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Nonparametric regression on hidden Φ-mixing variables:

identifiability and consistency of a pseudo-likelihood

based estimation procedure

Thierry Dumont ∗and Sylvain Le Corff †

February 10, 2014

Abstract

This paper outlines a new nonparametric estimation procedure for unobserved Φ-
mixing processes. It is assumed that the only information on the stationary hidden
states (Xk)k≥0 is given by the process (Yk)k≥0, where Yk is a noisy observation of
f?(Xk). The paper introduces a maximum pseudo-likelihood procedure to estimate
the function f? and the distribution ν?,b of (X0, . . . , Xb−1) using blocks of observations
of length b. The identifiability of the model is studied in the particular cases b = 1
and b = 2 and the consistency of the estimators of f? and of ν?,b as the number of
observations grows to infinity is established.

1 Introduction

The model considered in this paper is made of a bivariate stochastic process {(Xk, Yk)}k≥0
where only a sample of the observation sequence {Yk}k≥0 is available. These observations
are given by

Yk = f?(Xk) + εk ,

where f? is a function defined on a space X and taking values in R`. The measurement
noise (εk)k≥0 is an independent and identically distributed (i.i.d.) sequence of Gaussian
random vectors of R`. This paper proposes a new method to estimate the function f? and
the distribution of the hidden states using only the observations (Yk)k≥0. Note that the
setting introduced here encompasses the case of hidden Markov models in which the state
sequence (Xk)k≥0 is a Markov chain, the observations (Yk)k≥0 are independent conditionally
on (Xk)k≥0 and where the conditional distribution of Yk given the state sequence depends
only on Xk. These hidden models can be applied in a large variety of disciplines such as
financial econometrics [15], biology [3] or speech recognition [11].

It is clear that the model considered in this paper is not identifiable with no additional
assumptions and that the statistical inference of f? may not be possible. For instance, if
X̃k = σ(Xk) where σ : X→ X is a bijective function, then Yk = f?◦σ−1(X̃k)+εk. Therefore,
there exist a function f̃ and a process (X̃k)k≥0 on X fully characterizing the distribution
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of the observation process (Yk)k≥0 and it is not possible to define a consistent estimator
of f? using the observations (Yk)k≥0 only. It is then natural to study the identifiability
with some assumptions on the model, which is done in Proposition 4.1 and Proposition 4.3
below. To our best knowledge, these are the first results about the identifiability of the
nonparametric regression models on hidden variables studied in this paper. It is assumed
that the state-space X is a compact subset of Rm and that f? is a C1 diffeomorphism. The C1
regularity hypothesis on the target function f? allows to perform the estimation procedure
in a Sobolev setting such as in classical regression frameworks. The invertibility of f? is
a somehow strong assumption. Nevertheless, in the case ` ≥ 2m + 1, this assumption is
satisfied for a dense class of functions in C1. Proposition 4.1 establishes that if X̃0 has a
distribution with probability density ν and if f̃ : X → R` is such that f̃(X̃0) and f?(X0)
have the same distribution then: (a) f̃ = f? ◦ φ with φ : X → X a bijective function
and (b) ν is obtained by a transformation of the distribution density of X0 involving φ.
When m = 1 and X0 is uniformly distributed on X, φ is an isometric transformation of
X and the model is almost identifiable. Proposition 4.3 states a similar result on f? and
on the distribution of (X0, X1) when (f̃(X̃0), f̃(X̃1)) and (f?(X0), f?(X1)) have the same
distribution. As a striking consequence, Corollary 4.4 shows that if the density of the
distribution of X1 conditionally on X0 = x is of the form q?(x, x

′) = c?(x)ρ?(‖x − x′‖),
then q? and the full distribution of (X0, X1) are identifiable. In addition f̃ = f? ◦ φ with
φ : X→ X an isometric function.

This paper also proposes a new method to estimate the function f? and the distribution
νb,? of the hidden states (X0, . . . , Xb−1) for a fixed parameter b using only the observations
(Yk)k≥0. Note that this nonparametric estimation problem differs from classical regression
settings since the variables (Xk)k≥0 are not observed. In errors-in-variables models, the
random variables (Xk)k≥0 are i.i.d. and observed through a sequence (Zk)k≥0, i.e. Zk =
Xk+ηk and Yk = f?(Xk)+εk, where the variables (ηk)k≥0 are i.i.d with known distribution.
Many solutions have been proposed to solve this problem, see [9] and [10] for a ratio of
deconvolution kernel estimators, [12] for B-splines estimators and [4] for a procedure based
on the minimization of a penalized contrast. In the case where the hidden state is a Markov
chain, [14] and [13] considered the following observation model Yk = Xk + εk, where the
random variables {εk}k≥0 are i.i.d. with known distribution. [14] (resp. [13]) proposed an
estimate of the transition density (resp. the stationary density and the transition density) of
the Markov chain (Xk)k≥0 based on the minimization of a penalized L2 contrast. However,
there does not exist any result on the nonparametric estimation problem studied in this
paper with unobserved states (Xk)k≥0.

As mentioned in the discussion on the identifiability of the model, it is assumed that f?
is a C1 diffeomorphism. It is therefore rational to introduce a likelihood based procedure
which penalizes the complexity of the estimated function f . The observations are decom-
posed into non-overlapping blocks (Ykb, . . . , Y(k+1)b−1) and the pseudo-loglikelihood of the
observations (Y0, . . . , Ynb−1) considered in this paper is given by the sum of the loglikeli-

hood of (Ykb, . . . , Y(k+1)b−1) for k ∈ {0, . . . , n − 1}. The estimator (f̂n, ν̂n) of (f?, νb,?) is
defined as a maximizer of the penalized version of the pseudo-likelihood of the observations
(Y0, . . . , Ynb−1). This estimator of f? can be used to define an estimator p̂n of the density of
the distribution of (Y0, . . . , Yb−1). Theorem 3.1 states that the Hellinger distance between
p̂n and the true distribution of a block of observations vanishes as the number of observa-
tions grows to infinity. More precisely, this Hellinger distance converges at a rate which can
be chosen as close as possible to n−1/4. To establish this result, the penalization function
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needs only to be lower bounded by a power of the supremum norm. The rate obtained in
Theorem 3.1 is slower than the rate of convergence given in [20, Theorem 10.6] which uses
a penalty term directly based on the regularity of the density (and not on the regularity of
f as it is considered in this paper). We believe that the rate of convergence of Theorem 3.1
could be improved for particular choices of function space and complexity function used
in the penalized pseudo-likelihood. The consistency of (f̂n, ν̂n) follows as a consequence

together with some continuity properties, see Corollary 3.3. The rate of convergence of f̂n
to f? remains an open problem and seems to be very challenging.

It is also proven that the results presented in this paper hold in the special case where
the function f? belongs to a Sobolev space provided that the order s of the Sobolev space
and the order p of the associated Lp space satisfy s > m/p+ 1 to allow the use of classical
embedding into the space of continuously differentiable functions on X. Proposition 5.1
establishes the consistency of the estimator of f? when the penalization function is based
on the Sobolev norm.

The proof of the convergence of the Hellinger distance between p̂n and the true distribu-
tion of a block of observations relies on a concentration inequality for the empirical process
of the observations. This result is obtained by an extension of the concentration inequality
for Φ-mixing processes given in [19, Theorem 3]. The inequality of [19, Theorem 3] holds
for empirical processes based on uniformly bounded functions which is not the case in the
model presented here but a similar control can be proven under the assumptions of this
paper. Then, the control of the expectation of the supremum of the empirical process is
given by a direct application of the maximal inequality for dependent processes of [7].

The theoretical results given in the paper are supported by numerical experiments: in
the case where m = 1, an Expectation-Maximization (see [6]) based algorithm is outlined

to compute ν̂n and f̂n.

The model and the estimators are presented in Section 2. The consistency results are
displayed in Section 3. The identifiability in the cases b = 1 and b = 2 is addressed in
Section 4. The application to a Sobolev class of function is detailed in Section 5 and the
algorithm and numerical experiments are displayed in Section 6. Section 7 gathers important
proofs on the identifiability and consistency needed to state the main results.

2 Model and definitions

Let (Ω, E ,P) be a probability space and (X,X ) be a general state space equipped with a
measure µ. Let (Xk)k≥0 be a stationary process defined on Ω and taking values in X. This
process is only partially observed through the sequence (Yk)k≥0 which takes values in R`,
` ≥ 1. For any k ≥ 1 the sequence (x1, . . . , xk) is denoted by x1:k. The observations (Yk)k≥0
are given by

Yk
def
= f?(Xk) + εk , (1)

where f? : X → R` is a measurable function and (εk)k≥0 are i.i.d. with density ϕ with
respect to the Lebesgue measure λ of R`, given, for any y1:` ∈ R`, by:

ϕ(y1:`)
def
= (2π)

−`/2
exp

−1

2

∑̀
j=1

y2j

 . (2)
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The covariance matrix of the observation noise is assumed to be the identity matrix. This
does not imply any loss of generality since with a nonsingular covariance matrix Σ, the
observation Yk can just be replaced by Σ−1Yk.

