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Abstract

This paper presents a new computational strategy for the simulation of combustion fronts based

on adaptive time operator splitting and spatial multiresolution. High-order and dedicated one-

step solvers compose the splitting scheme for the reaction, diffusion, and convection subprob-

lems, to independently cope with their inherent numerical difficulties and to properly solve the

corresponding temporal scales. Adaptive and thus highly compressed spatial representations for

localized fronts originating from multiresolution analysis result in important reductions of mem-

ory usage, and hence numerical simulations with sufficiently fine spatial resolution can be per-

formed with standard computational resources. The computational efficiency is further enhanced

by splitting time steps established beyond standard stability constraints associated to mesh size

or stiff source time scales. The splitting time steps are chosen according to a dynamic splitting

technique relying on solid mathematical foundations, which ensures error control of the time

integration and successfully discriminates time-varying multi-scale physics. For a given semi-

discretized problem, the solution scheme provides dynamic accuracy estimates that reflect the

quality of numerical results in terms of numerical errors of integration and compressed spatial

representations, for general multi-dimensional problems modeled by stiff PDEs. The strategy is

efficiently applied to simulate the propagation of laminar premixed flames interacting with vor-

tex structures, as well as various configurations of self-ignition processes of diffusion flames in

similar vortical hydrodynamics fields. A detailed study of the error control is provided and show

the potential of the approach. It yields large gains in CPU time, while consistently describing a

broad spectrum of space and time scales as well as different physical scenarios. Such a strategy

enables simulations of complex nonlinear front dynamics with standard computational resources,

which would be out of reach with most existing techniques.

Keywords: Laminar flames, time operator splitting, space adaptive multiresolution, time

adaptive integration, error control
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1. Introduction

Combustion simulation raises essentially multi-scale problems defined by a competition be-

tween a variety of processes evolving at different rates in time and featuring a broad range of

length scales [1]. Such simulations are mathematically stiff, due to the broad spectrum of time

scales in the nonlinear chemical terms and to the steep, spatially localized gradients in the reac-

tion fronts. Direct numerical simulations (DNS) ensuring high fidelity numerical solutions with a

sufficiently fine resolution of all temporal and spatial scales, necessarily require important com-

putational resources. One approach to overcome computational restrictions in terms of CPU time

and memory storage capacities is thus founded on the development of efficient techniques tak-

ing full advantage of massively parallel computing architectures and growth of computer power

(see, e.g., [2, 3]). Another strategy consists in reducing the modeling complexity and associated

computational effort by more efficient handling of the time and spatial scales, while guarantee-

ing reliable predictive capabilities. This is exemplified by chemical kinetics reduction methods

[4, 5], tabulation techniques [6, 7], or artificial flame thickening schemes [8] which all focus on

an improved handling of time and spatial scales. The spatial filtering exploited in large eddy

simulations (LES) relies on similar ideas. In LES the subgrid scales are modeled to effectively

reduce the scale diversity and allow simulations of industrial configurations or scientific prob-

lems which could not have been handled by direct numerical simulations. Modern LES flow

solvers also exploit parallel capabilities of modern computer architectures to simulate physically

and geometrically complex configurations (see, e.g., [9, 10]).

In general, the design and practical implementation of the numerical scheme constitute key

elements for successful simulations. However, while many numerical methods carefully de-

signed to ensure accurate solutions remain suitable for academic problems or small scale appli-

cations, realistic simulations of complex problems need to exploit methods of lower algorithmic

complexity. As an illustration explicit time integration techniques are often implemented in in-

dustrial and scientific codes, for their inherent parallelism capabilities. Computer power can

thus compensate severe restrictions of these schemes when they are applied to stiff problems. In

this general context, it is important to develop alternative and more efficient strategies for such

problems. The resulting algorithms aim at reducing computational requirements by thoroughly

enhancing the numerical method of solution. This approach can then be coupled with other mod-

eling considerations, like those presented previously, and with a suitable exploitation of modern

computing capabilities. For instance, implicit time integration methods are investigated for com-

plex applications [11, 12], and efforts are also being made on computationally less demanding

hybrid methods which combine implicit and explicit schemes such as IMEX [13, 14] or operator

splitting [15, 16] techniques.
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In this context, either for DNS or for other types of simulations on single or multi-processor

architectures, research in terms of numerical methods is concentrated on accelerating schemes,

ensuring adequate resolution properties and a proper handling of temporal and spatial scales of

the problem. Nevertheless, due to the computational costs of realistic simulations, the validation

of numerical results is restricted either to qualitative analysis for complex applications, or to

precise comparisons with analytical or small scale academic configurations. The framework of

the present investigation is therefore set by a new solution paradigm that complements and further

extends the general approach, by introducing accuracy tracking capabilities in the numerical

strategies. The objective is to control approximation errors associated to the numerical solution

while capturing the dominant scales, and hence to estimate the quality of the results independent

of the complexity or dimension of the computational model. We propose in this article a novel

method, based on a dedicated operator splitting scheme with adaptive time-stepping features and

space multiresolution analysis, relying on dynamic accuracy estimates.

A splitting approach offers a reduced degree of computational complexity and thus straight-

forward implementations with respect to IMEX methods, which require additional stability and

order conditions that combine all inner implicit-explicit schemes [17, 18, 19, 20]. However, ap-

propriate criteria must be introduced to efficiently decouple the physical phenomena via splitting

and to control the so-called splitting errors [21]. Splitting methods [22, 23] have been used in

the literature for decades, and were widely implemented and exploited for combustion problems

to overcome classical restrictions on computational resources (see, e.g., [24, 25, 26, 27, 28, 29,

30, 31]). A nice example is given by the numerical strategy developed by Knio et al. in [32, 33]

for reactive flows in a low Mach formulation with detailed chemical kinetics and transport pa-

rameters. The splitting scheme introduced by these authors combines the dedicated stiff implicit

multi-step VODE solver [34] for the chemical reaction term with a second order explicit RKC

scheme [35, 36] for the diffusion problem. In this way, important gains of computational effi-

ciency were achieved with a splitting time step not limited by the stiff reactive scales and set

according to the extended stability domain of the RKC solver (convective stability constraints

are less restrictive). Moreover, Day & Bell introduced in [37] another efficient low Mach solver

with an operator splitting method coupled with an AMR (Adaptive Mesh Refinement) technique

[38, 39]. The reaction problem was solved with VODE, whereas the convection-diffusion term

was explicitly integrated on the adapted mesh with local CFL time steps set by the corresponding

grid size [40, 41]. With these bases, further developments in terms of algorithm implementation

and parallel computing techniques led to the effective simulation of three-dimensional turbu-

lent premixed flames with detailed chemistry (see, e.g., [42, 43]), a remarkable achievement for

laboratory-scale turbulent flames (see, e.g., [44, 45]).

Considering the state of art and these recent advances, one may note that splitting schemes fa-

vor the use of dedicated numerical solvers of different nature as well as straightforward coupling

with other techniques, with important gains in computational efficiency. Nevertheless, there are

some open issues related to the construction of splitting schemes and the interaction of splitting

errors with those originating from the inner implicit-explicit solvers (the influence of the latter

ones on the global integration error was numerically illustrated, for instance, in [32, 33]). Specif-

ically, a critical matter underlined in the literature is the lack of precise criteria to properly choose

the splitting time steps according to the physical decoupling capabilities of the problem and for

a given accuracy. Another question is the extension of these strategies to highly dynamic prob-

lems for which neither a constant nor a stability-based variable splitting time step is adequate,

taking into account that the explicit schemes are intended to handle the slow, non-stiff part of the

equations.
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To address these problems, we have first proposed in [46] a new approach in the design of

splitting schemes for propagating waves modeled by stiff reaction-diffusion systems, in which

the time integration errors were uniquely related to the splitting errors, even for large splitting

time scales, based on mathematical analyses carried out mainly in [47, 48]. The underlying idea

is to decouple time integration errors by choosing one-step and high-order dedicated methods

with time-stepping features for the split subproblems, to independently handle and solve the cor-

responding physical-numerical time spectra, and such that the corresponding numerical errors

remain negligible when compared with the splitting ones. The global error is then controlled

by the splitting time step, defined according to the physical decoupling capabilities of the phe-

nomenon and hence independently of standard stability constraints associated to mesh size or

stiff source time scales. Additionally, the splitting scheme was coupled in [46] with a dynamic

mesh refinement technique based on multiresolution (MR) analysis [49, 50, 51], previously re-

stricted to non-stiff applications in the literature. For a given semi-discretized problem, the MR

mathematical background allows a better monitoring of numerical errors introduced by the com-

pressed spatial representations with respect to the original uniform grid discretization. Secondly,

we have introduced in [52] a theoretical framework for stiff reaction-diffusion systems to dy-

namically select and adapt the splitting time step. The latter is based on local error estimates

throughout the time integration in order to achieve a given controlled level of precision, even for

very stiff problems.

The purpose of the present contribution is to carefully combine these two key ingredients

and extend their applicability to a more complex level of modeling for convection-reaction-

diffusion problems potentially modeling highly unsteady physical processes. The resulting so-

lution scheme constitutes a fundamental building block for most combustion simulations. It

provides an efficient algorithm in terms of both memory storage and computational efficiency,

which allows multidimensional simulations assuring a given error tolerance, fixed in advance by

the user. It is worth underlining that the purpose and challenge of the present contribution is to

track and control the time integration errors as well as those originating from the compressed

spatial representations for a given finest spatial resolution2. The latter should be able to cap-

ture the whole set of length scales present in the physical problem one wishes to solve. In this

way, this paper introduces a novel algorithm which will yield accurate solution of convection-

reaction-diffusion problems with a large number of degrees of freedom related to required fine

space resolution, still on standard computing platforms before fully exploiting massively parallel

architectures.

