
HAL Id: hal-00727452
https://hal.science/hal-00727452

Submitted on 3 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Removal Operations in nD Generalized Maps for
Efficient Homology Computation

Guillaume Damiand, Rocio Gonzalez-Diaz, Samuel Peltier

To cite this version:
Guillaume Damiand, Rocio Gonzalez-Diaz, Samuel Peltier. Removal Operations in nD Generalized
Maps for Efficient Homology Computation. International Workshop on Computational Topology in
Image Context, May 2012, Bertinoro, Italy. pp.20-29, �10.1007/978-3-642-30238-1_3�. �hal-00727452�

https://hal.science/hal-00727452
https://hal.archives-ouvertes.fr

Removal Operations in nD Generalized Maps for

Efficient Homology Computation⋆

Guillaume Damiand1, Rocio Gonzalez-Diaz2, and Samuel Peltier3

1 Université de Lyon, CNRS, LIRIS, UMR5205, F-69622 France
2 Universidad de Sevilla, Dpto. de Matemática Aplicada I, S-41012, Spain
3 Université de Poitiers, CNRS, XLIM-SIC, UMR6172, F-86962 France

Abstract. In this paper, we present an efficient way for computing ho-
mology generators of nD generalized maps. The algorithm proceeds in
two steps: (1) cell removals reduces the number of cells while preserv-
ing homology; (2) homology generator computation is performed on the
reduced object by reducing incidence matrices into their Smith-Agoston
normal form. In this paper, we provide a definition of cells that can be re-
moved while preserving homology. Some results on 2D and 3D homology
generators computation are presented.

Keywords: nD Generalized Maps; Cellular Homology; Homology Gen-
erators; Removal Operations.

1 Introduction

In this paper, we propose a method for efficiently computing homology gener-
ators of subdivided cellular objects. The main idea is to simplify a subdivided
object into a smaller one while preserving its homology. This principle is similar
to the one used in [10] which is mainly algebraic (i.e. based on reduction of chain
complexes), while our approach is mainly combinatorial.

In this work, we define a simplification algorithm based on the cell removal
operations defined on generalized maps. Its principle is to simplify as much as
possible the number of cells while preserving homology. Then we reduce incidence
matrices (used for describing boundary operators) into their Smith-Agoston nor-
mal form for computing homology generators [3]. Moreover, generators computed
in the reduced object can easily be projected into the original one.

The paper is structured as follows: in Sect. 2 all the necessary background
regarding n-Gmaps is recalled. Section 3 presents the main result of the paper:
the definition of the simplification algorithm based on the removal of two types
of cells, and the proof of the homology preservation. Finally, some experiments
are presented in Sect. 4 in order to illustrate that the simplification step widely
reduces the number of cells, and also the homology generator computation.

⋆ Paper published in Proceedings of 4th International Workshop on Compu-
tational Topology in Image Context, LNCS 7309, pp. 20-29, June 2012.
Thanks to Springer Berlin Heidelberg. The original publication is available at
http://dx.doi.org/10.1007/978-3-642-30238-1 3

2 Guillaume Damiand, Rocio Gonzalez-Diaz, and Samuel Peltier

2 Preliminary Works

An n-Gmap is a combinatorial structure devoted to the representation of cel-
lular subdivision of orientable or not orientable nD quasi-manifolds, with or
without boundaries (see [11, 12] for more details). Any polytopal complex can
be described by an n-Gmap, while the converse is not true (an i-cell can be non
homeomorphic to an i-disk). It is possible to associate a semi-simplicial set with
any n-Gmap. An n-Gmap is not constructed directly from the cells of the sub-
division but from more elementary objects: darts. The set of darts is structured
through involutions that describe how they are linked to each other.

Definition 1 (n-Gmap). An n-dimensional generalized map, called n-Gmap,
with 0 ≤ n, is a (n+ 2)-tuple G = (D,α0, . . . , αn) where:

1. D is a finite set of darts;

2. ∀i, 0 ≤ i ≤ n, αi is an involution on D;

3. ∀i : 0 ≤ i ≤ n− 2, ∀j : i+ 2 ≤ j ≤ n, αi ◦ αj is an involution.