One of the objective of this paper is the estimation of the target function f? ∈ F where
F is a set of functions from X to R`. The results presented in Section 3 and Section 4 are
applied in Section 5 when F is a Sobolev space.

Let b be a positive integer. For any sequence (xk)k≥0, define xk
def
= (xkb, . . . , x(k+1)b−1)

and for any function f : X→ R`, define f : Xb → Rb` by

x = (x0, . . . , xb−1) 7→ f(x)
def
= (f(x0), . . . , f(xb−1)) .

The distribution of X0 is assumed to have a density νb,? with respect to the measure µ⊗b

on Xb which is assumed to lie in a set of probability densities Db. For all f ∈ F and ν ∈ Db,
let pf,ν be defined, for all y ∈ Rb`, by

pf,ν(y)
def
=

∫
ν(x)

b−1∏
k=0

ϕ(yk − f(xk))µ⊗b (dx) . (3)

Note that p?
def
= pf?,νb,? is the probability density of Y0 defined in (1). The function

y0:(n+1)b−1 7→
n−1∑
k=0

ln pf,ν (yk)

is referred to as the pseudo log-likelihood of the observations up to time nb− 1.
The estimation procedure introduced in this paper is based on the M-estimation pre-

sented in [21] and [20]. Consider a function I : F → R+ which characterizes the complexity
of functions in F and let ρn and λn be some positive numbers. Define the following ρn-
Maximum Pseudo-Likelihood Estimator (ρn-MPLE) of (f?, νb,?):(

f̂n, ν̂n

)
def
= argmaxρn

f∈F, ν∈Db

{
n−1∑
k=0

ln pf,ν (Yk)− λnI(f)

}
, (4)

where argmaxρn
f∈F, ν∈Db

is one of the couples (f ′, ν′) such that

n−1∑
k=0

ln pf ′,ν′ (Yk)− λnI(f ′) ≥ sup
f∈F, ν∈Db

{
n−1∑
k=0

ln pf,ν (Yk)− λnI(f)

}
− ρn .

The consistency of the estimators is established using a control for empirical processes
associated with mixing sequences. The Φ-mixing coefficient between two σ-fields U ,V ⊂ E
is defined in [5] by

Φ(U ,V)
def
= sup

U∈U,V ∈V,
P(U)>0

∣∣∣∣P (U ∩ V )

P(U)
− P(V )

∣∣∣∣ .
The process (Xk)k≥0 is said to be Φ-mixing when limi→∞ ΦXi = 0 where, for all i ≥ 1,

ΦXi
def
= Φ (σ (Xk ; k ≤ 0) , σ (Xk ; k ≥ i)) , (5)
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σ (Xk ; k ∈ C) being the σ-field generated by (Xk)k∈C for any C ⊂ Z. As in [19], the
required concentration inequality for the empirical process is established under the following
assumption on the Φ-mixing coefficients of (Xk)k≥0.

H1 The stationary process (Xk)k≥0 satisfies

Φ
def
=

∞∑
i=1

(ΦXi )1/2 <∞ , (6)

where ΦXi is given by (5).

Remark 2.1. Assume that (Xk)k≥0 is a Markov chain with transition kernel Q and stationary
distribution π and that there exist ε > 0 and a measure ϑ on X such that, for all x ∈ X and
all A ∈ E ,

Q(x,A) ≥ εϑ(A) .

Then, by [17, Theorem 16.2.4], there exists ρ ∈ (0, 1) such that, for all x ∈ X and all A ∈ E ,

|Qn(x,A)− ν(A)| ≤ ρn .

Therefore, for all n, i > 0 and A,B ∈ E such that π(A) > 0,

|P (Xn+i ∈ B|Xn ∈ A)− P (Xn+i ∈ B)|
≤ |P (Xn+i ∈ B|Xn ∈ A)− π (B)|+ |P (Xn+i ∈ B|Xn ∈ A)− π (B)| ,

≤ 1

π(A)

∣∣∣∣∫
A

(
Qi(x,B)− π(B)

)
π(dx)

∣∣∣∣+

∣∣∣∣∫
X

(
Qi(x,B)− π(B)

)
π(dx)

∣∣∣∣ ,
≤ 2ρi .

The Φ-mixing coefficients associated with (Xk)k≥0 decrease geometrically and Assumption
H1 is satisfied.

3 General convergence results

Denote by p̂n the estimator of p? defined by

p̂n
def
= pf̂n,ν̂n

. (7)

The first step to prove the consistency of the estimators is to establish the convergence of
p̂n to p? using a suitable metric. This is done in Theorem 3.1 where the only assumption
related to the penalization procedure is that the complexity function I is lower bounded by
a power of the supremum norm. Consider the following assumptions.

H2 There exist C > 0 and υ > 0 such that for all f ∈ F ,

‖f‖∞ ≤ CI(f)υ , (8)

where, for any f ∈ F , ‖f‖∞
def
= max

1≤j≤`
sup
x∈X
|f j(x)|.

H3 There exist 0 < ν− < ν+ < +∞ such that, for all ν ∈ Db ν− ≤ ν ≤ ν+.
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The convergence of p̂n to p? is established using the Hellinger metric defined, for any
probability densities p1 and p2 on Rb`, by

h(p1, p2)
def
=

[
1

2

∫ (
p
1/2
1 (y)− p1/22 (y)

)2
dy

]1/2
. (9)

Theorem 3.1 provides a rate of convergence of p̂n to p? and a bound for the complexity I(f̂n)

of the estimator f̂n. For any sequence of real random variables (Zn)n≥0 and any sequence
of positive numbers (αn)n≥0, we write Zn = OP(αn) if

lim
T→+∞

lim sup
n→+∞

P (|Zn| > Tαn) = 0 .

and Zn = oP(αn) if for all T > 0,

lim
n→+∞

P (|Zn| > Tαn) = 0 .

Theorem 3.1. Assume H1-3 hold for some υ such that b`υ < 1. Assume also that λn and
ρn satisfy

λnn
−1 −→

n→+∞
0, λnn

−1/2 −→
n→+∞

+∞ and ρn = OP

(
λn
n

)
. (10)

Then,

h2(p̂n, p?) = OP

(
λn
n

)
and I(f̂n) = OP(1) . (11)

Condition 10 implies that the rate of convergence of the Hellinger distance between p̂n
and the true density p? is slower than n−1/4. This rate is slower than the rate of convergence
given in [20, Theorem 10.6]. [20, Theorem 10.6] performs a localization of the empirical
process concentration which allows to use a penalty term that depends on the regularity
of the density. The rate of convergence may then depend on the regularity of the true
density p? such that more regularity implies a faster rate of convergence. The concentration
result on the empirical process obtained in Proposition 3.2 is established globally on the
class of functions

{
pf,ν ; f ∈ F , ν ∈ Db

}
and no localization is performed. Then, the rate

n−1/4 corresponds to the ”worse case” rate. Such a localization of the empirical process
concentration is a difficult problem in our setting since the regularity targets the class
of functions F rather than the class of densities

{
pf,ν ; f ∈ F , ν ∈ Db

}
such as in [20].

Measuring the concentration of the empirical process when f is close to f? remains an open
problem even for particular cases. We believe that the rate of convergence of Theorem 3.1
could be improved for particular choices of F and complexity function I if the Hellinger
distance h(pf,ν , p?) could be controlled by a distance between f and f?.

The proof of Theorem 3.1 relies on a basic inequality which provides a simultaneous
control of the Hellinger risk h2(p̂n, p?) and of the complexity of the estimator I(f̂n). Define
for any density function p on Yb`,

gp
def
=

1

2
ln
p+ p?

2p?
. (12)
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Let Pn be the empirical distribution based on the observations {Yk}n−1k=0 , i.e., for any mea-
surable set A of Rb`,

Pn(A)
def
=

1

n

n−1∑
k=0

1A(Yk) .

By (4) and (7), the basic inequality of [20, Lemma 10.5], states that:

h2(p̂n, p?) + 4λnn
−1I(f̂n) ≤ 16

∫
gp̂nd(Pn − P?) + 4λnn

−1I(f?) + ρn . (13)

Therefore, a control of
∫
gp̂nd(Pn − P?) in the right hand side of (13) will simultaneously

provide a bound on the growth of h2(p̂n, p?) and of I(f̂n). This control is given in Proposi-
tion 3.2.

