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On Varieties of Closed Categories and

Dependency of Diagrams of Canonical Maps∗.

A.El Khoury, S. Soloviev †L. Mehats ‡M. Spivakovsky§

Abstract

We present a series of diagrams Dn in Symmetric Monoidal Closed
Categories such that there is infinitely many different varieties of SMCC
(in the sense of universal algebra) defined by diagrams of this series as
equations. Similar result will hold for weaker closed categories. We discuss
the notion of dependency of diagrams in connection with this result.

1 Introduction.

Canonical maps in closed categories may be seen as instances of morphisms of
the free closed category generated by an infinite set of atoms.

There exist many types of closed categories, for example Cartesian Closed
Categories (CCC), Symmetric Monoidal Closed Categories (SMCC) etc. Closed
categories were first introduced and studied in the 1960ies and 1970ies (see [5]).
G. Lambek was the first to notice and explicitly use a close connection with proof
theory (see [7, 8, 9]).

Grigori Mints in the 1970ies (see [11, 12]) has shown that this connection
extends to much deeper aspects of the structure of closed categories than was
initially expected, for example, that the equiality of morphisms in free closed
categories can be faithfully represented using normalization in certain systems
of natural deduction and lambda calculus.

His works have opened the way to the use of even more advanced proof-
theoretic methods. For example, he suggested to one of the authors (his grad-
uate student at the time) the idea of adapting a method of decreasing of the
depth of formulas in proof theory to the study of commutativity of diagrams in
closed categories. This approach helped to obtain many coherence theorems of
category theory (see for example [13, 14]).

∗This work was partially supported by PEPS ST2I CNRS ” Véification de la commutativité
des diagrammes catéoriques en calcul formel”.
†IRIT, University of Toulouse, 118 route de Narbonne, 31062 Toulouse, France {elkhoury,
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‡LaBRI, University of Bordeaux I, 351 Cours de la Libération 33405 Talence, France,

mehats@labri.fr.
§Institute of Mathematics, University of Toulouse, 118 route de Narbonne, 31062 Toulouse,

France, spivakov@math.ups-tlse.fr.
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Typical examples of closed categories are the category of vector spaces over
a field, the category of modules over a ring, the category of semi-modules over a
semi-ring, the category of pointed sets, etc. If the ring is commutative with unit
then the category is a SMCC. SMCCs will be our main interest in this paper.

A typical example of a CCC is the category of sets. In closed categories of
certain types, for example CCCs, the “maximality” theorem holds (cf. [1]). If to
the standard identities defining equality of morphisms in the free CCC is added
a new identity1 between morphisms that have the same domain and the same
codomain (i.e., form a diagram) then all the diagrams become commutative.

The situation is completely different in the case of SMCCs and closed cat-
egories with weaker theories. The “maximality theorem” does not hold for
SMCCs. The negative result is even stronger. Unlike the case of CCC, in
SMCC and closed categories with weaker structure, the graphs of naturality
conditions (Kelly-Mac Lane graphs [5]) play very important role. There are di-
agrams f, g:A→ B in the free SMCC where f, g have the same graph such that
new identity f ∼ g added as a new axiom does not imply the commutativity of
all diagrams with the same graph. Still, the commutativity of a diagram implies
the commutativity of some other diagrams; we may say that the commutativity
of these diagrams depends on the commutativity of the given one.

The main new result presented in this paper is the description of an infinite
series of diagrams D1, ..., Dk, ... (with the same graph of naturality conditions)
in the free SMCC such that for each k there exists a model Kk where D1, ..., Dk

are non-commutative but for some n, k < n, Dn, ... are commutative.
In universal algebra “variety” is a class of algebras defined by axioms that

have the form of identities. Categories may be seen as partial many-sorted alge-
bras. In this terminology, our new result is that there exist infinitely many dif-
ferent varieties of SMCC between the free category and the category of graphs2.

This fact justifies the study of dependency of diagrams. Proof-theoretical
methods have shown their strength in the study of commutativity and non-
commutativity of diagrams in free closed categories [6, 11, 13, 14]. They provide,
in particular, efficient deciding algorithms [15]. In all probability they will be
also very useful in the study of dependency of diagrams in equationally defined
subclasses of the class of closed categories and in concrete non-free models.

2 Algebra and Logic in Closed Categories: some
Basic Facts

The connections between structural proof theory and categorical algebra are
well known. In this section we follow roughly the schema introduced already in
the works of Lambek [8, 9] and Mints [11, 12].