To assess the efficiency of the method in terms of error control and computational cost, we

consider the numerical simulation of premixed and diffusion flames of interest in combustion

applications. This study specifically considers laminar flames interacting with vortex structures

including propagation of flame fronts and self-ignition processes of reactive mixtures. Hydro-

dynamics are decoupled from species and energy transport equations by adopting the standard

thermo-diffusive approximation, so that the time-space resolution of the multi-scale reaction-

diffusion-convection problem can be thoroughly evaluated. The latter aspects constitute the

major development investment in terms of numerical schemes, as shown in [32, 37, 33], and

a fundamental and validating first stage for the present tools, before considering more complex

models or a complete low Mach number formulation.

2As explained also in [46], the goal is neither to propose a convergence analysis of the finite volume method when

the finest mesh resolution is reduced nor an evaluation of spatial discretization errors, but to monitor numerical errors

introduced by the adaptive meshing technique.
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The paper is organized as follows. Section 2 defines the general flame/vortex interaction

problem that will be solved numerically. Such flame vortex interactions were extensively inves-

tigated to describe fundamental combustion processes (see, e.g., [53, 54, 55, 56, 57, 58]), and

they also have been examined in some clever experiments (see, e.g., [59, 60, 61, 62, 63, 64,

65]). An AMR technique was also recently coupled with a level-set method in [66] to describe

flame/vortex interaction problems. Section 3 depicts the main features of the space-time adap-

tive technique. The mathematical formulation as well as two- and three-dimensional numerical

simulations are reported in Section 4, for the propagation of premixed flames interacting with a

counter-rotating vortex pair. New issues arise in Section 5 which concerns the numerical simu-

lation of an ignition process while a reactive layer is being rolled-up in a vortex.

2. Laminar flames coupled with vortex structures

We consider in this study the numerical simulation of laminar flames interacting with vortex

structures. For the sake of simplicity the chemistry is modeled by a global, single step, irre-

versible reaction given by

νFF + νOO→ νPP, (1)

where νk, k = F, O, P, stand for the stoichiometric coefficients for the fuel F, the oxidizer

O, and the combustion products P. The reaction rate is controlled by an Arrhenius law with

a relatively high activation energy giving rise to thin reaction layers. The following standard

modeling assumptions are also introduced throughout this study:

1. Mass diffusion velocities of chemical species are expressed by Fick’s law.

2. Thermal diffusion of species (Soret-Dufour effect) is neglected.

3. Different species have constant and equal diffusion coefficients with respect to the mixture,

noted D.

4. Constant pressure specific heats of all species are constant with the same value cp.

5. Lewis numbers corresponding to all species are equal to one.

6. The rate of pressure change in time is negligible.

7. Density variations associated to chemical heat release are neglected.

The thermo-diffusive assumption 7 essentially decouples the velocity field computation from the

determination of species mass fractions and temperature. Known solutions of the incompress-

ible Navier-Stokes equations may then be imposed, and the problem is reduced to solving the

following species and energy balance equations:

∂tYk + v · ∂xYk − D ∂2
xYk = −

νkWk

ρ
ẇ,

∂tT + v · ∂xT − D ∂2
xT =

νFWFQ

ρcp

ẇ,


(2)

with x ∈ Rd, where Wk is the molar mass and Yk, the corresponding mass fraction for k = F, O, P.

Variable T accounts for the temperature, and the reaction rate of progress ẇ is related to the rate

of consumption of fuel ẇF, oxidizer ẇO, and products ẇP by ẇ = −(ẇF/νF) = −(ẇO/νO) = ẇP/νP.

The heat release per unit mass of fuel Q is defined by Q = hF+(νOWO/νFWF)hO−(νPWP/νFWF)hP,
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where hk, k = F, O, P, is the corresponding species enthalpy. If one also considers a non-reacting

diluent, noted by index N, the following equation must be included in (2):

∂tYN + v · ∂xYN − D ∂2
xYN = 0. (3)

Notice that by definition, the mass fractions verify that YF + YO + YP + YN = 1.

In the thermo-diffusive approximation the velocity field v(x, t) is usually defined analytically

and imposed into (2). Throughout this study we consider a two-dimensional viscous core vortex

configuration, which features an azimuthal velocity of the form:

vθ(r, t) =
Γ

2πr

(
1 − e−r2/4νt

)
, (4)

where Γ denotes the vortex circulation; r(x, y), the distance to the vortex center; and ν, the kine-

matic viscosity. This velocity field has a viscous core with a typical dimension of Rν ≈ (νt)1/2.

Inside the core velocity increases in a quasi linear fashion as a function of the radial distance,

and the fluid rotates like a solid body:

vθ(r, t) ≈
Γr

8πνt
, r < Rν. (5)

A fast decay occurs immediately outside the core, and at large distances the flow tends to that of

ideal line vortex:

vθ(r, t) ≈
Γ

2πr
, r ≫ Rν. (6)

3. Time-space adaptive technique

For the reaction-diffusion-convection system defined by (2), we introduce a general time-

space adaptive strategy: space adaptation is ensured by a multiresolution decomposition, whereas

the time integration is performed by a dedicated splitting scheme with dynamic splitting time

steps. The main idea of this splitting method is to apply high-order and one-step dedicated

schemes to the reaction, diffusion, and convection subproblems, treated in an independent way

[46]. Each solver is then intended to handle the fastest physical-numerical scales associated to

each subsystem. The solution of the complete problem is finally reconstructed from the previous

solutions according to the splitting scheme. Different multi-scale phenomena are thus considered

separately during a splitting time step that is defined in order to achieve a prescribed numerical

integration accuracy. This is enforced by using dynamic error estimates computed by an adaptive

splitting scheme. These estimates measure the physical decoupling capabilities of the problem

and settle the splitting time steps for a given accuracy [52]. Finally, the multiresolution analysis

yields spatially adapted mesh representations with important gains in CPU time and memory

usage.

A second order Strang scheme S is considered for the general problem (2) [23]. The solution

U(t + ∆t) at time t + ∆t is computed from the previous solution U(t) at t by

S∆tU(t) = R∆t/2D∆t/2C∆tD∆t/2R∆t/2U(t), (7)

with U = (YF,YO,YP,YN,T )T, and splitting time step ∆t. The operators R, D, C correspond,

respectively, to the numerical integration of the reaction, diffusion, and convection problems,

performed independently and successively in the order indicated in (7). Adaptive time stepping
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is considered for all three operators yielding variable reaction (∆tR1 and ∆tR2), diffusion (∆tD1

and ∆tD2), and convection (∆tC) substeps, within the corresponding splitting time steps (∆t/2

or ∆t). Moreover, the reaction is described by spatially decoupled systems of ODEs, solved

independently point by point with different time steps according to the local reactive intensity.

According to the adaptive splitting method introduced in [52], we also compute the embedded

and lower order shifted-Strang splitting scheme:

S̃∆tU(t) = R(1/2−δ)∆tD∆t/2C∆tD∆t/2R(1/2+δ)∆tU(t), (8)

where the δ parameter is defined such that the local error estimate err =
∥∥∥S∆tU(t) − S̃∆tU(t)

∥∥∥
L2

remains valid even for large splitting time steps [52]. Both solutions (7) and (8) have the first

reactive half-step in common, and the following operators are applied simultaneously to both

intermediate solutions: (R∆t/2U(t),R(1/2+δ)∆tU(t))T, by putting them together as if one were solv-

ing a set of variables of twice the original number. The splitting time steps are then dynamically

computed by

∆tnew = υ∆t

√
η∥∥∥S∆tU(t) − S̃∆tU(t)

∥∥∥
L2

, (9)

in order to ensure a prescribed accuracy η for each splitting solution (7). A safety factor is also

considered: 0 < υ ≤ 1, close to 1 (υ = 0.9 in this study). The solution (7) at t + ∆t is accepted if

err < η, and the integration proceeds with ∆t = ∆tnew, according to (9). Otherwise it is rejected

and computed once again with the new splitting time step ∆tnew.

The reaction and diffusion problems are solved, respectively, by the dedicated high-order

one-step solvers: Radau5 and ROCK4, as in [46]. Radau5 [67] is a fifth order implicit Runge-

Kutta method exhibiting A- and L-stability properties to efficiently solve stiff systems of ODEs,

whereas the ROCK4 scheme [68] is formally a fourth order stabilized explicit Runge-Kutta

method with extended stability domain along the negative real axis, well suited to numerically

treat mildly stiff parabolic operators. Both methods implement adaptive time stepping techniques

to guarantee computations within a prescribed accuracy tolerance, ηRadau5 and ηROCK4, set in this

case smaller than the splitting tolerance η: (ηRadau5, ηROCK4) < η. Similarly, an explicit high-

order in time and space, one-step monotonicity preserving scheme: OSMP, developed by [69], is

implemented as the convective scheme. It combines monotonicity preserving (MP) constraints

for non-monotone data to avoid extrema clipping, with TVD features to prevent spurious os-

cillations around discontinuities or sharp spatial gradients. Considering its explicit character,

standard CFL stability restrictions are imposed to substeps ∆tC within each splitting time step

∆t. One may note that for stiff PDEs in splitting configurations, an important loss in efficiency

is expected with stiff multi-step solvers like VODE or LSODE [70], mainly because of the ex-

pensive and less accurate starting procedure of multi-step schemes at each splitting time step, as

demonstrated, for instance, in [71].