Proposition 3.2. Assume H1-3 hold. There exists a positive constant c such that, for any
η > 0, there exist A and N such that for any n ≥ N and any x > 0,

P
[

sup
f∈F, ν∈Db

∣∣∫ gpf,ν d(Pn − P?)
∣∣

1 ∨ I(f)γ
≥ cΦ

(√
x

n
+
x

n

)
+

A√
n

]
≤ 2e−αx

1− e−αx
,

where

γ
def
= b`υ + η and α

def
=

log(2)(γ − υ)

22γ
=

log(2)((b`− 1)υ + η)

22(b`υ+η)
.

Proposition 3.2 is proved in Section. 7.1.

Proof of Theorem 3.1. Since υ−1 > b`, η > 0 in Proposition 3.2 can be chosen such that
γ = b`υ + η = 1. For this choice of η, Proposition 3.2 implies that∫

gp̂nd(Pn − P?)
1 ∨ I(f̂n)

= OP(n−
1
2 ) .

Combined with (13), this yields

h2(p̂n, p?) + 4λnn
−1I(f̂n) ≤ (1 ∨ I(f̂n))OP(n−

1
2 ) + 4λnn

−1I(f?) + ρn . (14)

Then, (14) directly implies that

4 I(f̂n) ≤ (1 ∨ I(f̂n))OP(n
1
2λ−1n ) + 4I(f?) + ρnnλ

−1
n ,

which, together with (10), gives

I(f̂n) = OP(1) .

Combining this result with (14) again leads to

h2(p̂n, p?) +OP(λnn
−1) ≤ OP(n−

1
2 ) + 4λnn

−1I(f?) + ρn .

This concludes the proof of Theorem 3.1.
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Theorem 3.1 shows that h2(p̂n, p?) vanishes as n → +∞. However, this does not im-

ply the convergence of (f̂n, ν̂n) to (f?, νb,?). The convergence of the estimators (f̂n, ν̂n) is
addressed in the case where the set Db may be written as

Db = {νa; a ∈ A} , (15)

where A is a parameter set not necessarily of finite dimension. The ρn-MPLE is then given
by:

(f̂n, ân)
def
= argmaxρn

f∈F, a∈A

{
n−1∑
k=0

ln pf,νa (Yk)− λnI(f)

}
.

Assume that A is equipped with a distance dA such that A is compact with respect to
the topology defined by dA. Assume also that F is equipped with a metric dF such that

FM
def
= {f ∈ F ; I(f) ≤M} is compact for all M > 0 with respect to the topology defined by

dF . Let d be the product distance on F×A. Assume that the function (f, a) 7→ h2(pf,νa , p?)
is continuous with respect to the topology on F ×A induced by d. Corollary 3.3 establishes
the convergence of (f̂n, ân) to the set E? defined as:

E?
def
=
{

(f, a) ∈ F ×A; h(pf,νa , pf?,νa? ) = 0
}
. (16)

Corollary 3.3. Assume H1-3 hold for some υ such that υb` < 1. Assume also that λn and
ρn satisfy

λnn
−1 −→

n→+∞
0, λnn

−1/2 −→
n→+∞

+∞ and ρn = O

(
λn
n

)
.

Then,

d
(

(f̂n, ân), E?
)

= oP(1) .

Corollary 3.3 is a direct consequence of Theorem 3.1 and of the properties of dA and
dF and is therefore omitted. The few assumptions on the model allow only to establish the
convergence of the estimators (f̂n, ân) to the set E? in Corollary 3.3.

4 Identifiability when X is a subset of Rm

The aim of this section is to characterize the set E? given by (16) when b = 1 and when
b = 2 (the characterization of E? when b > 2 follows the same lines) with some additional
assumptions on the model, on F and on Db. In the sequel, ν? must satisfy 0 < ν− ≤ ν? ≤ ν+
for some constants ν− and ν+.

It is assumed that X is a subset of Rm for some m ≥ 1 and that µ is the Lebesgue

measure . For any subset A of Rm,
◦
A stands for the interior of A and A for the closure of

A. Consider the following assumptions on the state-space X.

H4 a) X is non empty, compact and
◦
X = X,

b) X is arcwise and simply connected.

The compactness implies that X is closed and that continuous functions on X are
bounded. By the last assumption of H4a), the interior of X is not empty and any ele-
ment in X is the limit of elements of the interior of X. Finally, X is arcwise and simply
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connected to ensure topological properties used in the proofs of the identifiability results
below. A function f is said to be C1 (resp. a C1-diffeomorphism) if f is the restriction to X
of a C1 function (resp. a C1 diffeomorphism) defined on an open neighborhood of X in Rm.

H5 f? is a C1-diffeomorphism from X to f?(X).

H5 assumes that f? needs to be invertible. Nevertheless, this restrictive assumption is
satisfied for almost every functions when ` ≥ 2m+1. Indeed, Whitney’s embedding theorem
([22]) states that any continuous function from X to R` can be approximated by a smooth
embedding.

In the case b = 1, Proposition 4.1 discusses the identifiability when F is a subset of C1.
For any φ : X→ X, let Jφ be the determinant of the Jacobian matrix of φ.

Proposition 4.1 (b=1). Assume that H4 and H5 hold. Let f ∈ C1 and let ν be a probability
density with respect to µ such that 0 < ν− ≤ ν ≤ ν+. Then, h(pf,ν , pf?,ν?) = 0 if and only if
f? and f have the same image in R`, φ = f−1? ◦f is bijective and, for µ almost every x ∈ X,

ν(x) = |Jφ(x)|ν?(φ(x))

.

The proof of Proposition 4.1 is given in Section 7.2. When F ⊂ C1, Proposition 4.1 and
H3 implies that the set E? defined in (16) is given by

(f, a) ∈ E? ⇔ There exists a bijective function φ ∈ C1(X,X) such that

f = f? ◦ φ and νa = |Jφ| · ν? ◦ φ µ almost everywhere in X .

Remark 4.2. Proposition 4.1 states that the candidates (f, ν) to characterize the distribution
of Y0 are necessarily related to (f?, ν?) through a state-space transformation denoted by φ.
In the particular case where X = [0, 1] (m = 1) and ν? = 1, Proposition 4.1 implies a sharper
result. Assuming that ν = ν?, Proposition 4.1 implies the existence of a C1 and bijective
function φ satisfying f = f? ◦ φ and |Jφ| = 1. Therefore, φ : x 7→ x or φ : x 7→ 1− x which
are the two possible isometric transformations of [0, 1].

When ν? is unknown and continuous we can define the uniform random variable on [0, 1]:
X̃0 = F (X0) where F is the C1 and strictly increasing cumulative distribution function of
X0. The observation Y0 can be written Y0 = f̃?(X̃0) + ε0 where f̃? = f? ◦ F−1 satisfies the
same hypothesis as f?. Thus, if the true density function ν? is continuous, the function f̃? =
f? ◦ F−1 can be identified up to an isometric transformation of [0, 1] from the distribution
of Y0 only. This cannot be extended to the case m > 1 where |Jφ| = 1 does not necessarily
imply that φ is isometric but only that φ preserves the volumes.

Proposition 4.3 discuss the identifiability when b = 2. In this case, ν2,? can be writ-
ten ν2,?(x, x

′) = ν?(x)q?(x, x
′) where q? is a transition density with stationary probability

density ν?. For any transition density q on X2 satisfying

for all x, x′ ∈ X , 0 < q− ≤ q(x, x′) ≤ q+ , (17)

there exists a stationary density ν associated with q satisfying, for all x ∈ X, q− ≤ ν(x) ≤ q+.
Denote by νq this density.

Proposition 4.3 (b=2). Assume that H4 and H5 hold. Let f ∈ C1 and q be a transition
density satisfying (17). Let ν2(x, x′) = νq(x)q(x, x′). Then, h(pf,ν2 , pf?,ν?,2) = 0 if and only

9



if f? and f have the same image in R`, φ = f−1? ◦f is bijective and µ⊗µ almost everywhere
in X2,

q(x, x′) = |Jφ(x′)|q?(φ(x), φ(x′)) . (18)

Proposition 4.3 is proved in Section 7.3.

Corollary 4.4. Consider the same assumptions as in Proposition 4.3. Assume in addition
that q? and q are of the form:

q?(x, x
′) = c?(x)ρ?(||x− x′||) , q(x, x′) = c(x)ρ(||x− x′||) ,

where ρ and ρ? are two continuous functions defined on R+. Assume in addition that ρ? is
one-to-one. Then, h(pf,ν2 , pf?,ν?,2) = 0 if and only if f? and f have the same image in R`,
φ = f−1? ◦ f is an isometry on X and q = q?.