A SMCC is defined by the following data:

1It is assumed that all identities are closed w.r.t. substitution.
2For example, if we add Dn as unique new axiom (declare that Dn is commutative) the

resulting variety will be different from the variety defined by Dk as the new axiom. The result
is valid also for all the weaker structures of closed category considered in this paper.
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• A category K;

• An object I ∈ Ob(K)

• The bifunctors ⊗:K × K → K (tensor) and −↪↩:Kop × K → K (internal
hom-functor);

• the following families of maps (basic natural transformations): 1A:A→ A,

aABC :(A⊗B)⊗ C → A⊗ (B ⊗ C), a−1
ABC :A⊗ (B ⊗ C)→ (A⊗B)⊗ C

bA:A⊗ I → A, b−1
A :A→ A⊗ I, cAB :A⊗B → B ⊗A

εAB :A⊗ (A−↪↩ B)→ B, dAB :A→ B −↪↩ A⊗B (A,B,C ∈ Ob(K)).

These data satisfy certain equations that we shall not describe in detail (see,
e.g., [14]). The main groups of equations are:

• equations between components of basic natural transformations, such as
cAB ◦ cBA = 1A⊗B , Mac Lane’s “pentagon” and “hexagon”;

• naturality conditions, functoriality axioms for ⊗ and −↪↩, general category
axioms that involve arbitrary morphisms of K, the axioms (involving e, d,
f :A⊗B → C, g:A→ (B −↪↩ C)) that make ⊗ left adjoint of −↪↩.

The action of functors and composition on morphisms may be regarded as
an application of the following rules:

f :A→ B g:C → D

f ⊗ g:A⊗ C → B ⊗D(⊗)
f :A→ B g:C → D

f −↪↩ g:B −↪↩ C → A−↪↩ D
(−↪↩)

f :A→ B g:B → C

g ◦ f :A→ C
(cut).

The basic natural transformations correspond in this setting to axiom schemas
(1A:A→ A, cAB :A⊗B → B ⊗A etc.).

The free SMCC F(A) over a set of atoms A may be built as follows.

• The objects are formulas built from atoms and the constant I using ⊗ and
−↪↩ as connectives.

• The morphisms are the expressions f :A→ B derivable from axiom schemas
corresponding to basic natural transformations by rules ⊗, −↪↩ and cut
above considered up to the smallest equivalence relation ≡ such that all
the equations of the SMCC mentioned above are satisfied.

The relation ≡ is a congruence w.r.t. the application of ⊗, −↪↩ and cut (com-
position). It is substitutive, i.e., f ≡ g ⇒ σf ≡ σg for every substitution
σ = [A1, ..., Ak/a1, ..., ak] because all the morphisms in F(A) are obtained from
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components of natural transformations (axiom schemes). If not stated otherwise
we shall assume that A is infinite3.

Let A be a formula built from atoms and I using ⊗ and −↪↩ as connectives.
From the categorical point of view, it represents a functor and every occurrence
of an atom or I in A is co - or contravariant. In logic to categorical variance
corresponds the notion of sign of an occurrence. It is defined by induction on
the process of the construction of A.

Definition 2.1 • If A = a or A = I the occurrence of a (of I) in A is
positive (covariant).

• In A⊗B the signs of occurrences are the same as the signs of corresponding
occurrences in A and B. In A−↪↩B the signs of occurrences lying in B are
the same as in B and the signs of occurrences lying in A are opposite to
the signs in A.

• The signs of occurrences in the sequent A→ B are the same as in A−↪↩B.

Definition 2.2 A sequent S is called balanced iff every atom has exactly two
occurrences with opposite signs in S.

In the case of SMCC the following proposition holds 4.

3A presentation of the free Cartesian Closed Category (CCC) along similar lines may be
obtained if we add the following natural transformations (families of maps):

0A:A→ I, δA:A→ A⊗A,
lAB :A⊗B → A, rAB :A⊗B → B

and the identities that will make I the terminal object and ⊗ the cartesian product with
projections l, r. These new data may replace the transformations a, b, c because associativity,
commutativity and the property of unit I can be obtained from 0, δ, l, r and the new identities.

Maximality of the theory of CCC proved in [1] means that the only possible relation ∼
different from ≡ in case of CCC is the relation that makes equivalent all the morphisms with
the same source and target.

