zi)i≥0 is β-mixing with β coefficients
(βi)i≥0 satisfying

∞∑

i=1

βi <∞ .

Let G be a countable class of functions on Z. Assume that there exist r > 1 and σ > 0 such that for any
g ∈ G,

||g||L2r(P⋆)
def
= E⋆

[
g2r
]1/2r ≤ δ .

Assume also that the bracketing function satisfies

∫ 1

0

√
H(u, || · ||L2r(P⋆),G)du <∞ .

Then,

ϕ(δ) :=

∫ δ

0

√
H(u, || · ||L2r(P⋆),G)du

is finite and there exists a constant A such that for n big enough

E

[
sup
g∈G

|Sn(g)|
]
≤

√
nAϕ(δ) , (41)

where, for all g ∈ G, Sn(g) =
∑n−1

i=0 g(Zi)− nE⋆ [g(Z0)].

Proof. This is a direct application of the remark following [11, Theorem 3].

B Entropy of the class GM
Lemma B.1. For any p′ ≥ 1, any s′ > bℓ/p′ and any even integer d, provided that d > s′+ bℓ(1− 1

p′
), there

exists a constant C such that

∀u > 0, H(u, || · ||L2r(P⋆),GM ) ≤ C

(
M

υ(s′+d+ bℓ
p′

)

u2r

)bℓ/s′

. (42)

Proof. By [25, Lemma 7.26], for any densities of probability p2 and p1 on R
bℓ,

||gp2 − gp1 ||2rL2r(P⋆)
≤ C||√p2 −

√
p1||2L2(Rbℓ) .

Since ||√p2 −
√
p1||2L2(Rbℓ) ≤ ||p2 − p1||L1(Rbℓ), this yields, for any u > 0,

H(u, || · ||L2r(P⋆),GM ) ≤ H

(
u2r

C
, || · ||L1(Rbℓ),PM

)
, (43)
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where PM
def
= {pf,ν ; ν ∈ Db, f ∈ F and I(f) ≤M}. Thus, it remains to bound the entropy with bracketing

of the class of functions PM associated with || · ||L1(Rbℓ) to control the entropy with bracketing of the class
of functions GM associated with || · ||L2r(P⋆).

Define for any p′ ≥ 1 and s′ ≥ 0, the Sobolev space on R
bℓ

W s′,p′ (
R

bℓ,R
) def
=
{
h : Rbℓ → R; Dαh ∈ Lp′

, α ∈ N
bℓ and 0 ≤ |α| ≤ s′

}

Define the polynomial weighting function 〈y〉d def
=
(
1 + ‖y‖2

)d/2
parametrized by d where y ∈ R

bℓ.
Furthermore, define the weighted Sobolev space

W s′,p′ (
R

bℓ, 〈y〉d
) def
=
{
h; h · 〈y〉d ∈W s′,p′ (

R
bℓ,R

)}
.

Lemma B.2 ensures that, for any p′ ≥ 1, s′ > bℓ/p′ any even integer d, the renormalized classes of functions

PM/M
υ(s′+d+ bℓ

p′
)
, M ≥ 1 belong to the same bounded subspace of W s′,p′

(Rbℓ, 〈y〉d). By [27, Corollary 4],
for any p′ ≥ 1, and any s′ > bℓ/p′, provided that d > s′ + bℓ(1− 1

p′
), there exists a constant C such that

∀ǫ > 0, H
(
ǫ, ‖ · ‖L1(Rbℓ),PM/M

υ(s′+d+ bℓ
p′

)
)
≤ Cǫ−bℓ/s′ .

The proof is concluded by (43).

Lemma B.2. Assume that H2 holds for some υ > 0. Then, for any p′ ≥ 1, s′ > bℓ/p′ and any even and
positive number d, there exists a positive constant C such that for any f ∈ F and any ν ∈ Db,

‖pf,ν · 〈y〉d‖W s′,p′ (Rbℓ,R) ≤ Cκ(υ, f)
s′+d+ bℓ

p′ ,

where κ(υ, f)
def
= 1 ∨ I(f)υ.