The proof of Corollary 4.4 is given in Section 7.3. When F ⊂ C1 and for any a in A,
νa ∈ D2 is of the form

νa(x, x′) = νqa(x)qa(x, x′) with qa(x, x′) = ca(x)ρa(||x− x′||) ,

where ρ− ≤ ρa ≤ ρ+, Corollary 4.4 implies that the set E? defined in (16) is given by

(f, a) ∈ E? ⇔ f = f? ◦ φ with φ an isometry and qa = q?

Finally, if the only isometry of X is the identity function, and if there exists a unique a? in
A such that qa? = q?, then E? = {(f?, a?)} and the model is fully identifiable.

5 Application when F is a Sobolev class of functions

In this section, X is a subset of Rm, m ≥ 1 and the results of Section 3 and Section 4 are
applied to a specific class of functions F with an example of complexity function I satisfying
H2. Let p ≥ 1, define

Lp
def
=

{
f : X→ R` ; ‖f‖pLp =

∫
X
‖f(x)‖pµ(dx) <∞

}
.

For any f : X −→ R` and any j ∈ {1, · · · , `}, the jth component of f is denoted by fj . For

any vector α
def
= {αi}mi=1 of non-negative integers, we write |α| def=

∑m
i=1 αi andDαf : X→ R`

for the vector of partial derivatives of order α of f in the sense of distributions. Let s ∈ N
and W s,p be the Sobolev space on X with parameters s and p, i.e.,

W s,p def
= {f ∈ Lp; Dαf ∈ Lp, α ∈ Nm and |α| ≤ s} . (19)

W s,p is equipped with the norm ‖ · ‖W s,p defined, for any f ∈W s,p, by

‖f‖W s,p
def
=

 ∑
0≤|α|≤s

‖Dαf‖pLp

1/p

. (20)

The results of Section 3 and Section 4 can be applied to the class F = W s,p under the
following assumption.

10



H6 X has a locally Lipschitz boundary.

H6 means that all x on the boundary of X has a neighbourhood whose intersection with the
boundary of X is the graph of a Lipshitz function. For any j ∈ {1, · · · , `} and f ∈ W s,p,
fj belongs to W s,p(X,R), the Sobolev space of real-valued functions with parameters s and
p. Let k ≥ 0, by [1, Theorem 6.3], if s > m/p + k and if H4a) and H6 holds, W s,p(X,R)
is compactly embedded into

(
Ck(X,R), ‖ · ‖Ck

)
. Arguing component by component, W s,p is

compactly embedded into Ck def
= Ck(X,R`). Moreover, the identity function id : W s,p → Ck

being linear and continuous, there exists a positive coefficient κ such that, for any f ∈W s,p,

‖f‖Ck ≤ κ‖f‖W s,p . (21)

Then, if s > m/p+ k, for any f ∈ F = W s,p,

‖f‖∞ ≤ κ‖f‖W s,p . (22)

If the complexity function is defined by I(f) = ‖f‖1/υW s,p with υb` < 1, then H2 holds and
Theorem 3.1 can be applied. Moreover, by [1, Theorem 6.3], the subspace FM , M ≥ 1 are
quasi-compact in Ck. Let dA be a metric on the space A introduced in (15) such that A
is compact and that, for µ ⊗ µ almost every (x, x′) ∈ X2, a 7→ νa(x, x′) is continuous. By
applications of the dominated convergence theorem, this implies the continuity of (f, a) 7→
h(pf,νa , p?). Define

F?
def
= {f ∈W s,p; ∃a ∈ A such that (f, a) ∈ E?} .

Then, Proposition 5.1 is a direct application of Corollary 3.3.

Proposition 5.1 (F = Ws,p, s > m/p + k, k ≥ 0). Assume that H1, H3, H4a) and H6

hold. Assume also that I(f) = ‖f‖1/υW s,p for some υ such that υb` < 1 and that λn and ρn
satisfy

λnn
−1 −→

n→+∞
0, λnn

−1/2 −→
n→+∞

+∞ and ρn = O

(
λn
n

)
.

Then,

dCk
(
f̂n,F?

)
= oP(1) .

Moreover, as shown in Section 7.2 the assumption
◦
X = X, together with the continuity

of the functions in F provided by (21) imply that for any f in F?, f(X) = f?(X). Define
the Hausdorff distance dH(A,B) between two compact subsets A and B of R` as

dH(A,B)
def
= max

(
sup
a∈A

inf
b∈B
||a− b||R` , sup

b∈B
inf
a∈A
||a− b||R`

)
Proposition 5.1 implies Corollary 5.2.

Corollary 5.2 (F = Ws,p, s > m/p). Assume that H1, H3, H4a) and H6 hold. Assume

also that I(f) = ‖f‖1/υW s,p for some υ such that υb` < 1 and that λn and ρn satisfy

λnn
−1 −→

n→+∞
0, λnn

−1/2 −→
n→+∞

+∞ and ρn = O

(
λn
n

)
.

Then,

dH

(
f̂n(X), f?(X)

)
= oP(1) .

11



Corollary 5.2 establishes the consistency of the estimator f̂n(X) of the image of f? in R`.
This result is particularly interesting since f?(X) is a manifold of dimension m ≤ ` in R`.
Thus, the proposed estimation procedure allows to approximate such manifolds, possibly
of low dimensions, that are only observed with additive noise in R`. Moreover, this result
holds under relatively low regularity assumptions on the manifold.

Proposition 5.3 below states the consistency of the estimators (f̂n, ân) in the case b = 2
and F = W s,p. Assume that for any a in A, νa ∈ D2 is of the form

νa(x, x′) = νqa(x)qa(x, x′) with qa(x, x′) = ca(x)ρa(||x− x′||) ,

where ρ− ≤ ρa ≤ ρ+. It is also assumed that there exists a unique a? ∈ A such that ν? = νa?
and that ρa? is one-to-one. Proposition 5.3 is a direct application of Corollary 3.3 and of
Proposition 4.3 and is stated without proof.

Proposition 5.3 (F = Ws,p, s > m/p + k, k ≥ 1, b = 2). Assume that H1 and H3-6

hold. Assume also that I(f) = ‖f‖1/υW s,p for some υ such that 2υ` < 1 and that λn and ρn
satisfy

λnn
−1 −→

n→+∞
0, λnn

−1/2 −→
n→+∞

+∞ and ρn = O

(
λn
n

)
.

Then,
F? = {f? ◦ φ; φ is an isometry of X} ,

and
dCk

(
f̂n,F?

)
= oP(1) and dA (ân, a?) = oP(1) ,

6 Numerical experiments

6.1 Proposed Expectation Maximization algorithm

This section introduces a practical algorithm to compute the estimators defined in (4) in the
cases b = 1 and b = 2. It is assumed that there exists a? > 0 such that for all x, x′ ∈ [0, 1],

ν?,2(x, x′) = νa?(x)qa?(x, x′) ,

where

qa?(x, x′)
def
= Ca?(x)exp

(
−|x

′ − x|
a?

)
.

The unique stationary density associated with qa? is given, for all x ∈ [0, 1], by

νa?(x) ∝ C−1a? (x) =

∫
[0,1]

exp

(
−|x

′ − x|
a?

)
dx′ . (23)

For practical considerations, we choose F = W s,2 and I(f) = ‖f‖1/υW s,2 .
We introduce an Expectation-Maximization (EM) based procedure which iteratively

produces a sequence of estimates âp, f̂p, p ≥ 0, see [6]. Assume the current parameter

12



estimates are given by âp and f̂p. The estimates âp+1 and f̂p+1 are defined as one of the
maximizer of the function Q:

(a, f) 7→ Q((a, f), (âp, f̂p))
def
=

n−1∑
k=0

Eâp,f̂p
[
ln pf,a (X2k:2k+1, Y2k:2k+1)

∣∣Y2k:2k+1

]
− λn||f ||1/υW s,2 ,

where Eâp,f̂p [·] denotes the conditional expectation under the model parameterized by âp

and f̂p and where

pf,a (x, x′, y, y′) = νa(x)qa(x, x′)ϕ(y − f(x))ϕ(y − f(x′)) .

The intermediate quantity Q((a, f), (âp, f̂p)) can be written:

Q((a, f), (âp, f̂p)) = Q1
p(a) +Q2

p(f) ,

where

Q1
p(a) =

n−1∑
k=0

Eâp,f̂p
[
ln {νa(X2k)qa(X2k, X2k+1)}

∣∣Y2k:2k+1

]
,

Q2
p(f) =

n−1∑
k=0

Eâp,f̂p
[
ln {ϕ(Y2k − f(X2k))ϕ(Y2k+1 − f(X2k+1))}

∣∣Y2k:2k+1

]
− λn||f ||1/υW s,2 .