Although the dynamic step size selection is made within a prescribed accuracy tolerance for

Radau5 and ROCK4, this is not currently the case for the convective scheme for which time

stepping is based only on stability constraints. As indicated in [46] and also in previous works

(see, e.g., [33]), the attention was focused on the numerical solution of stiff reaction-diffusion sys-

tems. Hence we have extended the numerical strategy to reaction-diffusion-convection problems

in which the main constraint for the convective term is given by the small time steps resulting

from stability conditions related to fine spatial discretizations. In this context, the convective

scheme must be at least of second order so that the numerical errors of the convection problem

also remain negligible with respect to the splitting errors.
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A Strang dimensional splitting [23] is implemented for the convective scheme to handle

multi-dimensional configurations:

C∆tC U(t) = C∆tC/2
x C∆tC/2

y C∆tC
z C

∆tC/2
y C∆tC/2

x U(t), (10)

where the convection steps ∆tC are limited by the stability restrictions of the numerical scheme.

This splitting procedure allows integrations with the theoretically right accuracy and easily en-

sures multi-dimensional MP/TVD constraints [69]. The stability constraint is given by a standard

CFL condition (inversely proportional to the finest spatial grid among all dimensions), and thus

a better solution considers rather

C2∆tC U(t) = C∆tC
x C

∆tC
y C

∆tC
z C

∆tC
z C

∆tC
y C

∆tC
x U(t), (11)

instead of (10), to better ensure the same numerical diffusion in all three directions and to pre-

serve the isotropy of the computations. Furthermore, at each time step ∆tC we need to perform

three steps in (11) to advance the solution, instead of five in (10). In the splitting scheme (7), the

operator C is thus given by

C∆t =

IC∏

i=1

C2∆tC,i , (12)

such that 2IC convection steps ∆tC,i are performed within the global splitting step ∆t, and formula

(11) is recast as

C2∆tC,i = C
∆tC,i
x C

∆tC,i
y C

∆tC,i
z C

∆tC,i
z C

∆tC,i
y C

∆tC,i
x . (13)

The intermediate time step ∆tC,i is the same for all points over the computational domain, and it

is given by

∆tC,i = min

∆tmax
C,i ,
∆t

2
−

i−1∑

i′=1

∆tC,i′

 , (14)

where ∆tmax
C,i

is the current maximum convection time step within the stability domain of the nu-

merical scheme. The previous procedure is general and remains valid for any convective scheme

and for both linear and nonlinear transport problems, with time- or space-varying transport ve-

locities.

A fully adaptive multiresolution technique based on [50] is then coupled with the previous

dedicated time adaptive operator splitting strategy. In this way, considering a finite volume dis-

cretization for problem (2) on a fine grid S J , the latter defines a set of dyadic nested meshes S j

on which problem (2) can be represented, for j = 0, 1, · · · , J, from the coarsest to the finest grid.

We denote by UJ
split

the numerical solution of the semi-discretized problem associated to sys-

tem (2), computed at some time t by the time adaptive splitting scheme (7) on the uniform grid

S J . Additionally, UMR
split

corresponds to the solution obtained with the proposed time-space adap-

tive scheme also using (7) this time on a dynamic adaptive mesh generated by multiresolution

analysis. Based on the multiresolution mathematical background [50], the following holds

∥∥∥UMR
split − UJ

split

∥∥∥
L2 ≤ Cε, (15)

for some positive C, where ε is a threshold parameter that sets the accuracy of the spatially

adapted representations. Smaller ε implies more refined (less compressed) and hence more ac-

curate solutions. Even though a rigorous mathematical proof of (15) is not yet available for

parabolic problems, this property was already checked numerically (see, e.g., [72, 73, 46]).
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The numerical accuracy of the simulations is then monitored by

∥∥∥UJ
qe − UMR

split

∥∥∥
L2 ≤

∥∥∥UJ
qe − UJ

split

∥∥∥
L2︸             ︷︷             ︸

O(η)

+
∥∥∥UJ

split − UMR
split

∥∥∥
L2︸               ︷︷               ︸

O(ε)

, (16)

where UJ
qe corresponds to a reference quasi-exact solution of the fully coupled reaction-diffusive-

convection problem (2), discretized on the uniform grid S J . Notice that the latter solution is

usually not available or too expensive to compute. Considering (16), the first term in the right-

hand side stands for the splitting errors, i.e., the time integration errors; whereas the second one,

for the space adaptive multiresolution procedure. The spatial discretization errors, which are in

practice difficult to evaluate unless an analytical solution is known, are therefore not included

in (16) and are settled by the order of discretization of the spatial operators and by the mesh

size of S J , which in turn is limited by the available computational resources. In this application,

second and third order spatial discretizations were considered for the diffusion and convection

subsystems, respectively, in (2).

4. Propagation of premixed flames

In the framework of problem (2) that models laminar flames interacting with vortices, one

may first study the performance of the proposed numerical strategy for the simulation of pre-

mixed flames in two- and three-dimensional configurations. The model under consideration is

borrowed from a configuration investigated by Laverdant & Candel in [74]. Some of these results

were previously announced in [75], in a more general context without any detailed analysis.

4.1. Model formulation

We consider a square computational domain where a mixture of fuel and oxidizer lies in the

lower half-plane, while products occupy the upper half-plane. Fast but finite rate kinetics give

rise to, a thin premixed laminar flame initially located at the mid-plane. The reaction rate is

modeled by the following Arrhenius equation [74]:

ẇ =
B1

WOWF

ρ2YOYFT 2e−Ta/T , (17)

where B1 is a pre-exponential factor and Ta, the activation energy. For premixed laminar flames,

the mixture may be assumed to be fuel lean with a high diluent concentration. Hence the reaction

rate is controlled by the fuel mass concentration, whereas the oxidizer mass fraction is nearly

constant and equal to its upstream value, YO = YOo. Therefore, (17) becomes

ẇ =
B1

WOWF

ρ2YOoYFT 2e−Ta/T . (18)

Subscripts ( )o, ( )b, and ( )⋆ respectively indicate, fresh mixture zone, burnt product zone, and

dimensionless variables.

The variation of the ratios ρo/ρb is assumed negligible because the pressure is essentially

constant according to hypothesis 6. With these hypotheses, the composite Schvab-Zeldo’vich

variable:

θZ = T +
Q

cp

YF, (19)
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verifies a time dependent equation of type (2) without source term like (3), whereas from a simple

energy balance relation in an adiabatic framework, we get

cp(Tb − To) = Q(YFo − YFb). (20)

By evaluating θZo and θZb in (19) and from (20), it can be seen that θZ is constant throughout the

flame. Consequently, a progress variable c(x, y, t) can be introduced:

c =
T − To

Tb − To

=
YFo − YF

YFo − YFb

. (21)

Defining τ = Tb/To − 1, we obtain that T/To = 1 + τc and the reaction rate (18) becomes

ẇ = B⋆YFo(1 − c)e−Ta/(To(1+τc)), (22)

taking into account that YFb = 0 into (21), with

B⋆ =
B1

WOWF

ρ2
oYOoT 2

o . (23)

Hence for the fuel mass fraction equation in (2), one now has

∂tYF + vx∂xYF + vy∂yYF − D
(
∂2

xYF + ∂
2
yYF

)
= −

B⋆

ρo

YFo(1 − c)e−Ta/(To(1+τc)), (24)

which may be written as

∂tc + vx∂xc + vy∂yc − D
(
∂2

xc + ∂2
yc

)
=

B⋆

ρo

(1 − c)e−Ta/(To(1+τc)). (25)

Considering a square computational domain of size 2L, a characteristic diffusion time τd = L2/D,

and a velocity V = D/L, one may define the following dimensionless variables:

x⋆ =
x

L
, y⋆ =

y

L
, vx,⋆ =

vx

V
, vy,⋆ =

vy

V
, t⋆ =

t

τd

. (26)

We finally obtain [74]:

∂t⋆c + vx,⋆∂x⋆c + vy,⋆∂y⋆c −
(
∂2

x⋆
c + ∂2

y⋆
c
)
= Da (1 − c)e−Ta/(To(1+τc)), (27)

where Da = B⋆τd/ρo = τd/τch is a Damköhler number and τch = B⋆/ρo, a chemical time.

The dimensionless tangential velocity induced by the viscous core vortex (4) becomes

vθ,⋆(r⋆, t⋆) =
Re Sc

r⋆

(
1 − e−r2

⋆/(4 Sc t⋆)
)
, (28)

where the Reynolds and Schmidt numbers are defined by

Re =
Γ

2πν
, Sc =

ν

D
. (29)

In cartesian coordinates, the velocity is given by

vx,⋆ =

(
y⋆ − y0,⋆

r⋆

)
vθ,⋆, vy,⋆ = −

(
x⋆ − x0,⋆

r⋆

)
vθ,⋆, (30)

for a counter-clockwise rotating vortex with radius

r2
⋆ = (x⋆ − x0,⋆)2 + (y⋆ − y0,⋆)2, (31)

where (x0,⋆, y0,⋆) is the center of the vortex.
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4.2. Numerical simulations: two-dimensional configuration

In this application we consider two dynamic counter-rotating vortices, each one modeled by

(28), interacting with a premixed flame governed by (27) in a two-dimensional computational

domain. All the simulations presented in this work have been performed on an AMD Shanghai

2.7 GHz processor with a memory capacity of 32 GB.

4.2.1. Data initialization and simulation parameters

We solve problem (27) with Neumann homogeneous boundary conditions in a two-dimensional

computational dimensionless domain of [−1, 1]2, i.e., L = 1 in (26). The initial condition corre-

sponds to a premixed flame in the limit of large activation energy [74]:

c =


e(y⋆−y0,⋆)/∆⋆ , y⋆ ≤ y0,⋆,

1, y⋆ > y0,⋆,
(32)

where ∆⋆ is the preheat zone thickness. The modeling parameters appearing in equations (27),

(28), and (32) are as follows: Da = 2.5 × 109, Ta = 20000 K, To = 300 K, τ = 6.72, Re =

1000, Sc = 1, and ∆⋆ = 0.02. The velocity field is given by the superposition of two vortices

with opposite signs in (30), centered at (−0.25,−0.5) for the counter-clockwise vortex, and at

(0.25,−0.5) for the clockwise one. We thus take y0,⋆ = −0.5 into (32). Velocities as well as the

maximum time step ∆tmax
C,i

are computed before each time integration of the convection problem

and updated after two time steps ∆tC,i according to (12).