The cells of the subdivision are defined implicitly as set of darts thank to the
orbit notion (see Def. 2). An orbit in an n-Gmap can be seen as the set of darts
that we can reach from a given dart and using as many times as possible the
given involutions.

Definition 2 (Orbit). Let Φ = {π0, · · · , πn} be a set of permutations defined

on a set D. 〈Φ〉 is the permutation group of D generated by Φ. The orbit of an

element d ∈ D relatively to 〈Φ〉, denoted 〈Φ〉 (d) is the set {φ(d) | φ ∈ 〈Φ〉}.

As we can see in Def. 3, each i-dimensional cell is an n-Gmap is obtained by
an orbit using all the involutions except αi.

Definition 3 (i-cell). Let G be an n-Gmap, and d ∈ D be a dart. Given i,
0 ≤ i ≤ n, the i-dimensional cell containing d, called i-cell and denoted by ci(d),
is

〈

α0, . . . , α(i−1), α(i+1), . . . , αn

〉

(d).

Due to the definition of cells as sets of darts, the incident and adjacency
relations on cells can easily be tested. Two distinct cells c1 and c2 are incident

if c1 ∩ c2 6= ∅, and two i-cells c1 and c2 are adjacent if there is two darts d1 ∈ c1
and d2 ∈ c2 satisfying d1 = αi(d2). When a dart d belongs to an i-dimensional
border, we have αi(d) = d and we say that d is i-free.

In the example of Fig. 1, face f3 is described by 〈α0, α1〉 (1) = {1, 2, 3, 4, 5, 6},
edge e1 by 〈α0, α2〉 (13) = {13, 14, 15, 16}, and vertex v1 by 〈α1, α2〉 (2) =
{2, 3, 7, 14, 15, 24}. v1 and e1 are incident since 〈α1, α2〉 (2) ∩ 〈α0, α2〉 (13) =
{14, 15} 6= ∅. f1 and f3 are adjacent since 23 ∈ f1, 1 ∈ f3, and α2(1) = 23.

In this paper, the main operations used to simplify an n-Gmap are the re-

moval operations (see [7, 6] for the definitions). Intuitively, removing a removable
cell c merges the two (i+1)-cells incident to c, without modifying the other cells.

Definition 4 (Removable cell). Let G be an n-Gmap, c be an i-cell of G. c
is removable if one of the two conditions is satisfied:

i = n− 1; or 0 ≤ i < n− 1 and ∀d ∈ c, αi+1 ◦ αi+2(d) = αi+2 ◦ αi+1(d).

Removal Operations in n-Gmaps for Efficient Homology Computation 3

f
1

f
3

e
1

2
e

f
2

v
1

v
2

(a)

1

6

5

4
32

21

20

19

18 17

22
23

24

16

15

9

10

11
12

13

14

7
8

(b)

Fig. 1. Example of a 2G-map G = (D,α0, α1, α2). (a) A 2D cellular complex containing
3 faces; 9 edges and 7 vertices. (b) The 2G-map describing this cellular complex, having
24 darts (represented by numbered black segments). Two darts linked by α0 are drawn
consecutively and separated by a gray segment (for example α0(19) = 20), two darts
linked by α1 share a common point (for example α1(20) = 21), and two darts linked by
α2 are drawn parallel, the gray segment over these two darts (for example α2(13) = 16).

The notion of removable cell c is strongly related to the number of its (i+1)
incident cells, called the degree of c and denoted degree(c). A direct consequence
of Def. 4 is that an i−cell c of degree > 2 is not removable.

In the example of Fig. 1, all the edges are removable (since an (n − 1)-cell
is always removable in an nG-map), vertex v2 is removable while vertex v1 not.
Removing edge e1 merges faces f1 and f2 in one face having as boundary the
boundary of f1 plus the boundary of f2 minus edge e1.