Therefore âp+1 is obtained by maximizing the function a 7→ Q1
p(a) and f̂p+1 by maximizing

the function f 7→ Q2
p(f).

Remark 6.1. In the case b = 1, the functions Q1
p and Q2

p are given by:

Q1
p(a) =

n−1∑
k=0

Eâp,f̂p
[
ln {νa(Xk)}

∣∣Yk] ,
Q2
p(f) =

n−1∑
k=0

Eâp,f̂p
[
ln {ϕ(Yk − f(Xk))}

∣∣Yk]− λn||f ||1/υW s,2 .

Lemma 6.2 proves that the penalized pseudo-likelihood increases at each iteration of this
EM based algorithm.

Lemma 6.2. The sequences âp and f̂p satisfy

n−1∑
k=0

ln pf̂p+1,âp+1 (Yk)− λnI(f̂p+1) ≥
n−1∑
k=0

ln pf̂p,âp (Yk)− λnI(f̂p) .

Proof. The proof follows the same lines as the one for the usual EM algorithm. For all

13



0 ≤ k ≤ n− 1, all f ∈ F and all a ∈ A

ln
[
pf,a (Yk) e−λnI(f)/n

]
= ln

[∫
pf,a (x,Yk) e−λnI(f)/nµ⊗2(dx)

]
,

= ln

[∫
pf,a (x,Yk) e−λnI(f)/n

pf̂p,âp (x|Yk)

pf̂p,âp (x|Yk)
µ⊗2(dx)

]
,

= ln

[∫
pf̂p,âp (x|Yk)

pf,a (x,Yk) e−λnI(f)/n

pf̂p,âp (x|Yk)
µ⊗2(dx)

]
,

≥
∫
pf̂p,âp (x|Yk) ln

[
pf,a (x,Yk) e−λnI(f)/n

pf̂p,âp (x|Yk)

]
µ⊗2(dx) ,

where the last inequality comes from the concavity of x 7→ log x. Then,

ln
[
pf,a (Yk) e−λnI(f)/n

]
− ln

[
pf̂p,âp (Yk) e−λnI(f̂

p)/n
]

≥ Eâp,f̂p
[
ln pf,a (Xk,Yk)− ln pf̂p,âp (Xk,Yk)

∣∣∣Yk

]
− λn

n

(
I(f)− I(f̂p)

)
.

The proof is concluded by definition of âp+1 and f̂p+1.

6.2 Numerical approximations

The approximations are presented in the case b = 2, the case b = 1 follows the same lines
(see Remark 6.1).

Computation of âp+1

By definition of νa and qa, the new estimate is set as a minimizer of the function

a 7→ log
(
a+ a2(exp(−1/a)− 1)

)
+

1

na

n−1∑
k=0

Eâp,f̂p
[
‖X2k −X2k+1‖

∣∣Y2k:2k+1

]
.

In the following, the expectation in the right hand side of the last equation is estimated
using a standard Monte Carlo algorithm (with an importance sampling mechanism) based
on Na simulations. For all 0 ≤ k ≤ n − 1, (Xi

2k, X
i
2k+1)Nai=1 are independently sampled

uniformly in [0, 1]× [0, 1] and associated with the importance weights:

ωik ∝ νâp(Xi
2k)qâp(Xi

2k, X
i
2k+1)ϕ(Y2k − f̂p(Xi

2k))ϕ(Y2k+1 − f̂p(Xi
2k+1)) . (24)

Then, âp+1 is obtained as a minimizer of the function

a 7→ log
(
a+ a2(exp(−1/a)− 1)

)
+

1

na

n−1∑
k=0

Na∑
i=1

ωik‖Xi
2k −Xi

2k+1‖ .
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Computation of f̂p+1

f̂p+1 is obtained by maximizing the function f 7→ Q2
p(f) which is equivalent to minimize

the function:

f 7→ 1

2

n−1∑
k=0

Eâp,f̂p
[
‖Y2k − f(X2k)‖2 + ‖Y2k+1 − f(X2k+1)‖2

∣∣Yk

]
+ λn||f ||1/υW s,2 . (25)

Each expectation in (25) is approximated using Monte Carlo simulations. For all k ∈
{0, . . . , n− 1}, Nf random variables

(
Xi

2k, X
i
2k+1

)Nf
i=1

are sampled uniformly in [0, 1]× [0, 1]

and associated with the random weights
(
ωik
)Nf
i=1

given by (24). Then, Nf couples of states(
X̃i

2k, X̃
i
2k+1

)Nf
i=1

are drawn from the point mass distribution
∑Nf
i=1 ω

i
kδ(Xi2k,Xi2k+1)

. f̂p+1 is

then obtained by minimizing the function:

f 7→ 1

2Nf

n−1∑
k=0

Nf∑
i=1

(
‖Y2k − f(X̃i

2k)‖2 + ‖Y2k+1 − f(X̃i
2k+1)‖2

)
+ λn||f ||1/υW s,2 .

For practical considerations, the new estimate f̂p+1 is computed using cubic smoothing
splines which are designed to minimize

f 7→ 1

2Nf

n−1∑
k=0

Nf∑
i=1

(
‖Y2k − f(X̃i

2k)‖2 + ‖Y2k+1 − f(X̃i
2k+1)‖2

)
+ λn‖f ′′‖2L2 .

Proposition 5.3 relies on the assumption that I(f) = ‖f‖1/υW s,p with 2υ` < 1. However,
choosing I(f) = ‖f ′′‖2L2 allows to define an algorithm easy to implement with a good
convergence behavior and where the minimization procedure can be directly implemented
using Matlab or R built-in routines.

6.3 Experimental results

The proposed EM based algorithm is applied with a? = 1 and (in this case ` = 2 and
m = 1):

f? : [0, 1] → R2

x 7→ (cos(πx), sin(πx)) .

The algorithm is run to estimate f?, f?([0, 1]) and a? with initial estimates given by â0 = 4
and

f̂0 : [0, 1] → R2

x 7→ (x, 0) .

Case b = 1

In this section, according to Remark 4.2, ν? = 1 is assumed to be known. The estimation
is performed with Nf = 100 and the penalization constant λ is chosen such that λ ∝
log(n)n1/2 in order to satisfy the assumption of Section 5. Figure 1 displays the L2 error
of the estimation of f? after 100 iterations of the algorithm as a function of the number of
observations. The L2 estimation error decreases quickly for small values of n (lower than
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5000) and then goes on decreasing at a lower rate as n increases. It can be seen that even
with a great number of observations, a small bias still remains for both functions (with a
mean a bit lower than 0.05). Indeed, there is always small errors in the estimation of f?
around x = 0 and x = 1.

(a) f1.

(b) f2.

Figure 1: L2 error after 100 iterations over 100 Monte Carlo runs.

Figure 2 shows the estimates after 100 iterations when n = 25.000. It can be seen that
the second component of f? is estimated with accuracy while the first component of f? is
recovered up to the isometry x 7→ 1 − x (the isometry is used in Figure 1 to compute the
L2 error). This simulation illustrates the identifiability results obtained in Section 4.
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(a) With no isometry for f1.
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(b) With the isometry x 7→ 1− x for f1.

Figure 2: True functions (bold line) and estimates after 100 iterations (vertical lines) over
100 Monte Carlo runs (n = 25.000).

Case b = 2

In this section, a? and f? are estimated. The Monte Carlo approximations are computed
using Na = Nf = 200 and 20.000 observations (i.e. n = 10.000) are sampled.

Figure 3 displays the estimation a? as a function of the number of iterations of the
algorithm over 50 independent Monte Carlo runs. The estimates converge to the true value
of a? after a few number of iterations (about 25).
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Figure 3: Estimation of a? as a function of the number of iterations. The true value is
a? = 1. Median (bold line) and upper and lower quartiles (dotted line) over 50 Monte Carlo
runs.

Figure 4 illustrates Corollary 5.2. It displays the estimation of f?([0, 1]) after 100 itera-
tions for several Monte Carlo runs. It shows that despite the variability of the estimation,
the image is well estimated with few observations.
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Figure 4: True image f?([0, 1]) (red) and estimations after 100 iterations of the algorithm
over 100 Monte Carlo runs (grey).

7 Proofs

7.1 Proof of Proposition 3.2

The proof relies on the application of Proposition A.1 and Proposition A.2 to obtain first a
concentration inequality for the class of functions GM , where M ≥ 1, defined as:

GM
def
=
{
gpf,ν ; ν ∈ Db, f ∈ F and I(f) ≤M

}
,

where pf,ν is defined by (3) and gpf,ν by (12). For any p > 0, denote by Lp(P?) the set of

functions g : Rb` → R such that E? [|g|p] < +∞. For any κ > 0 and any set G of functions
from Rb` to R, let N(κ,G, ‖ · ‖Lp(P?)) be the smallest integer N such that there exists a set

of functions
{(
gLi , g

U
i

)}N
i=1

for which:

a) ‖gUi − gLi ‖Lp(P?) ≤ κ for all i ∈ {1, · · · , N};

b) for any g in G, there exists i ∈ {1, · · · , N} such that

gLi ≤ g ≤ gUi .