The adaptive splitting accuracy tolerance in (9) is set to η = 10−3, unless noted otherwise,

with ηROCK4 = 10−5 and ηRadau5 = 10−7 for the ROCK4 and Radau5 solvers. The third order

OSMP scheme is employed for the convection problem with a stability CFL condition equal to

1. In the computations, the shifting parameter δ for the lower order Strang scheme (8) is taken

as a constant and sufficiently large value3 of 0.05. Regarding (9), the following constraint was

additionally considered for the dynamic computation of the splitting time steps:

∆tnew = min

α1∆t, υ∆t

√
η∥∥∥S∆tU(t) − S̃∆tU(t)

∥∥∥
L2

 , (33)

with α1 equal to 1.5. This procedure is implemented to avoid large variations of time integration

steps, taking also into account that the adapted grid is fixed during each time step. The time

domain of integration is given by t⋆ into [0, 4× 10−3]. For the multiresolution analysis, ε = 10−2

and ε = 10−3 are chosen as multiresolution threshold values in the following illustrations. (We

shall discuss and analyze later on the choice of the tolerance parameters, in particular in §5) The

finest grid corresponds to a spatial discretization of 10242 points, i.e., J = 10 as finest grid level.

4.2.2. Characterization of the numerical performance of the method

According to the definition of the progress variable c in (21), the fresh mixture is given

by c = 0, whereas c = 1 corresponds to the burnt gases. Starting from the planar premixed

flame (32) at y⋆ = −0.5, with fresh gases in the lower part (blue zone in the figure), Figure 1

(top) shows the time evolution of c and the interaction of the two imposed vortices with the flame

3It was shown in [52] that large values of δ (noted ε in [52]) will in general extend the valid working region of the

adaptive splitting technique, i.e., local error estimates err should remain valid for larger splitting time steps.
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front. The velocity field generated by the vortices is shown in Figure 2 (left), and is characterized

by high values with localized strong gradients for the selected value of vortex Reynolds number

of Re = 1000. As a consequence, the fresh mixture is drawn up towards the hot region (red zone

in Figure 1 (top)) in the center region, at a rate which is much faster than the normal burning

velocity of the reaction front, whereas hot gases propagate faster in the outer zones around the

vortex cores.

Figure 1: Two-dimensional propagating flame. Time evolution of progress variable c at t⋆ = 5×10−4 (left), 10−3 (center),

and 1.5 × 10−3 (right). Top: red (resp., blue) zone corresponds to burnt (resp., fresh) gases, c = 1 (resp., c = 0). Middle:

contour lines with c = 0−0.99 and ∆c = 0.11. Bottom: dynamic adapted grid corresponding to 10242 points at the finest

level J = 10 with ε = 10−3.

The contour lines in Figure 1 (middle) account for the spatial thickness of the flame in which

fresh gases react and burn, and where an important numerical effort is usually required to pre-

cisely describe the phenomenon. In this configuration the flame thickness is reduced from about

0.05 in the standard planar configuration, to approximatively 0.025 in regions where the flame

surface is strained by the locally high velocity gradients, as shown in Figure 2 (left). A spa-

tial mesh of 10242 points involves approximatively 10 discretization points throughout the flame
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front, and generates a reasonably good numerical representation of the problem. From a numer-

ical point of view, the latter issue imposes a fine spatial discretization for a localized structure

100 times smaller than the global scale of the computational domain, and naturally justifies an

adaptive mesh refinement technique. Figure 1 (bottom) shows the corresponding adapted grids.

The representation involves 7 levels of different spatial discretization where the finest regions

coincide with the propagating front. The data compressions DC illustrated in Figure 2 (right) are

defined as 1 minus the ratio between the number of cells on the adapted grid AG and those on

the finest uniform grid FG (10242 in this case), expressing the whole as a percentage:

DC =

(
1 −

AG

FG

)
× 100. (34)

For ε = 10−2 and ε = 10−3, no more than, respectively, 10 % or 15 % of the 10242 points are

necessary to represent the flame front within the prescribed tolerance.
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Figure 2: Two-dimensional propagating flame. Left: velocity vy,⋆ at y⋆ = −0.5, at t⋆ = 10−3 and t⋆ = 3 × 10−3. Right:

time evolution of data compressions DC for ε = 10−2 and ε = 10−3.

In order to verify that the accuracy of the computations is settled by the accuracy tolerances,

one may define for problem (27), discretized on a uniform mesh of 10242:

• A quasi-exact reference solution cJ
qe, obtained with the Strang scheme (7) with a small and

constant splitting time step of ∆t = 10−7;

• The splitting solution cJ
split

is now obtained with the adaptive splitting scheme (7), with

(33) and accuracy tolerance of η = 10−3, computed also on the uniform grid; and

• The time-space adaptive solution cMR
split

, composed of the adaptive splitting technique and

the multiresolution representation with a spatial resolution equivalent to 10242 points in

the finest grid level J = 10.

Defining also the numerical errors following (16):

EJ
split =

∥∥∥cJ
qe − cJ

split

∥∥∥
L2 , EJ

MR =
∥∥∥cJ

split − cMR
split

∥∥∥
L2 , EMR

split =
∥∥∥cJ

qe − cMR
split

∥∥∥
L2 , (35)

corresponding, respectively, to the time adaptive splitting, space adaptive multiresolution, and

time-space adaptive approximations, the following Table 1 summarizes these errors where the
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solutions on adapted grids cMR
split

, were reconstructed on the finest grid only to compute the errors.

With this choice of parameters, it is observed that the global accuracy of the numerical strategy

EMR
split

is ruled by the time integration approximation error EJ
split

, which is related to the local error

tolerance η. The latter global error will remain practically independent of the multiresolution

errors EJ
MR

as seen in Table 1, for these and smaller threshold values. Notice however that a

thresholding ε of 10−2 yields errors of O(10−3), and hence a better performance than expected.

The latter is nevertheless a problem dependent feature and a safer choice generally would be

to set ε equal to η at most, in order to guarantee sufficiently accurate spatial representations

for the numerical time integration of the problem. Concerning the multiresolution errors, the

proportionality with respect to ε is roughly verified, taking into account the improved accuracy

for ε = 10−2, as previously noted. In this way we observe a good behavior of the method in

terms of control of the numerical accuracy; a more detailed analysis is nevertheless postponed to

§5.2.3 for a more complex configuration.

Table 1: L2 numerical errors for the time adaptive splitting (EJ
split

), space adaptive multiresolution (EJ
MR

), and time-space

adaptive (EMR
split

) strategies evaluated at different times. Finest grid: 10242.

t⋆ [10−3] EJ
split

[10−2]
EJ

MR
[10−3] EMR

split
[10−2]

ε = 10−2 ε = 10−3 ε = 10−2 ε = 10−3

0.5 1.45 5.28 1.79 1.14 1.16

1.0 2.71 6.36 1.69 2.17 2.28

1.5 4.74 7.37 3.12 4.14 4.34

2.0 5.74 7.05 3.47 5.21 5.44

Table 2: CPU time in minutes for the time-space adaptive, the time adaptive splitting, and the quasi-exact strategies for

t⋆ into [0, 2 × 10−3]. Finest grid: 10242.

MR-splitting ε =
splitting quasi-exact

10−2 10−3

CPU time (min.) 56.27 71.05 589.00 6603.26

Table 2 includes the CPU times for half the time domain of study: t⋆ into [0, 2 × 10−3],

taking into account that the reference quasi-exact solution is expensive to compute. The splitting

CPU time accounts for the cost reduction with respect to the quasi-exact solution that considers

a small time step of the order of the fastest numerical scale (the convective CFL constraint in

this case). Notice that more effective strategies could be implemented to obtain the coupled

reference solution, and the previous values should be taken as one possible numerical indicator.

Additionally, the CPU times related to the time-space adaptive technique account for the gain

issued from the compressed data representation, if one compares them with the splitting CPU

time. In this case these gains are coherent with the corresponding data compressions achieved

with each threshold value in Figure 2 (right), for instance, about 90 % and 88 % for a threshold
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value ε of, respectively, 10−2 and 10−3. The total CPU time for the time-space adaptive technique

for the whole time domain of study [0, 4×10−3] was about 80.73 and 98.38 minutes for ε = 10−2

and ε = 10−3, respectively.

Finally, Figure 3 illustrates the adaptive time steps considered in this problem. The splitting

time steps are practically the same for both multiresolution tolerances. This indicates an appro-

priate spatial representation of the propagating fronts on the corresponding adapted meshes for

the given set of tolerances (η and ε), considering that the time integration is performed on an

adapted but fixed grid. Otherwise, any deficiency would be reflected by the local error estimates,

and thus by the splitting time steps issued from the time adaptive scheme. An initial value of

∆t = 10−8 was chosen in order to cope with the sudden appearance of the velocity field with

very high maximum values of about 4 × 105, with Re = 1000 into (28). Additionally it can

be observed that the introduction of (33) to limit the growth of the splitting time steps yields

a smooth evolution of the time stepping, and furthermore ensures an appropriate spatial repre-

sentation of this particular initialization with a highly varying velocity field during the transient

phase. Taking into account that the global physics is controlled by the propagation of the flame,

the splitting time steps evolve until a practically constant value of ∆t ≈ 10−5. Nevertheless, time

adaptation is needed to handle fast variations in the beginning of the process, and for the final

total combustion of the fresh gases at some unknown time. In this configuration, all gases are

burnt by t⋆ = 3.5× 10−3. The disclosed behavior of the time stepping procedure thus follows the

physics of this particular problem and moreover justifies the choice of a constant shift parameter

δ. However in a general situation, the dynamic evaluation of δ, as described in [52], should be

included.
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Figure 3: Two-dimensional propagating flame. Time evolution of the splitting time step ∆t, the reactive ∆tR1 and diffusive

∆tD1 substeps during the first splitting half-step, and the convective ones ∆tC according to the Strang scheme (7) with

tolerances η = 10−3 and ε = 10−2 (left) or ε = 10−3 (right).