Let us mention some other types of closed categories:

• Monoidal Closed Categories, where the commutativity isomorphism cAB is absent;

• Symmetric Closed Categories (non-monoidal), where the functor ⊗ is absent and cAB
is replaced by the isomorphism ξABC :A−↪↩ (B −↪↩ C)→ B −↪↩ (A−↪↩ C);

• Closed Categories (without ⊗ and any symmetry isomorphism).

For all these types of categories a free category over a set of atoms A is constructed similarly
to F(A). Each model for the theory of SMCC is at the same time a model for MCC, SCC
and CC (but not of CCC). Our main results concerning SMCC will imply similar result for
these closed categories.

4The pairs of occurrences of the same variable in balanced sequents correspond to the
edges of the so called “graph” introduced by Kelly and Mac Lane, and also to “axiom links”
in linear logic. The combinatorial proofs of a similar proposition were published as early as
in [2, 5]. They use the fact that all the axioms that define the relation ≡ may be written in
a balanced form and the rather tricky definition of composition of graphs. The proof using
Gentzen-style sequent calculus L(A) described below is much more straightforward. It uses
cut-elimination and the properties of “linear” rules of L(A). There is no similar proposition
that would hold in the CCCs case.
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Theorem 2.3 Let f, g:A → B. There exist f ′, g′:A′ → B′ where the sequent
A′ → B′ is balanced such that f, g and A → B can be obtained from f ′, g′ and
A′ → B′ by identification of variables and f ′ ≡ g′ iff f ≡ g.

In this paper we shall consider other equivalence relations on morphisms of
F(A). Below ∼ will denote any substitutive equivalence relation that contains
≡, respects the graphs and is a congruence w.r.t. ⊗, −↪↩ and cut. Obviously such
a ∼ will define a structure of a SMCC on F(A). In connection with our main
results we shall consider the relations ∼K generated by interpretations in certain
SMCCs (models) K. More precisely, let us consider any function (valutaion)
v:A→ Ob(K). Since F(A) is free, every v defines a unique structure-preserving
functor (interpretation) | − |v:F(A) → K where |a|v = v(a). Assume that f, g
have the same graph. The relation ∼K is defined by f ∼ g ⇔ |f |v = |g|v
for every v in K. We shall say that the diagram f ′, g′:A′ → B′ depends on
f, g:A→ B if for every SMCC K the equivalence f ∼K g implies f ′ ∼K g′.

Theorem 2.4 Let ∼ be the smallest substitutive equivalence relation on the
derivations of F(A) such that f ∼ g, ∼ contains ≡, respects the graphs and is
a congruence w.r.t. ⊗, −↪↩ and cut. The diagram f ′, g′:A′ → B′ depends on
f, g:A→ B iff f ′ ∼ g′.

This theorems shows that syntactic methods may be used for verification of
dependency of diagrams, since the standard construction for the smallest equiv-
alence relation ∼ uses certain syntactic calculus with pairs of derivations as
derivable objects.

The interest of presentation of F(A) using “algebraic”axioms and rules above
is that it opens a way to reformulations using different axiom and rule systems,
already well studied in logics 5. We shall consider in this paper one such re-
formulation, the sequent calculus for Intuitionistic Multiplicative Linear Logic
(IMLL), cf. [3]. The calculus L(A) is defined as follows:

Axioms

A→ A (1A) → I (unit)

Structural Rules

Γ→ A A,∆→ B

Γ,∆→ B
(cut)

∆→ I Σ→ A

∆,Σ→ A
(wkn)

Γ→ A

Γ′ → A
(perm)

Logical rules

5G.E.Mints considered systems similar to F(A) (he called them “Hilbert-type systems”)
and the systems of natural deduction for CC, SCC, MCC, SMCC and CCC categories. Fu-
ture study has shown that the systems of natural deduction are better for the development
of deciding algorithms but sequential calculi are more flexible when the transformations of
derivations and diagrams are studied.
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Γ→ A ∆→ B

Γ,∆→ A⊗B (→⊗)
A,B,Γ→ C

A⊗B,Γ→ C
(⊗→)

A,Γ→ B

Γ→ A−↪↩ B
(→−↪↩) Γ→ A B,∆→ C

Γ, A−↪↩ B,∆→ C
(−↪↩→)

Here Γ,∆,Σ are lists of formulas. A list of formulas Γ = A1, ..., An may be
seen as an abbreviation of Γ = (...(A1⊗ ...)⊗An)⊗ I. The transformation C of
L-derivations into F -derivations and D of F -derivations into L-derivations are
described in detail in [14, 10]. Let us present here just one case as an example:

C(
Γ

ψ→ A B,∆
ϕ→ C

Γ, A−↪↩ B,∆→ C
) =

= (C(ϕ) ◦ ((eAB ◦ (C(ψ)⊗ 1A−↪↩B))⊗ 1∆)) ◦ ζ : Γ, A−↪↩ B,∆→ C,

with ζ:Γ, A−↪↩ B,∆→ (Γ⊗(A−↪↩B))⊗∆ a central isomorphism (unique up to ≡).