N(δ,G, ‖·‖Lp(P?)) is the κ-number with bracketing of G, andH(κ,G, ‖·‖Lp(P?))
def
= lnN(κ,G, ‖·

‖Lp(P?)) is the κ-entropy with bracketing of G. For any g, define

Sn(g)
def
= n

∫
g d(Pn − P?) . (26)
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Application of Proposition A.1 Proposition A.1 is applied to the class of functions
GM defined as

GM
def
= {g − E? [g] ; g ∈ GM} .

Since (εk)k≥0 is i.i.d. and (Xk)k≥0 is Φ-mixing, (Yk)k≥0 is also Φ-mixing with mixing
coefficients (φY

i )i≥0 satisfying, for all i ≥ 1,

φY
i ≤ φX

i = φX(i−1)b+1 .

Therefore ΦY =
∑
i≥1(φY

i )1/2 < ∞. By H2, there exists C > 0 such that for any i ≥ 0,
and any g ∈ GM ,

|g (Yi)| ≤ CMυ (1 + ‖Yi‖) ≤ CMυ (1 + ||f?(Xi)‖+ ‖εi‖) ,
≤ CMυ (1 + ‖f?‖∞ + ‖εi‖) ,
≤ CMυ (1 + ‖εi‖) .

Define Ui
def
= CMυ (1 + ‖εi‖). Then (Ui)i≥0 is i.i.d., g (Yi) ≤ Ui + E [U0] and there exist

positive constants ν and c such that

E
[
(Ui + E [U0])2k

]
≤ k!νck−1 ,

where ν = CM2υ and c = CM2υ. Then, by Proposition A.1, there exists a positive constant
c such that for any positive x,

P
[

sup
g∈GM

|Sn(g)| ≥ E
[

sup
g∈GM

|Sn(g)|
]

+ cΦY
(√
nx+ x

)
Mυ

]
≤ e−x . (27)

Application of Proposition A.2 Proposition A.2 is used to control the inner expectation
in (27). Let r > 1. By [16, Lemma 7.26] and since the Hellinger distance is bounded by 1,
there exists a constant δ such that for any g = gpf,ν ∈ GM .

‖g‖2rL2r(P?) ≤ Ch
2(pf,ν , p?) ≤ δ .

By Lemma B.1, for any p′ ≥ 1, and any s′ > b`/p′, provided that d > s′ + b`(1 − 1
p′ ),

there exists a constant C such that, for all u > 0,

H(u, ‖ · ‖L2r(P?),GM ) ≤ C

(
M

υ(s′+d+ b`
p′ )

u2r

)b`/s′
. (28)

For any p′ ≥ 1, and any s′ > b`/p′, provided that d > s′+ b`(1− 1
p′ ), there exists a constant

C such that

ϕ(δ)
def
=

∫ δ

0

H1/2(u, ‖ · ‖L2r(P?),GM )du ,

≤ CM (s′+d+b`/p′) b`υ
2s′

∫ δ

0

u−rb`/s
′
du .

Choosing d ≤ s′+b`(1− 1
p′ )+2, if s′ → +∞ then u 7→ u−rb`/s

′
and the last integral is finite,

and (s′ + d + b`/p′) b`υ2s′ tends to b`υ, so that for any η > 0 there exists a positive constant
C such that

ϕ(δ) ≤ CM b`υ+η .
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Finally, by Proposition A.2 for any η > 0, there exists a constant A such that for n large
enough

E
[

sup
g∈GM

|Sn(g)|
]
≤ A
√
nM b`υ+η .

Then, by (27), this yields

P
[

sup
g∈GM

|Sn(g)| ≥ cΦY
(√
nx+ x

)
Mυ +A

√
nM b`υ+η

]
≤ e−x . (29)

Proposition 3.2 is then proved using a peeling argument. By (26) and (29), for any
M ≥ 1, any n ≥ N and any x > 0, if γ = b`υ + η,

P

[
sup
g∈GM

∣∣∫ g d(Pn − P?)
∣∣

Mγ
≥ cΦY

(√
x

n
+
x

n

)
+

A√
n

]
≤ e−M

γ−υx . (30)

We can write

P

[
sup

f∈F, ν∈Db

∣∣∫ gpf,ν d(Pn − P?)
∣∣

1 ∨ I(f)γ
≥ cΦY

(√
x

n
+
x

n

)
+

(2γ ∨ 1)A√
n

]
≤ P1 +

+∞∑
k=0

Tk ,

where

P1
def
= P

 sup
f∈F ; I(f)≤1,

ν∈Db

∣∣∫ gpf,ν d(Pn − P?)
∣∣

1 ∨ I(f)γ
≥ cΦY

(√
x

n
+
x

n

)
+

(2γ ∨ 1)A√
n

 ,

Tk
def
= P

 sup
f∈F ; 2k<I(f)≤2k+1,

ν∈Db

∣∣∫ gpf,ν d(Pn − P?)
∣∣

1 ∨ I(f)γ
≥ cΦY

(√
x

n
+
x

n

)
+

(2γ ∨ 1)A√
n

 .

By (30),

P1 ≤ P
[

sup
g∈G1

∣∣∣∣∫ g d(Pn − P?)
∣∣∣∣ ≥ cΦY

(√
x

n
+
x

n

)
+

(2γ ∨ 1)A√
n

]
,

≤ P
[

sup
g∈G1

∣∣∣∣∫ g d(Pn − P?)
∣∣∣∣ ≥ cΦY

(√
x

n
+

√
cx

n

)
+

A√
n

]
,

≤ e−x

and for all k ≥ 0,

Tk ≤ P

[
sup

g∈G
2k+1

∣∣∫ g d(Pn − P?)
∣∣

2γ(k+1)
≥ c

2γ
ΦY

(√
x

n
+
x

n

)
+

(2γ ∨ 1)A

2γ
√
n

]
,

≤ P

[
sup

g∈G
2k+1

∣∣∫ g d(Pn − P?)
∣∣

2γ(k+1)
≥ cΦY

(√
x

22γn
+

x

22γn

)
+

A√
n

]
,

≤ e−2
(γ−υ)(k+1)x/22γ .
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Using (30),

P
[

sup
f∈F, ν∈Db

∣∣∫ gpf,ν d(Pn − P?)
∣∣

1 ∨ I(f)γ
≥ cΦY

(√
x

n
+
x

n

)
+

(2γ ∨ 1)A√
n

]
≤ e−x +

∞∑
k=0

e−2
(γ−υ)(k+1)x/22γ

≤ e−x +

∞∑
k=0

e−(k+1)x log(2)(γ−υ)/22γ

≤ e−x +
e−αx

1− e−αx
,

which concludes the proof of Proposition 3.2.

7.2 Proof of Proposition 4.1

Assume that h(pf,ν , pf?,ν?) = 0 (the proof of the converse proposition is straightforward).
Let X ′0 be a random variable on X with distribution ν(x)µ(dx). Since ε0 is a Gaussian
random variable, h(pf,ν , pf?,ν?) = 0 implies that f(X ′0) has the same distribution as f?(X0).

Proof that f and f? have the same image in R`. Let y ∈ f(X) and n ≥ 1. Using

ν ≥ ν−, the continuity of f and
◦
X = X, f(X ′0) has the same distribution as f?(X0) implies

that,

P
{
X0 ∈ f−1?

(
B
(
y, n−1

))}
= P

{
X ′0 ∈ f−1

(
B
(
y, n−1

))}
,

≥ ν− µ
{
f−1

(
B
(
y, n−1

))}
> 0 ,

as f−1(B(y, n−1)) is a nonempty open subset of X. Therefore f−1?
(
B
(
y, n−1

))
is nonempty

and for all n ≥ 1, there exists xn ∈ X such that ‖y−f?(xn)‖ < n−1. For all n ≥ 1, f?(xn) is
in the compact set f?(X) which implies that y ∈ f?(X). The proof of the converse inclusion
follows the same lines.

Proof that φ is bijective. Since f(X ′0) has the same distribution as f?(X0), X0 has the

same distribution as φ(X ′0) where φ
def
= f−1? ◦f . To prove that |Jφ| > 0, we use the following

result due to [8, Theorem 2, p.99].