To be able to compute homology of an n-Gmap, we need to have a boundary
operator (defined in [5, 4]). The boundary operator is defined for n-Gmaps having
orientable cells. Note that it is possible to represent a non-orientable object (e.g.
a Klein bottle) with a n-Gmaphaving only orientable cells.

In the following we detail the notions of orientable cell and signed cell (cf.
Defs. 5 and 6).

Definition 5 (Orientable i-cell). An i-cell c is orientable if c = e1 ∪ e2 such

that: ∀d ∈ c, ∀j, 0 ≤ j ≤ n, j 6= i: d is not j-free ⇒ d and αj(d) do not belong

to the same set e1 or e2. c is non-orientable otherwise.

If c is orientable, then it can be partitioned in two sets of darts representing
its two orientations and we can associate a value −1 or +1 to each of its dart,
called a sign. In the following, we only consider n-Gmap having all its cells
signed.

Definition 6 (Signed i-cell). Let c be an orientable i-cell. The corresponding

signed i-cell is c together with a sign for each of its dart d, denoted sgi(d):

• sgi(d) = −sgi(αj(d)) ∀j: 0 ≤ j < i such that d is not j-free;
• sgi(d) = sgi(αj(d)) ∀j: i < j ≤ n.

For defining a boundary operator on n-Gmaps, we first define the signed
incidence number between two cells ci and ci−1 which describes the number of
times that ci−1 appears in the boundary of ci.

4 Guillaume Damiand, Rocio Gonzalez-Diaz, and Samuel Peltier

Definition 7 (Signed incidence number). let {pj}j=1···k be a set of darts s.t.

the orbits {
〈

α0, · · · , α(i−2)

〉

(pj)}j=1···k make a partition of
〈

α0, . . . , α(i−1)

〉

(d).
The signed incidence number between ci and ci−1 is defined by

(ci : ci−1) =
∑

pj ,j=1···k|pj∈ci−1

sgi(pj).sg
i−1(pj).

Note that this definition is equivalent to the one given in [5]. Now the
boundary operator ∂G of any i-cell c is defined as ∂G(c) =

∑

c′(c : c′)c′,
where c′ are (i − 1)−cells incident to c. The boundary operator ∂G satisfies
∂G ◦ ∂G = 0 when involutions αi are without fixed points for 0 ≤ i ≤ n − 1.
Moreover, we have proven in [4] that the homology defined on n-Gmaps by this
boundary operator is equivalent to the simplicial homology of the associated
quasi-manifolds when the homology of the canonical boundary of each i-cell is
that of an (i − 1)-sphere, and when ∀d ∈ D, ∀i ∈ {0, . . . , n}, d is i-free or
αi(d) 6∈ 〈α0, . . . , αi−2, αi+2, . . . , αn〉 (d). In the following, all the considered n-
Gmaps satisfied these conditions.

3 Removal Operations Preserving Homology

In this section, we prove that removing a degree two cell or a dangling cell
preserves the homology of the n-Gmap.

3.1 Chain Complexes and Chain Contractions

Let S = {Sq}q be a graded. A q-chain is a finite formal sum of elements of
Sq with coefficients in Z. Let Cq(S) denote the group of q-chains of S. The
chain complex (C∗(S), ∂) is the chain group C∗(S) = {Cq(S)}q together with a
boundary operator ∂. Given an n-Gmap G, let SG be the set of all the cells of
G. (C∗(SG), ∂G) is the chain complex associated to G.

A chain contraction [13] of (C∗(S), ∂) to (C∗(S
′), ∂′) is a triple (f = {fq :

Cq(S) → Cq(S
′)}q, g = {gq : Cq(S

′) → Cq(S)}q and φ = {φq : Cq(S) →
Cq+1(S)}q) such that: (i) f and g are chain maps; i.e. fq◦∂q = ∂′

q◦fq and gq◦∂q =
∂′
q ◦ gq for all q; (ii) φ is a chain homotopy of idC∗(S) = {idq : Cq (S) → Cq (S)}q

to g◦f = {gq◦fq : Cq(S) → Cq(S)}q; i. e. φq−1◦∂q+∂′
q+1◦φq = idq−gq◦fq for all

q; (iii) f ◦ g = idC∗(S′). If a chain contraction of (C∗(SG), ∂G) to (C∗(SG′), ∂G′)
exists, then the n-Gmaps G and G′ have isomorphic homology groups.