Via C we define the equivalence ≡ on L-derivations as induced by ≡ on
F -derivations. The relation ≡ on L(A)-derivations is a congruence w.r.t. the
application of rules. It is substitutive as well 6. If we consider another equiv-
alence relation ∼ on morphisms of F(A) it is also transferred to L(A) via C.
(Similarly, for every valuation v:A→ K the interpretation | − |v on derivations
is defined via C: |d|v = |C(d)|v.)

The notion of sign and balanced sequent is generalized naturally to L(A).
If Γ = A1, ..., An then the signs of occurrences of atoms in Γ→ A are the same
as in A1−↪↩ (A2−↪↩ ...(An−↪↩ A)...). Γ→ A is balanced if every atom occurs there
exactly twice with opposite signs.

One of the most common transformations of derivations is cut-elimination.

Theorem 2.5 For every derivation d: Γ → A in L(A) there exists a cut-free
derivation d′ Γ → A such that d′ ≡ d. (This also implies d′ ∼ d for any ∼.) If
Γ→ A is balanced then all the sequents in its cut-free derivation are balanced 7.

6A sequent calculus for CCC may be described in a similar way. It is enough to modify it
as follows:

(a) To replace the axiom → I by ∆→ I (∆ being an arbitrary list of formulas);
(b) To add the structural rule of contraction

A,A,Γ→ B

A,Γ→ B
.

The resulting calculus represents exactly the Intuitionistic Propositional Logic with I as
constant “true”, ⊗ as conjunction and −↪↩ as implication. The transformations C and D
are modified accordingly, and the equivalence relation on derivations of L(A) is induced by
equivalence in F(A) via C. (The sequent calculi for MC, SC and Non-Symmetric Closed
Vategories and the transformations C and D are built in an analogous way.)

7In fact, not only cut but also all the trivial applications of wkn (with→ I as left premise)

6



Cut-elimination here is a standard algorithm used in proof-theory. For com-
parison, a cut-elimination procedure described in the algebraic notation in [6]
is much more heavy and difficult to use. A similar theorem is true for all the
logical calculi corresponding to the closed categories considered above.

Another useful transformation is the reduction of formula’s depth described
in detail in [14].

Definition 2.6 The sequent Γ → A is called 2-sequent if A contains no more
than one connective and each member of Γ no more than two connectives.

Some formulas may be replaced by isomorphic ones (reducing further the num-
ber of possibilities).

Definition 2.7 Γ → A is called a pure 2-sequent if A has one of the forms
x, a ⊗ b, a −↪↩ x and each member of Γ has one of the forms x, a −↪↩ x, a −↪↩ (b ⊗
c), (a⊗ b)−↪↩ x, (a−↪↩ x)−↪↩ y. Here x, y stand for I or atoms, a, b are atoms.

Every derivation can be transformed into a derivation of some 2-sequent
using two operations (followed by isomorphisms to obtain a pure 2-sequent):

Γ
d→ B 7→ Γ

d→ B p
id→ p

Γ, B −↪↩ p→ p
(p fresh)

and cut with left premises of the form p−↪↩C,A[p]→ A[C] or C−↪↩p, A[p]→ A[C]
(p fresh) 8. There also exists the inverse transformation using substitutions
[C/p] and cuts with → C −↪↩ C. (Due to the previous theorem cut can always
be eliminated.)

Theorem 2.8 (Reduction to 2-sequents.) Let d1, d2 be two derivations of the
same (balanced) sequent S. Then there exist two derivations d′1, d

′
2 of the same

(balanced) pure 2-sequent S ′ such that for any relation ∼ (including ≡ itself)
d1, d2 are ∼-equivalent iff d′1, d

′
2 are ∼-equivalent.

Another useful property is faithfullness. Using this property we may reduce
the problem of equivalence of derivations that have identical inferences in the
end to the equivalence of derivations of their premises.