Figure 3 also shows that an important decoupling of time scales is possible, where the split-

ting time step ∆t is globally at least 10 times larger than the inner integration steps for the split

reaction, diffusion, and convection problems. This naturally yields important gains of computa-

tional efficiency, always within a prescribed accuracy. The reaction and diffusion time steps are

dynamically set based on the accuracy tolerances ηRadau5 and ηROCK4, and for each half splitting

time step we represent in Figure 3 the averaged values of the inner reaction and diffusion sub-

steps in order to obtain clearer representations. Reaction steps are of the order of ∆tR ≈ 7 × 10−7

at the flame front (shown in Figure 3), and they progressively increase up to ∆tR = ∆t/2 away
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from the highly reacting area. Diffusion time steps are of the order of ∆tD ≈ 10−6. The reaction

and diffusion substeps corresponding to the second splitting half-step (not represented in Figure

3) behave qualitatively similar to those during the first half-step. The convection time steps are

computed by (14), based on the maximum stability time steps ∆tmax
C,i

, which are illustrated in

Figure 3. This convective step ranges from ∆tC ≈ 2 × 10−9 in the beginning to ∆tC ≈ 2 × 10−7

and then ∆tC ≈ 5 × 10−6, due mainly to the constraining high Reynolds number considered.

4.3. Numerical simulations: three-dimensional configuration

The time-space adaptive technique is easily extended to three-dimensional configurations.

In order to illustrate this, we consider the solution of (27) over a dimensionless computational

domain of [−1, 1]3.

Figure 4: Three-dimensional propagating flame. Time evolution of progress variable c at t⋆ = 5 × 10−4 (left) and

1.5 × 10−3 (right). Top: isosurfaces for c equal to 0.01 (blue) and 0.99 (red). Bottom: dynamic adapted grids (right)

corresponding to 2563 points at the finest level J = 8. Contour lines with c = 0.01 − 0.91 and ∆c = 0.3.

The same data initialization is considered with, respectively, z⋆ and z0,⋆, instead of y⋆ and

y0,⋆ in (32), as well as the same previous modeling parameters. The adaptive splitting accuracy

tolerance in (9) is also set to η = 10−3, with ηROCK4 = 10−5, ηRadau5 = 10−7, and ε = 10−2 for

the multiresolution threshold value, following the previous two-dimensional results. The time

domain of integration is given by t⋆ into [0, 3.5 × 10−3], whereas the finest grid corresponds

to a spatial discretization of 2563 points, i.e., J = 8 as finest grid level. The three-dimensional

velocity field is defined by a toroidal vortex directly deduced from the previous two-dimensional

velocity field. In each plane containing the z-axis, we consider thus a pair of counter-rotating
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vortices computed as usual with (28) where the radius is defined by

r2
⋆ = (x⋆ − x0,⋆)2 + (y⋆ − y0,⋆)2 + (z⋆ − z0,⋆)2, (36)

centered at
(
x2

0,⋆
+ y2

0,⋆

)1/2
= 0.25, and with z0,⋆ = −0.5. Although the resulting field is not diver-

gence free, it suffices to construct a three-dimensional configuration to illustrate the numerical

capabilities of the method. The same simulations can be performed exactly in the same way with

more physically consistent velocity fields. Figure 4 shows the interaction of the initial premixed

flame with the toroidal vortex, and the corresponding adapted grids on which the solutions are

computed.

Figure 5 shows the corresponding time steps of integration. We retrieve a qualitatively similar

behavior with respect to the previous two-dimensional case, in terms of splitting time steps and

the time stepping for each split subproblem. The fresh gases are completely burnt at a time

t⋆ = 3× 10−3. Considering the obtained data compression, no more than 18 % of the 2563 points

are required. This simulation took approximatively 17.26 hours of CPU time.
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Figure 5: Three-dimensional propagating flame. Left: time evolution of the splitting time step ∆t, the reactive ∆tR1 and

diffusive ∆tD1 substeps during the first splitting half-step, and the convective ones ∆tC with tolerances η = 10−3 and

ε = 10−2. Right: time evolution of data compressions DC with ε = 10−2.

5. Ignition of diffusion flames

In this section, we investigate the ignition dynamics of a diffusion flame interacting with a

vortex. The mathematical model was envisaged by Thévenin & Candel in [76]. In what follows

we consider several physical configurations investigated in [76] and conduct a both qualitative

and quantitative study on the performance of the present time-space adaptive method. Some

preliminary results on one particular configuration were recently described in [77].

5.1. Model formulation

Let us consider a two-dimensional computational domain where pure and fresh hydrogen

with mass fraction YF,0 at temperature TF,0 initially occupies the upper half part while the re-

maining lower part of the domain is occupied by hot air at TO,0 with an oxidizer mass fraction

YO,0. A single vortex modeled by (4) and centered on the planar interface between the two media,
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is then introduced to transport and mix both reactants. The dynamics of this system are described

by the general set of equations (2) with (3), where the reaction rate is modeled by

ẇ =
ρ2

νFWF

AYOYFe(−Ta/T ), (37)

in which A is a pre-exponential factor and Ta, the activation energy.

One may construct Schvab-Zeldo’vich variables by combining the reacting species mass frac-

tions with proper coefficients, to obtain a balance equation without source term, analogous to the

equation (3) governing YN. Thus, introducing the reduced total heat released χ; the normalized

temperature difference between reactants τ; the product to fuel stoichiometric ratio σ; the global

equivalence ratio corresponding to a complete mixing between reactants in their initial state φ;

and the stoichiometric factor s, defined respectively by

χ =
QYF,0

cpTO,0

, τ =
TF,0 − TO,0

TO,0

, σ =
νPWP

νFWF

, φ = s
YF,0

YO,0

, s =
νOWO

νFWF

, (38)

one may define the following variables [76]:

Z1 =
χYF/YF,0 + τθ

χ + τ
, Z2 =

χYO/(φYO,0) − χ/φ + τθ

−χ/φ + τ
, Z3 =

−χYP/(σYF,0) + τθ

τ
, (39)

where θ is the reduced temperature given by

θ =
T − TO,0

TF,0 − TO,0

. (40)

This set of variables (Z1,Z2,Z3) are initially equal and follow the same balance equation without

reaction term (like (3)) and with the same boundary conditions. They are therefore equal at

each point and for all times to the same value Z. Introducing the same dimensionless variables

previously defined in (26), we obtain a reduced system of equations of the form [76]:

∂t⋆Z + vx,⋆∂x⋆Z + vy,⋆∂y⋆Z −
(
∂2

x⋆
Z + ∂2

y⋆
Z
)
= 0,

∂t⋆θ + vx,⋆∂x⋆θ + vy,⋆∂y⋆θ −
(
∂2

x⋆
θ + ∂2

y⋆
θ
)
= F(Z, θ),


(41)

with

F(Z, θ) = Da φχYO,0

[
1 − Z

φτ
+

1

χ
(Z − θ)

] [
Z +
τ

χ
(Z − θ)

]
e(−τa/(1+τθ)), (42)

where τa = Ta/TO,0 is the reduced activation temperature and with the Damköhler number de-

fined by Da = ρAτd.

5.2. Numerical simulations

We consider a two-dimensional computational domain with initially separated fresh fuel and

hot air. A single vortex modeled by (28) constitute the velocity field imposed to the system.
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5.2.1. Data initialization and simulation parameters

We consider the numerical solution of (41)-(42) with Neumann homogeneous boundary con-

ditions in a dimensionless domain of [−1, 1]2, i.e., L = 1. The initial condition is given by

Z(x⋆, y⋆) = θ(x⋆, y⋆) =
1

2

[
1 + tanh(α

(
y⋆ − y0,⋆)

)]
, (43)

where α = 200. Notice that according to (39) and (40), Z(x⋆, y⋆) = θ(x⋆, y⋆) = 1 in the upper

half-plane for the fresh fuel, and Z(x⋆, y⋆) = θ(x⋆, y⋆) = 0 in the lower part for the hot air.

Therefore, considering the time dependent equation for Z in (41), Z must be included into [0, 1]

at any time. Additionally, θ ≤ 1 according to (40). The initial mass fractions and temperatures of

the gases are given by YF,0 = 1, YO,0 = 0.23, TF,0 = 300 K, and TO,0. The following values define

the characteristic parameters (38) for the evaluation of the reaction rate (42) and the velocity field

(28): Q/cp = 5× 104 K, s = 8, Da = 1.65× 107, Ta = 8000 K, Sc = 1, and Re. The velocity field

is given by the vortex rotating in the counter-clockwise direction, defined by (30) and centered at

(0, 0). We thus take y0,⋆ = 0 into (43). In the following computations we will consider different

values of the vortex Reynolds number Re and the air temperature TO,0 in order to characterize

different physical scenarios according to [76].

Regarding the numerical strategy and unless otherwise noted the adaptive splitting accuracy

tolerance in (9) is set to η = 10−3, with ηROCK4 = 10−5, ηRadau5 = 10−7, and the third order OSMP

scheme with a stability CFL condition equal to 1. As in the previous computations and after

some preliminary runs, we consider the same constant shift parameter δ, equal to 0.05, for the

lower order Strang scheme (8) and the growth limiting procedure for splitting time steps given

by (33). The grid adaptation was performed with ε = 10−3, unless otherwise noted, for a finest

grid corresponding to a spatial discretization of 10242 points, i.e., J = 10 as finest grid level.