3.2 Degree two cells

Proposition 1. Let c be an i-cell in an n-Gmap. If c is removable and degree

two cell, then there are two (i+1)-cells a and b satisfying: |(a : c)| = |(b : c)| = 1
and for all other (i+ 1)-cells c′, (c′ : c) = 0.

Proof. Since c is degree two, there are two (i+1)-cells a and b that are incident
to c. For these two cells, we have c ∈ ∂G(a) and c ∈ ∂G(b). So, (a : c) 6= 0 and
(b : c) 6= 0. If |(a : c)| > 1, contradiction with removal property, thus |(a : c)| = 1
(and the same for |(b : c)| = 1). For all other (i+ 1)-cells c′, c′ is not incident to
c otherwise the degree was greater than two. Thus (c′ : c) = 0. ⊓⊔

Removal Operations in n-Gmaps for Efficient Homology Computation 5

Proposition 2. Let c be an i-cell in an n-Gmap. If c is a removable degree two

cell, and if each j-cell e incident to c, is after the removal of c a j-cell equal to
e \ c, then homology is preserved after the removal of c.

Note that the removal of a cell may induce removal of other cells (for example,
it is possible to build a sphere made of one vertex, one degree two edge and two
faces. Removing the edge would supress all the darts and so the vertex and the
two faces). The second condition ensures that only one cell is removed

Proof. Let (C∗(SG), ∂G) be the chain complex associated to G. Since c is degree
two, there are two (i + 1)-cells a and b that are incident to c. The set SG′

of the cells of the n-Gmap G′ obtained after removing the cell c consists in
SG \ {a, b, c} ∪ {a′} where a′ is the resulting (i + 1)-cell from merging the two
cells a and b. Since, by Prop. 1, |(a : c)| = |(b : c)| = 1 and for all other (i+ 1)-
cells c′, (c′ : c) = 0, we can construct a chain contraction (f, g, φ) of (C∗(SG), ∂G)
to (C∗(SG′), ∂G′) as follows:

f (x) =















c− (b : c)∂G(b), if x = c,
a′, if x = a,
0, if x = b,
x, otherwise;

g (x) =

{

a− (a : c)(b : c)b, if x = a′,
x, otherwise;

φ (x) =

{

(b : c)b, if x = c,
0, otherwise.

To check that (f, g, φ) is a chain contraction is left to the reader. Moreover, we
know that each j-cell incident to c is preserved by the removal operation. Then
G and G′ have isomorphic homology groups. ⊓⊔

3.3 Dangling cells

Let (C∗(S), ∂) be a chain complex. Let s, t ∈ S such that |(s : t)| = 1 and
(s′ : t) = 0 for any s′ ∈ S, s′ 6= s. If we remove s and t from S to get S′, we
obtain another chain complex (C∗(S

′), ∂′) which is called an elementary collapse

of S. A chain contraction of (C∗(S), ∂) to (C∗(S
′), ∂′) is given by

f (x) =







0, if x = s,
t− (s : t)∂(s), if x = t,

x, otherwise;
g (x) = x; φ (x) =

{

(s : t)t, if x = t,
0, otherwise.

Therefore an elementary collapse preserves homology. A subset of S is collapsible
if they can all be removed from S in a sequence of elementary collapses.

Let c be a k-cell, the closure of c, denoted c, is the set made of c plus all the
j-cells, 0 ≤ j < k that are incident to c. The closure of a set S of cells, denoted
S, is the union of the closures of all the cells of S.

Definition 8 (Dangling cell). Let c be an i-cell. We denote C the set of (i−1)-
cells of ∂G(c), and B = {c′ ∈ ∂G(c)|degree(c

′) > 1}. c is dangling if c is

orientable, its degree is 1, {c} ∪ C \ B is collapsible, and each j-cell e ∈ B̄, is

after the removal of c a j-cell equal to e \ c.