Proof. Let f be a function in F , for any ν ∈ Db,

‖pf,ν · 〈y〉d‖p
′

W s′,p′ (Rbℓ,R)
=
∑

|α|≤s′

‖Dα
(
pf,ν · 〈y〉d

)
‖p

′

Lp′
.

Applying the general Leibniz rule component by component, for any α ∈ N
bℓ,

Dα
(
pf,ν · 〈y〉d

)
=
∑

α′≤α

(
α

α′

)
Dα′

(〈y〉d)Dα−α′

(pf,ν) , (44)

where
(
α
α′

) def
=
∏bℓ

j=1

(αj

α′

j

)
. Then, Lemma B.2 requires to control ‖Dα(1)

(〈y〉b)Dα(2)

(pf,ν)‖Lp′ for any given

α(1) and α(2) in N
bℓ. For any α in N

bℓ, there exists a polynomial function Pα with degree lower than |α|
such that, for any y ∈ R

bℓ,

Dαpf,ν(y) =

∫

x∈Xb

Pα(f(x)− y) exp

{
−1

2
‖f(x)− y‖2

}
qa,b(x)µ

⊗b(dx) . (45)

Moreover, since d is an even number, for any α ∈ N
bℓ such that |α| ≤ d, Dα〈y〉d is a polynomial function

denoted by Pd,α with degree lower than d− |α|. In the case where |α| > d, Dα〈y〉d = 0.
By H2, there exists constant C > 0 such that, for any x ∈ X

b, ‖f(x)‖ ≤ CI(f)υ ≤ Cκ(υ, f). Since Pα(2)

and Pd,α(1) are both polynomial functions, there exist a constant C depending on α(1), α(2) and d such that,

for any y ∈ R
bℓ and any x ∈ X

b,

∣∣Pd,α(1)(y)Pα(2)(f(x)− y)
∣∣ ≤ 1|α(1)|≤d

[
C(1 + ‖y‖)d−|α(1)| × (κ(υ, f) + ‖y‖)|α

(2)|
]
.

Define the following subset of Rbℓ

Af
def
=
{
y ∈ R

bℓ; ‖y‖ ≤ κ(υ, f)
}
.

24



‖f(x)− y‖ can be lower bounded by 0 when y belongs to Af and by |κ(υ, f)− ‖y‖| when y belongs to Ac
f .

Therefore, uniformly in x ∈ X
b,

exp

{
−1

2
‖f(x)− y‖2

}
≤ 1Af

(y) + 1Ac
f
(y)e−

1
2 (κ(υ,f)−‖y‖)2 .

Thus, there exists a constant C > 0 which dies not depend on a, such that,
for any p′ ≥ 1,

‖Dα(1)

(〈y〉d)Dα(2)

(pf,ν)‖p
′

Lp′
≤ 1|α(1)|≤d

[
Cκ(υ, f)p

′|α(2)| (I1 + I2)

]
,

where,

I1
def
=

∫

Af

(1 + ‖y‖)p
′(d−|α(1)|)

(
1 +

‖y‖
κ(υ, f)

)p′|α(2)|

λ⊗b(dy) ,

I2
def
=

∫

Ac
f

(1 + ‖y‖)p
′(d−|α(1)|)

(
1 +

‖y‖
κ(υ, f)

)p′|α(2)|

e−
p′

2 (κ(υ,f)−‖y‖)2λ⊗b(dy) .

By the change of variables y′ = (κ(υ, f))−1y in I1 and I2, there exists a constant C such that

‖Dα(1)

(〈y〉d)Dα(2)

(pf,ν)‖p
′

Lp′
≤ Cκ(υ, f)p

′(|α(2)|−|α(1)|+d)+bℓ . (46)

Using (46) in (44) with α(1) = α′ and α(2) = α − α′ for any |α| ≤ s′ and α′ ≤ α concludes the proof of
Lemma B.2.
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