5.2.2. Three different ignition dynamics

In this part we reproduce some of the computations performed in [76] with the proposed

numerical strategy. The main goal of this example is to evaluate the capabilities of the time-space

adaptive scheme to simulate different physical scenarios by means of a qualitative comparison

with previous results in [76].

Thévenin & Candel considered a standard alternate direction implicit technique [78] with

dynamic time stepping ruled by both an advective and a chemical time step limitation such that

the increase of the local product mass fraction is restricted to 1 % over one time step. Very small

time steps were thus required during thermal runaway and the propagation phase for a space

discretization typically of 5002 points [76]. In their paper these authors identified and described

three different configurations with their corresponding ignition dynamics. Taking into account

the various inputs of the model, two parameters were chosen and varied in the computations to

switch from one regime to another: the vortex Reynolds number Re and the air temperature TO,0.

The upper half-plane is initially occupied by fresh fuel at TF,0 = 300 K, whereas the remaining

lower half contains hot air at TO,0. The counter-clockwise rotating vortex (30) centered on the

planar interface is introduced immediately at t⋆ = 0. The resulting forced convection super-

poses to the diffusive mechanisms and accelerates the mixture of the gases. As a consequence,

a diffusion flame ignites along the contact surface of both media. Additionally the velocity field

entrains initially fresh gases into the vortex core which reacts with an intensity set by the mixing

temperature of gases of about (TF,0 + TO,0)/2. The complete behavior is clearly a function of the

initial reactants configuration and of the imposed velocity field, as studied in detail in [76].
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Figure 6: Two-dimensional flame ignition in a vortex field. Instantaneous heat release rate F at t⋆ = 4 × 10−4 (top

left), 8 × 10−4 (top right), and 10−3 (bottom left). Diffusion ignition mode for a moderate air temperature TO,0 of 800 K

and vortex Reynolds number Re of 160. Bottom right: time evolution of splitting time steps and maximum temperature

T , deduced from θ. Rejected time steps are indicated with black bullets (•) while maximum temperatures for previous

snapshots are marked with (◦).

The first configuration illustrated in Figure 6 corresponds to an ignition process with mod-

erate air temperatures, that is TO,0 less than 1000 K. In particular TO,0 was set to 800 K in these

computations with a vortex Reynolds number Re of 160. Instantaneous values of the heat release

F given by (42) are shown in Figure 6. Note that the scale changes in each snapshot in order

to get a better representation of the flame structure. The hot air temperature is enough to favor

the ignition of a diffusion flame along the braids, after a long but finite time. Some time after,

a diffusion flame is also ignited near the central vortex core and progressively consumes it in

a completely independent way of the burning process in the braids. Two well-separated flames

are hence generated. For this configuration the central core is characterized by well mixed gases

and the resulting mixture temperature is low such that the ignition delay is quasi-infinite. This

burning dynamics corresponds to a diffusion ignition mode. These results suitably reproduce

the dynamics described in [76], even for the corresponding maximum heat release. Figure 6

shows also the dynamic variation of the splitting time step ∆t for the given accuracy tolerance

of η = 10−3 according to the physics of the problem, illustrated in this example by the thermal

runaway and the rejection of the corresponding splitting time steps. The maximum temperature

(max T ) is derived out of θ into (40). More precise analyses on the performance of the method

will be conducted in a particular configuration in the next section. This simulation takes approx-
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Figure 7: Two-dimensional flame ignition in a vortex field. Instantaneous heat release rate F at t⋆ = 4 × 10−6 (top left),

7 × 10−6 (top right), and 9 × 10−6 (bottom left). Premixed ignition mode for a high air temperature TO,0 of 2000 K and

vortex Reynolds number Re of 700. Bottom right: time evolution of splitting time steps and maximum temperature T ,

deduced from θ. Maximum temperatures for previous snapshots are marked with circles (◦).

imately 10 minutes of CPU time for t⋆ up to 10−3.

Figure 7 illustrates a configuration with an air temperature TO,0 of 2000 K and a vortex

Reynolds number Re of 700, following the second example in [76]. This case describes an

ignition process for a higher air temperature, characterized by a quick self-ignition of the vortex

center resulting in a premixed flame that propagates outwards from the center. A diffusion flame

is independently developed in the braids together with a premixed flame on the fuel side of the

domain, close to the diffusion flame layer. As studied in [76], this configuration corresponds

to the premixed ignition mode. Once again these computations qualitatively reproduce previous

results but with higher values of heat release. This is a direct consequence of the finer spatial res-

olution used in the present computations that yields better discrete representations of the highly

nonlinear function F. In the present illustration a shorter distance can be observed between both

diffusion and premixed flames in the braids. Additional runs demonstrated that this distance is

related to the initial solution (43) by means of the α parameter, which is very likely not the same

in both computations4. Note that thermal runaway is almost instantaneous for high temperatures

and takes place during the transient phase associated to the initial highly increasing velocity field,

4Smaller values of α imply larger distances between flames without significant alteration of the dynamics of the

vortex center. Computations in [76] seem to consider α equal to 100 for this case.
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Figure 8: Two-dimensional flame ignition in a vortex field. Instantaneous heat release rate F at t⋆ = 4 × 10−5 (top left),

7×10−5 (top right), and 8.5×10−5 (bottom left). Mixed ignition mode for an intermediate air temperature TO,0 of 1200 K

and vortex Reynolds number Re of 500. Bottom right: time evolution of splitting time steps and maximum temperature

T , deduced from θ. Rejected time steps are indicated with black bullets (•) while maximum temperatures for previous

snapshots are marked with (◦).

and consequently to sufficiently small splitting time steps. This simulation takes approximately

1 minute of CPU time for t⋆ up to 10−5.

Finally, Figure 8 illustrates the third and last case corresponding to an intermediate air tem-

perature TO,0 of 1200 K and vortex Reynolds number Re of 500. A mixed ignition regime is

observed in this configuration in which the diffusion flame in the braids is ignited before the

vortex core. The mixture in the core eventually burns and is progressively consumed by both

types of flames: from the outer edge by the diffusion flame originated from the braids as in the

first case, and outwards by the self-ignition of the well mixed core as in the second case. Results

in [76] are well retrieved but with an improved representation of the heat release distribution.

Note that scales of heat release rate change in each snapshot for better visualization. Thermal

runaway takes place after the initial vortex transient as in the first case, and the simulation takes

approximately 4 minutes of CPU time for t⋆ up to 10−4. Notice that all of these computations

were performed in a very small amount of CPU time, thanks to the time-space adaptive capa-

bilities of the method as we shall see in the following section, and hence exhaustive parametric

studies could be easily conducted for different applications. Further interpretations of the various

regimes of ignition and resulting configurations can be found in [76].
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5.2.3. Characterization of numerical errors and performance of the method

In the previous section the ignition dynamics was briefly described from a purely physical

point of view for different configurations in order to establish qualitative comparisons with pre-

vious results. In this part we are interested in evaluating the efficiency of the present method in

a more quantitative way and in particular throughout the fast transition phase, numerically the

most difficult part of the problem, contrary to the previous situation in Figures 6, 7, and 8 where

the study was carried out practically after the thermal runaway process.

Figure 9: Two-dimensional flame ignition in a vortex field. Time evolution of temperature T at t⋆ = 5 × 10−5 (right),

10−4 (center), and 1.5× 10−4 (left). Initial temperature of the fresh fuel: TF,0 = 300 K, and of the hot air: TO,0 = 1000 K.

Bottom: dynamic adapted grid corresponding to 10242 points at the finest level J = 10 with ε = 10−3.

We consider in this section fresh fuel initially at TF,0 equal to 300 K and hot air at a tem-

perature TO,0 of 1000 K, corresponding to the third and last ignition mode for intermediate air

temperatures, but with a higher vortex Reynolds number Re of 1000. By decreasing the air tem-

perature we aim at shifting the sudden change in physics observed in Figure 8 and certainly not

known at the start of the calculation, away from the initial transient behavior and corresponding

small splitting time steps as seen in Figure 7. Beyond the inherent stiffness of the governing equa-

tions, a higher Reynolds number also imposes more severe convective conditions. In this way

the chosen configuration qualitatively reproduces the physics encountered in the previous part

but under numerically tougher constraints. Figure 9 (top) illustrates the thermal runaway during

the ignition process. Temperatures are displayed at times t⋆ of 5 × 10−5, 10−4, and 1.5 × 10−4,

for which the maximum temperature is given, respectively, by approximately 1094 K, 2108 K,

and 2209 K. The corresponding adapted grids are also shown in Figure 9 (bottom) for a more il-

lustrative three-dimensional representation of the temperature. We have verified that the mixture

transverse size and the corresponding flame thickness are of the order of 0.025, similar to the
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previous propagating case. A spatial discretization of 10242 points is thus reasonably accurate.

Figure 9 (bottom) shows that the finest regions dynamically identify the local rise in temperature

until ignition of the entire contact surface. In particular, the initial front does not require a full

representation on the finest grid for a threshold tolerance of ε = 10−3 (see Figure 9 (bottom left)).

The complete refinement of the front then takes place after ignition and subsequent formation of

steeper gradients. One finds that for smaller threshold values the initial front itself lies within the

finest grid, but it is interesting to retain the current configuration to illustrate a limit case.

Figure 10: Two-dimensional flame ignition in a vortex field. Time evolution of temperature T (top) and corresponding

adapted grid equivalent to 10242 points at the finest level J = 10 with ε = 10−3 (bottom) at t⋆ = 2.63 × 10−4 (right),

3.54 × 10−4 (center), and 4.59 × 10−4 (left).