6 Guillaume Damiand, Rocio Gonzalez-Diaz, and Samuel Peltier

Proposition 3. Let c be an i-cell in an n-Gmap. If c is removable and dangling

cell, then its removal preserves the homology of the n-Gmap.

Proof. Removing c will remove also all the cells in C \ B because these cells
are included in c (i.e. their set of darts is included in the set of darts of c). As
{c} ∪C \B is collapsible, and as all the other cells are preserved, the homology
of the n-Gmap is preserved by the definition and property of collapsible. ⊓⊔

3.4 Simplification Preserving Homology

The main principle of the simplification algorithm consists in removing succes-
sively all the degree two cells and all the dangling cells for all the dimensions
starting from (n − 1)-cells to 0-cells. For that, we start to define Algo. 1 which
simplifies all the i-cells of a given n-Gmap for a given dimension i.

Algorithm 1: Simplification of i-cells.

Input: An n-Gmap G.
Output: Simplify all the i-cells of G while preserving the same homology.

foreach i-cell c of G do

if c is removable and the degree of c is 2 then

Remove f ;

else if c is removable and c is a dangling cell then
push(P, c);
repeat

c← pop(P);
push in P all the dangling i-cells adjacent to c;
Remove c;

until empty(P);

In this algorithm, we consider successively each i-cell c, and there are three
possible cases. First, if c is not removable, then we are sure that c cannot be
removable in a future step of the algorithm. Indeed, we only remove i-cells and
this does not modify the (i+1)-cells incident to c. Second, if c is removable and
its degree is two, we remove c. Third, if c is removable and dangling, we also
remove c, but now we have to reconsider all the i-cells adjacent to c. Indeed,
these cells can possibly become dangling due to the removal of c. At the end of
the loop, we have considered all the i-cells and removed all the degree 2 cells
and the dangling cells that were removable.

Now the global simplification method consists only in simplifying all the i-
cells of the n-Gmap for all the cells by decreasing dimensions. We have to work
in decreasing dimensions because the removal of an i-cell modifies the degree of
all the incident (i−1)-cells. At the end of the global simplification algorithm, we
have removed all the removable cells of degree 2 or dangling. By using Props. 2

Removal Operations in n-Gmaps for Efficient Homology Computation 7

and 3, we know that the final n-Gmap obtained after all the removals has the
same homology than the initial n-Gmap.

4 Experiments

In order to illustrate the interest of our simplification algorithm, we show results
on homology generator computation for the five objects shown in Fig. 2. Objects
(a), (b) and (c) are described by 2-Gmaps; objects (d) and (e) are described by
3-Gmaps.

(a) (b) (c) (d) (e)

Fig. 2. (a) 2-torus. (b) Klein bottle. (c) pinion. (d) tower. (e) Menger sponge.

Object Initial Simplified

cells Homology # cells Homology Simplif.
Cell dim. 0 1 2 3 computation 0 1 2 3 computation time

2-torus 404 802 396 - 14Mb 5.76s 6 9 1 - 2.36Kb 0s 0s
Klein 900 1800 900 - 74Mb 128.47s 2 3 1 - 0.41Kb 0s 0s
Pinion 470 701 231 - 11Mb 3.56s 2 3 1 - 0.41Kb 0s 0s
Tower 906 1856 952 4 85Mb 140.97s 10 15 4 1 6.53Kb 0s 0s
Menger 896 2304 1728 400 159Mb 372.50s 189 365 97 1 2938.00Kb 0.81s 0.03s

Table 1. Results of our experiments. We give the number of cells (columns # cells) for
initial objects, and after the simplification algorithm. The last column gives the time of
the simplification step. The two columns Homology computation give the memory space
and the time of the homology generators computation (0s means less than 10−6s).