Lemma 7.1. If φ : X→ X is Lipschitz then, for any integrable function g,∫
X
g(x) |Jφ(x)|µ(dx) =

∫
X

∑
x∈φ−1({y})

g(x)µ(dy) .

Define A
def
=
{
x ∈ X ; ∀x′ ∈ φ−1({x}), |Jφ(x′)| > 0

}
. Let h1 be a bounded measurable
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real function on X and define h
def
= 1Ah1. By Lemma 7.1,

E [h ◦ φ(X ′0)] =

∫
X
h1(φ(x′))1A(φ(x′))ν(x′)µ(dx′) ,

=

∫
X
h1(φ(x′))1A(φ(x′))

ν(x′)

|Jφ(x′)|
|Jφ(x′)|µ(dx′) ,

=

∫
X
h1(x)1A(x)

∑
x′∈φ−1({x})

ν(x′)

|Jφ(x′)|
µ(dx) .

As X0 has the same distribution as φ(X ′0),∫
X
h1(x)1A(x)ν?(x)µ(dx) =

∫
X
h1(x)1A(x)

∑
x′∈φ−1({x})

ν(x′)

|Jφ(x′)|
µ(dx) .

Applying Lemma 7.1 with g
def
= 1|Jφ|=0 implies that 1A = 1 µ-a.s. in X and, µ-a.s.,

ν?(x) =
∑

x′∈φ−1({x})

ν(x′)

|Jφ(x′)|
. (31)

Therefore, for µ almost every x ∈ X and for all x′ ∈ φ−1({x}),

|Jφ(x′)| ≥ ν−
ν+

.

By continuity of Jφ and using that
◦
X = X, |Jφ(x)| > 0 for all x ∈ X. Therefore, φ is locally

invertible and, since X is compact, simply connected and arcwise connected, φ is bijective
by [2, Theorem 1.8, p.47]. Then (31) ensures that for µ almost every x ∈ X,

ν?(φ(x)) =
ν(x)

|Jφ(x)|
,

which concludes the proof of Proposition 4.1.

7.3 Proof of Proposition 4.3 and Corollary 4.4

Proof of Proposition 4.3 The proof of (18) follows the same lines as the proof of Propo-
sition 4.1. Let (X ′0, X

′
1) be a random variable on X2 with probability density ν(x)q(x, x′)

on X2. h(pf,ν2 , pf?,ν2
?
) = 0 implies that h(pf,ν , pf?,ν?) = 0 and, by Proposition 4.1, f(X) =

f?(X) and φ = f−1? ◦ f is bijective. Moreover, since (ε0, ε1) has a Gaussian distribution,
h(pf,ν2 , pf?,ν2

?
) = 0 implies that (φ(X ′0), φ(X ′1)) has the same distribution as (X0, X1) so

that for any x in X and any bounded measurable function f on X,

E
[
φ(X ′1)

∣∣X ′0 = φ−1(x)
]

= E [X1|X0 = x] .

Following the proof of Proposition 4.1, this gives (18).

23



Proof of Corollary 4.4 Assume now that

q?(x, x
′) = c?(x)ρ?(||x− x′||) ,

q(x, x′) = c(x)ρ(||x− x′||) .

We may assume, using an eventual modification of c? and c that ρ(0) = ρ?(0) = 1. By (18),

c(x)ρ(||x− x′||) = |Jφ(x′)|c?(φ(x))ρ?(||φ(x)− φ(x′)||) . (32)

Applying (32) with x = x′ implies |Jφ(x)| = c(x)/c?(φ(x)). Therefore,

|Jφ(x)|
|Jφ(x′)|

=
ρ?(||φ(x)− φ(x′)||)

ρ(||x− x′||)
=
ρ?(||φ(x′)− φ(x)||)

ρ(||x′ − x||)
=
|Jφ(x′)|
|Jφ(x)|

and then, for all x ∈ X, |Jφ(x)| = 1.
Now (32) implies that for any x and x′ in X,

ρ(||x− x′||) = ρ?(||φ(x)− φ(x′)||). (33)

Let x0 ∈
◦
X, y0 = φ(x0) and d0, d

′
0 > 0 be such that B(x0, d0)

def
= {x ∈ Rm , ||x0 − x|| <

d0} ⊂ X and φ(B(x0, d0)) ⊂ B(y0, d
′
0).

Let d < d0 and denote by S(x0, d) the set S(x0, d)
def
= {x ∈ Rm , ||x0 − x|| = d}. As ρ?

is one-to-one, write F = ρ−1? ◦ ρ. (33) implies that φ(S(x0, d)) ⊂ S(y0, F (d)). Furthermore,
using the compactness and the connectivity of S(x0, d), φ(S(x0, d)) = S(y0, F (d)) which,
together with the continuity of φ, guarantees that φ(B(x0, d)) = B(y0, F (d)). Finally,
because φ preserves the volumes, for any d < d0, F (d) = d and for any x ∈ X and any
x′ ∈ B(x, d0), ||x− x′|| = ||φ(x)− φ(x′)||. The proof is concluded using the connectivity of
X.

A Concentration results for the empirical process of un-
bounded functions

Proposition A.1 provides a concentration inequality on the empirical process over a class
of functions G for which |g(Zi)| can be bounded uniformly in g ∈ G by an independent
process Ui with bounded moments. This unusual condition is more general than the settings
considered in [19, Theorem 3] which considers a uniformly bounded class of functions.

Proposition A.1. Let (Zn)n≥0 be a Φ-mixing process taking values in a set Z. Assume
that the Φ-mixing coefficients associated with (Zn)n≥0 satisfy:

Φ
def
=

∞∑
i=1

φ
1/2
i <∞ .

Let G be some countable class of real valued measurable functions defined on Z. Assume
that there exists a sequence of independent random variables (Ui)i≥0 such that:

- for any g in G ,
|g(Zi)| ≤ Ui a.s. ; (34)

24



- there exists some positive numbers ν and c such that, for any k ≥ 1:

n−1∑
i=0

E
[
U2k
i

]
≤ k!nνck−1 . (35)

Then, for any positive x,

P
[
Sn ≥ 2Φ

(
2
√
nνx+

√
cx
)]
≤ e−x ,

where

Sn = sup
g∈G

∣∣∣∣∣
n−1∑
i=0

g(Zi)

∣∣∣∣∣− E

[
sup
g∈G

∣∣∣∣∣
n−1∑
i=0

g(Zi)

∣∣∣∣∣
]
.

Proof. For any real valued random variable and for any real random variable X, define

ψX(λ)
def
= ln (E [exp (λX)]), Following the proof of [19, Theorem 3] together with the dis-

cussion about the dependence structure in [19, Section 2], we have

exp

(
ψSn

(
λ

4

))
≤ E

[
exp

[
λ2

Φ2

4
V 2

]] 1
2

exp

[
λ2

Φ2

8
E
[
V 2
]]

, (36)

where V 2 def
=
∑n
i=1 U

2
i . Using (34) and by independence of the (Ui)i≥0,

exp

(
ψSn

(
λ

4

))
≤ E

[
exp

[
λ2

Φ2

4

n∑
i=1

U2
i

]] 1
2

exp

[
λ2

Φ2

8

n∑
i=1

E[U2
i ]

]
,

≤
n∏
i=1

E
[
exp

[
λ2

Φ2

4
U2
i

]] 1
2

exp

[
λ2

Φ2

8

n∑
i=1

E[U2
i ]

]
.

Thus,

ψSn(λ/4) ≤ 1

2

n∑
i=1

ln

{
E
[
exp

(
λ2

Φ2

4
U2
i

)]}
+ λ2

Φ2

8

n∑
i=1

E
[
U2
i

]
.

Since for any u > 0, ln(u) ≤ u− 1, this yields

ψSn(λ/4) ≤ 1

2

∞∑
k=1

1

k!

[
λ2

Φ2

4

]k n∑
i=1

E
[
U2k
i

]
+ λ2

Φ2

8

n∑
i=1

E
[
U2
i

]
.

Then, by (35),

ψSn(λ/4) ≤ nν
[
λ2

Φ2

4

]
1

2

∞∑
k=0

[
λ2

Φ2

4
c

]k
+

[
λ2

Φ2

8
ν

]
.

If 0 < λ2Φ2c/4 < 1,

ψSn(λ/4) ≤ nνλ2 Φ2

8

1

1− λ2 Φ2

4 c
+ nνλ2

Φ2

8
,

≤ nνλ2 Φ2

4

1

1− λ2 Φ2

4 c
.
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Define ν′
def
= 8nνΦ2 and c′

def
= 2Φ

√
c. Therefore,

ψSn(λ/4) ≤ ν′(λ/4)2

2(1− c′(λ/4))
. (37)

Hence, for all 0 < λ < 1/c′,

ψSn(λ) ≤ ν′λ2

2(1− c′λ)
. (38)

By the Bernstein type inequality (38), [16, Lemma 2.3] gives, for any measurable set A with
P(A) > 0,

EA [Sn] ≤

√
2ν′ ln

(
1

P(A)

)
+ c′ ln

(
1

P(A)

)
.