The complete consumption of the gas mixture at the vortex core is depicted in Figure 10 at

times t⋆ of 2.63 × 10−4, 3.54 × 10−4, and 4.59 × 10−4, with maximum temperatures of approx-

imately 2274 K, 2295 K, and 2309 K, respectively. The adaptive meshes on which the solutions

are computed, are also represented in Figure 10. Comparing with the dynamics encountered in

Figure 8, it can be noticed that a higher vortex Reynolds number naturally favors a faster prop-

agation of the diffusion flame close to the vortex center, whereas a lower air temperature results

in a weaker reactive intensity of the premixed core. As a consequence the well mixed core is

burnt much faster from its outer edge until full consumption of the fuel. All these features can be

observed during the evolution of the heat release rate F in Figure 11, in which the heat release

scale changes to better follow the flame dynamics.

From now on we focus on the time interval defined by t⋆ and [0, 1.5 × 10−4], which contains

the physical transition from inert mixing to ignition of the reactants. Figure 12 illustrates the

resulting time adaptation featured by the numerical strategy. As in the previous computations
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Figure 11: Two-dimensional flame ignition in a vortex field. Instantaneous heat release rate F at t⋆ = 5 × 10−5, 10−4,

1.5×10−4, 2.63×10−4, 3.54×10−4, and 4.59×10−4. Scale of F changes in each image for better representation. Ignition

mode for an air temperature TO,0 of 1000 K and vortex Reynolds number Re of 1000.
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Figure 12: Two-dimensional flame ignition in a vortex field. Time adaptation is well apparent in the time evolution of

splitting time steps ∆t with accuracy tolerance η = 10−3 (left), as well as the reactive ∆tR1 and diffusive ∆tD1 substeps

during the first splitting half-step, and the convective ones ∆tC in the Strang scheme (7) (right). Solutions were computed

on a dynamically adapted grid corresponding to 10242 points at the finest level J = 10 with ε = 10−3.

in §4, an initial splitting time step of ∆t = 10−8 with the growth limiting procedure (33) were

considered to properly handle the inclusion of the vortex and the fast variation of the velocity

field. The splitting step increases until t⋆ ≈ 6.5 × 10−5 (∆t ≈ 1.89 × 10−5) during the mixing

phase, and one then finds a series of rejected steps for the given accuracy tolerance η of 10−3.

The splitting time step is thus reduced down to the time scale needed to guarantee the prescribed

accuracy: ∆t ≈ 1.12 × 10−7. This behavior naturally coincides with the sudden ignition of the

flame and the subsequent fast propagation along the contact surface, once a certain temperature

is locally reached after the initial mixing of reactants. A dynamic adaptation of the splitting time

step is hence mandatory to identify these changes in the physical behavior of the phenomenon
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and to suitably describe this process. As in the previous case in §4, a constant and relatively

large δ-shift in (8) is accurate enough, since strong variations in time stepping are associated

to important time step reductions for which the theoretical framework of the adaptive splitting

scheme is certainly valid [52]. Nevertheless, the dynamic evaluation of δ would be required for

more general configurations.

The resulting reaction, diffusion, and convection time integration steps for η = 10−3 are

displayed in Figure 12 (right). Only the minimum reaction steps are represented which are of the

order of ∆tR ≈ 10−6 and ∆tR ≈ 5×10−7 at the flame front, respectively, before and after complete

ignition of the flame. For each splitting time step the local reaction time steps progressively

increase from the depicted values up to ∆tR = ∆t/2 for the points lying away from the highly

reactive area. Diffusion time steps are of the order of ∆tD ≈ 10−6, whereas the convective step

ranges from ∆tC ≈ 10−9 in the beginning to ∆tC ≈ 10−7. Once again, the convection time step

is the most constraining step considering the high Reynolds number value adopted in the present

calculations.
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Figure 13: Two-dimensional flame ignition in a vortex field. Time and space adaptation given by the time evolution of

splitting time steps ∆t (left) and of data compressions DC (right) for several accuracy tolerances η and ε.

In what follows we investigate the accuracy and computational costs of the numerical ap-

proximations issued from the proposed adaptive method, as previously performed in §4. We thus

consider again the quasi-exact and splitting solutions represented on a uniform grid of 10242

points, and computed with, respectively, a constant splitting time step ∆t of 10−7 and a splitting

time stepping according to the η accuracy tolerance. Let us underline that the quasi-exact approx-

imation is indeed a splitting one but with a sufficiently small time step such that all time scales are

practically coupled (see, e.g., Figure 12) and the splitting errors are negligible. Alternatively the

adaptive method was implemented with different splitting accuracy tolerances η of 10−3, 10−4,

10−5, and 10−6. In each case the multiresolution threshold value ε was taken equal to the corre-

sponding η parameter, i.e., η = ε, following previous results in §45; we shall further discuss this

choice later on. Figure 13 (left) illustrates the splitting time stepping for different η tolerances.

No rejection of time steps is observed for η equal to 10−5 or smaller, and several time steps in

the transient phase coincide for different tolerances due to the limiting growth procedure (33).

Time integration on a uniform grid yields essentially the same splitting time stepping observed in

5The configuration given by η = 10−3 and ε = 10−2 was briefly investigated in [77].
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Figure 13. Additionally Figure 13 (right) illustrates the time evolution of data compressions DC.

Recalling that time integration is performed on a constant adapted grid and that the remeshing

period is set by the splitting time step, the dynamic evaluation of the splitting time step allows

an adequate updating of the spatial representation and consequently the necessary refinement of

the spatial configuration corresponding to the new physics of ignition. The latter is particularly

observed for the case ε = 10−3, a limit case for which the initial front is not fully represented on

the finest grid, as previously remarked in Figure 9.
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Figure 14: Two-dimensional flame ignition in a vortex field. Maximum temperature during a time interval of [0.4 ×

10−4, 1.2 × 10−4] (top left), [0.4 × 10−4, 0.65 × 10−4] (top right), and [0.62 × 10−4, 0.72 × 10−4] (bottom left) for several

accuracy tolerances η and ε. Bottom right: detail of accepted and rejected solutions for η = ε = 10−3.

As an illustration of the numerical reproduction of the physical dynamics of the problem, let

us consider the evolution of the maximum temperature. Notice that an increase of about 1000 K

takes place during a time interval of 4× 10−5. Figure 14 (from top left to bottom right) illustrates

this increase, approximated by the quasi-exact solution and the splitting ones with different accu-

racy tolerances. This accuracy parameter defines the splitting time steps and thus the permitted

physical decoupling. Coarser tolerances involve thereby higher splitting errors and hence less

accurate solutions, as observed, for instance, for the local maximum temperatures6. In particular

it can be seen that large integration time steps can be afforded for stiff PDEs and yet guarantee

6Let us recall that the adaptive scheme does not consider errors on the maximum temperature into (33), but the

L2-norm of the estimated local error of the numerical solution, err.
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solutions within an accuracy tolerance, as long as a robust adaptive method tracks the numerical

errors. The latter situation is depicted in Figure 14 (bottom) for η = 10−3, where relatively large

splitting time steps eventually lead to solutions too distant, i.e., out of the tolerance range, from

the right dynamics. Rejections are hence necessary to redirect the solution on the good track.

Considering similarly the case η = 10−4 in Figure 13, a decrease of time steps is observed, suf-

ficiently to cope with the initial ignition transients, but at a rate not enough to handle properly

the whole thermal runaway process7. Rejections and re-computations are once again needed to

avoid physically wrong solutions. It is therefore shown that even though the error estimates and

consequently the rejected time steps cannot indicate a particular time in the physical transition of

the problem, such as the ignition time of the flame, they are essential to detect the incapacity of

the method to follow within a given tolerance the right dynamics of the problem when important

physical changes are taking place.

Table 3: L2 numerical errors for the space adaptive multiresolution (EJ
MR

), time adaptive splitting (EJ
split

), and time-space

adaptive (EMR
split

) solutions evaluated at different times. Finest grid: 10242.

η ε
t⋆ [10−4]

0.5 1.0

EJ
MR

− 10−3 1.87 × 10−3 3.54 × 10−3

− 10−4 3.32 × 10−3 3.24 × 10−3

− 10−5 1.86 × 10−4 1.51 × 10−4

− 10−6 4.22 × 10−6 3.49 × 10−6

EJ
split

10−3 − 4.03 × 10−4 1.38 × 10−3

10−4 − 2.03 × 10−4 3.09 × 10−4

10−5 − 1.55 × 10−4 8.87 × 10−5

10−6 − 1.12 × 10−4 2.24 × 10−5

EMR
split

10−3 10−3 1.87 × 10−3 3.26 × 10−3

10−4 10−4 3.32 × 10−3 3.26 × 10−3

10−5 10−5 2.47 × 10−4 1.82 × 10−4

10−6 10−6 1.12 × 10−4 2.41 × 10−5

Multiresolution, splitting, and combined time-space adaptive approximation errors deduced

from (35) are gathered in Table 38, computed for variable θ at two different times t⋆: 5 × 10−5

and 10−4, approximately before and after the main thermal runaway mechanism. It can be seen

that multiresolution errors EJ
MR

reproduce the dependence on the threshold value ε into (15),

7The step size strategy with memory [79] could be a better alternative to the standard formula (9), to allow faster

reduction of time steps and therefore decrease the number of rejections, as considered, for instance, in Radau5 and

ROCK4, and illustrated in [67]
8The values corresponding to the case η = ε = 10−3 are slightly different in [77], because in this study all L2-norm

errors are normalized by (max θ − min θ), as it is done in the numerical code, taking into account that θ ≤ 1 and can be

negative according to (40).
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where a relatively larger constant C of O(10) can be noticed for ε = 10−4 and 10−5. Additionally,

splitting errors EJ
split

are effectively controlled by the local error accuracy η, except for t⋆ =

5×10−5 where an apparently constant error is maintained, very likely associated to the numerical

initialization of the problem. Finally the global error of the method EMR
split

is shown to be composed

of both multiresolution and splitting errors as established in (16)9. In general we expect that same

values for both tolerances η and ε involve errors of the same order and an effective control of

the global error, sum of all numerical approximations. Nevertheless, since local time integration

errors, controlled by η, accumulate in time and on the other hand the multiresolution transform

for a given ε is performed at each time iteration on the current solution, we could also expect

that the former errors will eventually pilot the global one in (16), as seen previously in §4 for

long time integration domains and in Table 3 for η = ε = 10−6. To conclude, one key point

is that the compressed spatial representations must be accurate enough to guarantee a reliable

numerical solution of the time dependent problem, taking into account that the time integration

is performed on a fixed adapted grid during each time step. One simple way of enforcing this

behavior considers threshold values ε smaller than η, and at most equal-valued tolerances, as

illustrated in this study.