To compute the homology generators, we iterate through all the cells of the n-
Gmap and we compute incidence matrices (which describes the boundary of the
cells) using the incidence number definition. Then we reduce incidence matrices
into their Smith-Agoston normal form for computing homology generators [3].
Compared to the classical Smith normal form, the specificity of the Agoston

8 Guillaume Damiand, Rocio Gonzalez-Diaz, and Samuel Peltier

reduced normal form is that for a given dimension d, the basis of the boundaries
Bp is a subset of the basis of cycles Zp, thus the quotient group Hp = Zp/Bp can
directly be obtained by simply removing from Zp the boundaries of infinite order.
Note that several optimizations exists for the reduction of incidence matrices [15,
8]. Even if they can be used, we do not use them here as we focus on showing
the improvement obtained with the simplification process.

The computation of homology generators was implemented in Moka [16], a
3D topological modeler based on 3-Gmap. For this reason, the computation
of homology generators is limited to 2D and 3D cases, but all the functions
are generic in any dimension. The results are presented in Table 1, where the
simplification step widely reduces the number of cells. On the last column one
can see that the simplification step is very fast. Memory space is also reduced
as the size of incidence matrices are directly linked to the number of cells.

(a) (b) (c)

Fig. 3. The generators of H1 (in red) computed on simplified objects, and projected
on initial objects (drawn in grey). (a) Klein bottle. (b) Tower. (c) Menger sponge.

Lastly, we can see in Fig. 3 the different generators of H1 obtained for some
objects. By using the definition of removal operations, we are able to project the
generators of the simplified object on the initial one (by using a similar technique
as in [14, 9]).

We have made a second type of experiments in order to compare our approach
with other existing methods. To our knowledge there is no other general method
which compute homology generator of cellular objects. Thus we compare our
solution with Chomp and RedHom [1, 2] which compute homology generators of
cubical complexes. We chose these two methods since the two softwares are pub-
licly available. However, it must be noticed that representing a cubical complex
by a n-Gmaps is not efficient since a cube is described by 48 darts; the interest
of cellular model is precisely to represent non regular subdivisions. In order to
test the scale up property of the three methods, we chose three objects (see in
Fig. 4(a), (b) and (c)), and multiply the size of each voxel by 4 to 9 for the first
two objects, and by 2 to 7 for the last object which contains more voxels.

Removal Operations in n-Gmaps for Efficient Homology Computation 9

0

2

4

6

8

10

12

14

0 100000 300000 500000 700000

Number of voxels

Chomp

RedHom
Moka

ti
m

e
(i

n
 s

ec
o
n
d
s)

(a)

50

40

30

20

10

0
0 400000 800000 1200000

Number of voxels

ti
m

e
(i

n
 s

ec
o
n
d
s)

Chomp

RedHom
Moka

(b)

0

2

4

6

8

10

12

14

16

18

4000000 800000 1200000

Number of voxels

ti
m

e
(i

n
 s

ec
o
n
d
s)

Chomp

RedHom
Moka

(c)

Fig. 4. Homology computation time comparison for Chomp, RedHom and Moka. Objects
are made of voxels filling the bounding box (in wireframe), the filled surfaces being
borders of cavities or tunnels. (a) Cub1: 1067 voxels; 1 connected components; 9 tunnels;
5 cavities. (b) Cub2: 1828 voxels; 1 connected components; 7 tunnels; 4 cavities. (c) Cub3:
4003 voxels; 1 connected components; 6 tunnels; 3 cavities.

We can see in Fig. 4 the time required to compute homology generators of
each object by the three compared methods. These results are really encouraging
for our method which obtain the best computation time for the first two objects,
with an important gain for the second one. For the third object, Chomp, and Moka

performances are very similar (even if Chomp is a little bit quicker), while RedHom
is really faster. In this last case, Chomp, and Moka have similar computation time
than for the two first objects, while RedHom is extremely fast. We suppose there
is an optimization allowing to remove directly some block of voxels. Indeed, the
upper part of the last object is composed by a full block of voxels. This kind of
improvement can also be made for our method.