Hence, by [16, Lemma 2.4], for any positive x,

P
[
Sn ≥

√
2ν′x+ c′x

]
≤ e−x .

Proposition A.2 below provides a control on the expectation of the empirical process.
It introduces a β-mixing condition (see [5]) which is weaker than the Φ-mixing condition
considered in Proposition A.1. The β-mixing coefficient between two σ-fields U ,V ⊂ E is
defined in [5] by

β(U ,V)
def
=

1

2
sup

∑
(i,j)∈I×J

|P (Ui ∩ Vj)− P(Ui)P(Vj)| ,

where the supremum is taken over all finite partitions (Ui)i∈I and (Vj)j∈J respectively U
and V measurable. The corresponding mixing coefficients (βi)i≥0 associated with a process
(Xk)k≥0 satisfy βi < φi for all i ≥ 1.

Proposition A.2. Let (Zi)i≥0 be a stationary process taking values in a Polish space Z.
Denote by P? the distribution of Z0 and by E? the expectation under P?. Assume that (Zi)i≥0
is β-mixing with β coefficients (βi)i≥0 satisfying

∞∑
i=1

βi <∞ .

Let G be a countable class of functions on Z. Assume that there exist r > 1 and σ > 0 such
that for any g ∈ G,

||g||L2r(P?)
def
= E?

[
g2r
]1/2r ≤ δ .

Assume also that the bracketing function satisfies∫ 1

0

√
H(u, || · ||L2r(P?),G)du <∞ .

Then,

ϕ(δ) :=

∫ δ

0

√
H(u, || · ||L2r(P?),G)du
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is finite and there exists a constant A such that for n big enough

E
[
sup
g∈G
|Sn(g)|

]
≤
√
nAϕ(δ) , (39)

where, for all g ∈ G, Sn(g) =
∑n−1
i=0 g(Zi)− nE? [g(Z0)].

Proof. This is a direct application of the remark following [7, Theorem 3].

B Entropy of the class GM
Lemma B.1. For any p′ ≥ 1, and any s′ > b`/p′, provided that d > s′ + b`(1 − 1

p′ ), there
exists a constant C such that

∀u > 0, H(u, || · ||L2r(P?),GM ) ≤ C

(
M

υ(s′+d+ b`
p′ )

u2r

)b`/s′
. (40)

Proof. By [16, Lemma 7.26], for any densities of probability p2 and p1 on Rb`,

||gp2 − gp1 ||2rL2r(P?) ≤ C||
√
p2 −

√
p1||2L2(Rb`) .

Since ||√p2 −
√
p1||2L2(Rb`) ≤ ||p2 − p1||L1(Rb`), this yields, for any u > 0,

H(u, || · ||L2r(P?),GM ) ≤ H
(
u2r

C
, || · ||L1(Rb`),PM

)
, (41)

where PM
def
= {pf,ν ; ν ∈ Db, f ∈ F and I(f) ≤M}. Thus, it remains to bound the entropy

with bracketing of the class of functions PM associated with ||·||L1(Rb`) to control the entropy
with bracketing of the class of functions GM associated with the || · ||L2r(P?).

By [18] the entropy of PM is bounded by proving that it is included in some weighted

Sobolev Space. Define the polynomial weighting function 〈y〉d def
=
(
1 + ‖y‖2

)d/2
parametrized

by d ∈ R where y ∈ Rb`. Furthermore, define for p′ ≥ 1, and s′ > b`/p′ the weighted Sobolev
space

W s′,p′
(
Yb, 〈y〉d

) def
=
{
f ; f · 〈y〉d ∈W s′,p′

(
Yb,R

)}
.

Lemma B.2 ensures that, for any p′ ≥ 1, s′ > b`/p′ any even integer d, the renormalized

classes of functions PM/Mυ(s′+d+ b`
p′ ), M ≥ 1 belong to the same bounded subspace of

W s′,p′(Rb`, 〈y〉d). By [18, Corollary 4], for any p′ ≥ 1, and any s′ > b`/p′, provided that
d > s′ + b`(1− 1

p′ ), there exists a constant C such that

∀ε > 0, H
(
ε, ‖ · ‖L1(Rb`),PM/M

υ(s′+d+ b`
p′ )
)
≤ Cε−b`/s

′
.

The proof is concluded by (41).

Lemma B.2. Assume that H2 holds for some υ > 0. Then, for any p′ ≥ 1, s′ > b`/p′ and
any even and positive number d, there exists a positive constant C such that for any f ∈ F
and any ν ∈ Db,

‖pf,ν · 〈y〉d‖W s′,p′ (Rb`,R) ≤ Cκ(υ, f)
s′+d+ b`

p′ ,

where κ(υ, f)
def
= 1 ∨ I(f)υ.
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Proof. Let f be a function in F , for any ν ∈ Db,

‖pf,ν · 〈y〉d‖p
′

W s′,p′ (Rb`,R) =
∑
|α|≤s′

‖Dα
(
pf,ν · 〈y〉d

)
‖p
′

Lp′
.

Applying the general Leibniz rule component by component, for any α ∈ Nb`,

Dα
(
pf,ν · 〈y〉d

)
=
∑
α′≤α

(
α

α′

)
Dα′(〈y〉d)Dα−α′(pf,ν) , (42)

where
(
α
α′

) def
=
∏b`
j=1

(αj
α′j

)
. Then, Lemma B.2 requires to control ‖Dα(1)

(〈y〉b)Dα(2)

(pf,ν)‖Lp′
for any given α(1) and α(2) in Nb`. For any α in Nb`, there exists a polynomial function Pα
with degree lower than |α| such that, for any y ∈ Rb`,

Dαpf,ν(y) =

∫
x∈Xb

Pα(f(x)− y) exp

{
−1

2
‖f(x)− y‖2

}
qa,b(x)µ⊗b(dx) . (43)

Moreover, since d is an even number, for any α ∈ Nb` such that |α| ≤ d, Dα〈y〉d is a
polynomial function denoted by Pd,α with degree lower than d − |α|. In the case where
|α| > d, Dα〈y〉d = 0.

By H2, there exists constant C > 0 such that, for any x ∈ Xb, ‖f(x)‖ ≤ CI(f)υ ≤
Cκ(υ, f). Since Pα(2) and Pd,α(1) are both polynomial functions, there exist a constant C

depending on α(1), α(2) and d such that, for any y ∈ Rb` and any x ∈ Xb,∣∣Pd,α(1)(y)Pα(2)(f(x)− y)
∣∣ ≤ 1|α(1)|≤d

[
C(1 + ‖y‖)d−|α

(1)| × (κ(υ, f) + ‖y‖)|α
(2)|
]
.

Define the following subset of Rb`

Af
def
=
{
y ∈ Rb`; ‖y‖ ≤ κ(υ, f)

}
.

‖f(x)− y‖ can be lower bounded by 0 when y belongs to Af and by |κ(υ, f)− ‖y‖| when
y belongs to Acf . Therefore, uniformly in x ∈ Xb,

exp

{
−1

2
‖f(x)− y‖2

}
≤ 1Af (y) + 1Acf (y)e−

1
2 (κ(υ,f)−‖y‖)

2

.

Thus, there exists a constant C > 0 which dies not depend on a, such that,
for any p′ ≥ 1,

‖Dα(1)

(〈y〉d)Dα(2)

(pf,ν)‖p
′

Lp′
≤ 1|α(1)|≤d

[
Cκ(υ, f)p

′|α(2)| (I1 + I2)

]
,

where,

I1
def
=

∫
Af

(1 + ‖y‖)p
′(d−|α(1)|)

(
1 +

‖y‖
κ(υ, f)

)p′|α(2)|

λ⊗b(dy) ,

I2
def
=

∫
Acf

(1 + ‖y‖)p
′(d−|α(1)|)

(
1 +

‖y‖
κ(υ, f)

)p′|α(2)|

e−
p′
2 (κ(υ,f)−‖y‖)2λ⊗b(dy) .
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By the change of variables y′ = (κ(υ, f))−1y in I1 and I2, there exists a constant C such
that

‖Dα(1)

(〈y〉d)Dα(2)

(pf,ν)‖p
′

Lp′
≤ Cκ(υ, f)p

′(|α(2)|−|α(1)|+d)+b` . (44)

Using (44) in (42) with α(1) = α′ and α(2) = α − α′ for any |α| ≤ s′ and α′ ≤ α concludes
the proof of Lemma B.2.
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