Table 4: CPU time in minutes for the time-space adaptive, the time adaptive splitting, and the quasi-exact strategies for

t⋆ into [0, 1.5 × 10−4] and several accuracy tolerances η and ε. Finest grid: 10242.

η ε CPU time (min.)

UMR
split

10−3 10−3 8.93

10−4 10−4 16.52

10−5 10−5 34.68

10−6 10−6 131.91

UJ
split

10−3 − 207.52

10−4 − 196.47

10−5 − 225.95

10−6 − 480.22

UJ
qe − − 674.69

Table 4 summarizes the CPU times in minutes for all previous numerical solutions considered

in Table 3. Important gains in CPU time are achieved with the adaptive splitting technique, which

are greatly improved by the time-space adaptive strategy. For instance, for a set of parameters

η = 10−3 and ε = 10−3, splitting adaptation implies a gain factor of about 3.25 with respect to

the quasi-exact solution (from UJ
qe to UJ

split
in Table 4), further increased to about 75 with both

time and space adaptation (from UJ
qe to UMR

split
). This global gain comes indeed from both adaptive

procedures since a multiresolution solution with ε = 10−3 and constant splitting time step ∆t of

10−7 implies a factor of “only” 12 (this computation requires about 56.80 minutes of CPU time),

9Although this expression is demonstrated in practice, further studies are required to gain an insight into the interac-

tion of these space and time approximation errors.
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contrary to the factor of 23 observed in Table 4 from UJ
split

to UMR
split

. (Notice that a quasi-exact

solution with a time stepping defined by the strongest numerical restriction, in this case set by the

stability of the convective scheme, yields even more expensive computations as can be inferred

from Figure 12 (right).) Time reductions related to the multiresolution representation (from

UJ
split

to UMR
split

) are consistent with those achieved by data compressions in Figure 13 (right), for

example, about 95 %, 91 %, and 84 % for a threshold value ε of, respectively, 10−3, 10−4, and

10−5. Conversely, gains related to splitting adaptation (from UJ
qe to UJ

split
) seem to be roughly the

same in these computations for η equal to 10−3, 10−4, or 10−5, which underlines the impact of the

inner solvers like Radau5 or ROCK4 on the global performance of the time integration method.

In this particular study all computing parameters of these solvers were set and maintained to

their standard default values which in some cases unnecessarily increase the number of function

evaluations, for instance, for Jacobian or spectral radius computations in Radau5 or ROCK4.

Finally, it is important to point out that the global efficiency of the time-space method is certainly

a problem dependent feature, that is nevertheless very likely to be high for strongly dynamic

mechanisms and localized spatial structures, as illustrated in the present problem.

5.3. Other physical configurations

Let us conclude this study with a brief illustration of some other physical configurations for

ignition of flames.
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Figure 15: Two-dimensional flame ignition in a vortex field. Time evolution of the splitting time step ∆t and of the

maximum temperature for different initial temperatures of the hot air TO,0, TF,0 equal to 300 K, and vortex Reynolds

number Re of 1000. Tolerances η = 10−3 and ε = 10−3.

Figure 15 displays various scenarios with the same vortex field with Reynolds number Re of

1000, different initial temperatures of the air TO,0, and the same temperature on the fuel side with

TF,0 equal to 300 K. Each configuration involves different dynamics in terms of time scales and

final temperatures as previously discussed in §5.2.2. It can be seen, for instance, that in the time

window from t⋆ = 0 to 1.5× 10−4, there is only mixing for TO,0 equal to 800 K, whereas for TO,0

larger than 1100 K ignition takes place during the initial transition phase of the splitting time step

so that no step reduction is needed. From the numerical point of view the interesting cases are

obviously those in which ignition occurs at some unknown intermediate time. In all cases one

can see that the present adaptive scheme can handle all possible outcomes without preliminary

information.

30



-1

-0.6

-0.2

 0.2

-1 -0.5  0  0.5  1

y

x

 0

 0.5

 1

 1.5

 2

t*=5x10
-5

[x10
4
]

-1

-0.6

-0.2

 0.2

-1 -0.5  0  0.5  1

y

x

 0

 2.5

 5

 7.5

 10

t*=1x10
-4

[x10
4
]

-1

-0.6

-0.2

 0.2

-1 -0.5  0  0.5  1

y

x

 0

 3

 6

 9

t*=1.5x10
-4

[x10
4
]

Figure 16: Two-dimensional flame ignition in a counter-rotating vortex pair field. Time evolution of temperature T (top)

and heat release F (bottom) at t⋆ = 5 × 10−5 (left), 10−4 (center), and 1.5 × 10−4 (right). Solutions were computed on a

dynamic adapted grid corresponding to 10242 points at the finest level J = 10 with ε = 10−3. Ignition mode for an air

temperature TO,0 of 1000 K and vortex Reynolds number Re of 1000.
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Figure 17: Two-dimensional flame ignition in a counter-rotating vortex pair field. Time and space adaptation revealed

by the time evolution of splitting time steps ∆t (left) and of data compressions DC (right), with accuracy tolerance η of

10−3 and a threshold value ε equal to 10−3.

Let us now consider the case discussed in the previous section §5.2.3, that is fresh fuel with

temperature TF,0 equal to 300 K, hot air at a temperature TO,0 of 1000 K, and vortex Reynolds

number Re of 1000. The velocity field is given this time by the superposition of two vortices

with opposite signs in (30), as in §4, centered at (−0.25,−0.5) for the counter-clockwise vortex,

and at (0.25,−0.5) for the clockwise one. In this way the initial separation of both media is

set by y0,⋆ = −0.5 into (43). Ignition dynamics is illustrated in Figure 16 for the temperature
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distribution and heat release rate function F. For a splitting accuracy tolerance η of 10−3 during

the time integration and a threshold value ε equal to 10−3 for the multiresolution analysis, Figure

17 shows the corresponding time and space adaptation given by the dynamic splitting time steps

∆t and data compressions DC. Notice that for this particular physical configuration and the given

tolerances, a double sequence of rejections takes place in order to properly describe the first

ignition in the braids and the second one near the cores of the vortices. Once again it is shown

that the present adaptive scheme can handle various physical configurations, and in the same

way similar studies can be performed with other combinations of vortex fields and operating

parameters.

6. Conclusion and perspective

Numerical results obtained with the present time-space adaptive technique support the con-

clusions that different multi-scale physical configurations can be successfully simulated and that

the error can be effectively controlled. Important gains in computational efficiency are achieved

because of highly compressed data representations, as well as a dynamic splitting technique with

adequate solvers, independent time stepping procedures, and splitting time steps not restricted

by stability constraints. It is shown that the adaptive splitting scheme is critical in handling fast

transients, and that it allows to deal with the difficult problem of the sudden ignition of a flame

in a vortex field, which features a variety of spatial and time scales and different regimes of

flame initiation. This kind of multi-scale problem would become extremely expensive, if it were

envisaged without these adaptive capabilities, at least with standard computational resources.

Concerning error control features, the present numerical strategy is perfectly inscribed in a new

solution scheme paradigm that aims at enhancing high fidelity numerical simulations with tools

providing estimates “on the fly” of the quality of numerical results for general multi-dimensional

configurations. The present scheme is such that for a given spatial discretization, the numerical

accuracy of the simulations is set by two parameters:

• The threshold value ε of the multiresolution decomposition, which balances data compres-

sion and numerical errors related to compressed data representations;

• The accuracy tolerance η of the time splitting technique, which limits the degree of de-

coupling of the physical phenomena and hence, controls the numerical time integration

errors.

This provides a solid basis for more detailed and complex numerical simulations. This is ex-

emplified with preliminary results for models that include detailed chemical features, presented

in [80] with parallelism tools for shared memory architectures. Extensions of the present nu-

merical strategy to more complex models such as gas discharge problems were also achieved in

[81]. In this context and with this background, one can envision the development of more pow-

erful numerical solvers, for instance, a low Mach solver for reactive flows relying on the present

time-space adaptive scheme. However, when dealing with complex kinetics systems chemistry,

involving large numbers of species and reactions, the integration of the source term leads to im-

portant computational costs. This is so despite of the fact that it is embarrassingly parallel in the

framework of operator splitting (as shown in [80]) and that computational requirements can be

reduced by data compression resulting from the multiresolution analysis. This issue requires fur-

ther studies in order to obtain high efficiency in terms of load balancing on parallel architectures

and to better exploit current computational resources.
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[64] P.-H. Renard, J.-C. Rolon, D. Thévenin, S. Candel, Combust. Flame 117 (1999) 189–205.

[65] B. Cetegen, S. Basu, Combust. Flame 146 (2006) 687–697.
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