These experiments show that our method is very competitive since it is not
optimized for a specific type of subdivision but it is generic for any cellular
complex. Thus its main interest is its genericity and we can conclude from this
comparison that this is not to the detriment of the efficiency. Moreover, we can
improve our results by adding a thinning pre-processing step that reduces the
number of voxels while preserving the homology.

5 Conclusion

In this paper, we have presented an algorithm that simplifies an n-Gmap while
preserving its homology. For that, it removes degree two cells and dangling cells.

10 Guillaume Damiand, Rocio Gonzalez-Diaz, and Samuel Peltier

Then we can compute homology on the reduced n-Gmap and project the gener-
ator on the original object. Some results show the interest of the simplification
step, both in memory space and in computation time.

Some questions are still open. The first question is about the conditions on
removed cells. Is it possible to remove some other type of cells while preserving
the homology? The answer is no in 2D and 3D, but still open in higher dimen-
sion. This question is related to the definition of the minimal generalized map
having the same homology. In 3D, to obtain this minimal map, we need to use
another type of operation (fictive edge shifting). Thus we would like to study the
extension of this operation in higher dimension to define the minimal n-Gmap.

References

1. Chomp. http://chomp.rutgers.edu/.
2. Redhom. http://redhom.ii.uj.edu.pl/.
3. M. K. Agoston. Algebraic Topology, a first course. Pure and applied mathematics.

Marcel Dekker Ed., 1976.
4. S. Alayrangues, G. Damiand, P. Lienhardt, and S. Peltier. A boundary opera-

tor for computing the homology of cellular structures. Discrete & Computational
Geometry, under submission.

5. S. Alayrangues, S. Peltier, G. Damiand, and P. Lienhardt. Border operator for gen-
eralized maps. In Discrete Geometry for Computer Imagery, volume 5810 of LNCS,
pages 300–312, Montréal, Canada, September 2009. Springer Berlin/Heidelberg.

6. G. Damiand, M. Dexet-Guiard, P. Lienhardt, and E. Andres. Removal and con-
traction operations to define combinatorial pyramids: Application to the design of
a spatial modeler. Image and Vision Computing, 23(2):259–269, February 2005.

7. G. Damiand and P. Lienhardt. Removal and contraction for n-dimensional gener-
alized maps. In Discrete Geometry for Computer Imagery, volume 2886 of LNCS,
pages 408–419, Naples, Italy, November 2003. Springer Berlin/Heidelberg.

8. J.-G. Dumas, F. Heckenbach, B. D. Saunders, and V Welker. Computing simplicial
homology based on efficient smith normal form algorithms. In Algebra, Geometry,
and Software Systems, pages 177–206, 2003.

9. R. Gonzalez-Diaz, A. Ion, M. Iglesias-Ham, and W.G. Kropatsch. Invariant repre-
sentative cocycles of cohomology generators using irregular graph pyramids. Com-
puter Vision and Image Understanding, 115(7):1011–1022, 2011.

10. T. Kaczynski, M. Mrozek, and M. Slusarek. Homology computation by reduction
of chain complexes. Computers & Math. Appl., 34(4):59–70, 1998.

11. P. Lienhardt. Topological models for boundary representation: a comparison with
n-dimensional generalized maps. CAD, 23(1):59–82, 1991.

12. P. Lienhardt. N-dimensional generalized combinatorial maps and cellular quasi-
manifolds. Computational Geometry & Applications, 4(3):275–324, 1994.

13. S. MacLane. Homology. Classic in Mathematics. Springer, 1995.
14. S. Peltier, A. Ion, W.g. Kropatsch, G. Damiand, and Y. Haxhimusa. Directly

computing the generators of image homology using graph pyramids. Image and
Vision Computing, 27(7):846–853, June 2009.

15. A. Storjohann. Near optimal algorithms for computing smith normal forms of
integer matrices. In Y. N. Lakshman, editor, Proceedings of the 1996 Int. Symp.
on Symbolic and Algebraic Computation, pages 267–274. ACM, 1996.

16. F. Vidil and G. Damiand. Moka. http://moka-modeller.sourceforge.net/, 2003.