Definition 2.9 (Cf. [10]) An equivalence ∼ is faithful w.r.t. the rule R if, for
any two derivations ϕ,ϕ′ of the same sequent ending by the inference of R having

can be eliminated, and several successive applications of perm can be replaced by one appli-
cation. By abuse of terminology we shall assume below that in all cut-free derivations these
simplifications are done as well. For all the logical calculi mentioned above (except for CCC)
and any given sequent there exists only a finite number of cut-free derivations in this sense.

8Here a single occurrence of C is replaced by p. The form depends on the variance (sign)
of this occurrence of C in A. One takes a standard derivation of these sequents, which always
exists in “symmetric” calculi, i.e., logical systems for CCC, SMCC, SCC categories. The
theorem that follows holds in each of these systems.
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as premises some derivations of the same sequents, ϕ ∼ ϕ′ iff the derivations of
the premises are ∼-equivalent.

In the case of SMCC faithfulness is easy to prove for the rules → −↪↩, → ⊗,
⊗ →, wkn. Far from obvious, but true (see [10], theorem 4.15), it holds also for
−↪↩→. It may not hold for other systems.

3 Commutative and Non-Commutative Diagrams
in the Free SMCC.

Below we shall call diagrams not only pairs f, g:A→ B in F(A) but also pairs
of L(A)-derivations of the same sequent.

A sequent S is called proper iff it does not contain occurrences of subformulas
of the form A−↪↩B where B is constant (contains only I) and A is not constant.

Theorem 3.1 (The Kelly-Mac Lane coherence theorem reformulated for L(A),
cf. [5].) Let f, g:Γ→ A and the sequent Γ → A be proper. If f and g have the
same graph9 then f ≡ g.

Example 3.2 If the sequent is not proper, f may be non-equivalent to g. The
following diagram (called “triple-dual” diagram) is not commutative

(1)

((a−↪↩ I)−↪↩ I)−↪↩ I 1 //

ka−↪↩1 ''PPPPPPPPPPPP
((a−↪↩ I)−↪↩ I)−↪↩ I

a−↪↩ I
ka−↪↩I

77nnnnnnnnnnnn

where a is a variable and ka = (1 −↪↩ eaI) ◦ da(a−↪↩I):a → (a −↪↩ I) −↪↩ I is the
standard “embedding of a into its second dual”.

Non-commutativity of this diagram may be checked formally in F(A) (the
equivalence relation ≡ is decidable). It is non-commutative also in certain mod-
els such as the SMCC of vector spaces or the SMCC of modules over a com-
mutative ring with unit. One may note that it is always commutative in the
full subcategory of vector spaces of finite dimension. On the contrary, it is not
always commutative for finitely generated modules.

It will be useful to consider another diagram which is commutative (with
respect to any relation ∼) iff the triple-dual diagram is commutative:

(2) f, g: (a⊗ b−↪↩ I), ((b−↪↩ I)−↪↩ I), ((a−↪↩ I)−↪↩ I)
→→ I.

9In particular, if the sequent is balanced.
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The fact that (2) is commutative iff (1) is commutative is more easily checked in
L(A). It is also a good illustration of application of proof-theoretical methods.

Let f0 = 1((a−↪↩I)−↪↩I)−↪↩I , and let g0 denote the derivation corresponding to
ka−↪↩I ◦(ka−↪↩1I). We perform a cut-elimination. It is easily checked that cut-free
derivations will be equivalent to the derivations ending by→ −↪↩. By faithfulness
(in this case corresponding to adjunction) we pass from the pair

f0, g0:((a−↪↩ I)−↪↩ I)−↪↩ I → ((a−↪↩ I)−↪↩ I)−↪↩ I
to the pair

f−0 , g
−
0 :(((a−↪↩ I)−↪↩ I)−↪↩ I), ((a−↪↩ I)−↪↩ I)→ I.

Afterwards we perform the reduction to a pure 2-sequent, first applying (simul-
taneously to f−0 , g

−
0 ) cut with

h: b−↪↩ (a−↪↩ I), ((b−↪↩ I)−↪↩ I)→ ((a−↪↩ I)−↪↩ I)−↪↩ I,
(it is an easy exercice to find the derivation h) and then (again via cut) the
isomorphism i:a⊗ b−↪↩ I → b−↪↩ (a−↪↩ I). All cuts can be eliminated afterwards.
The result is the pair of derivations f, g: a⊗ b−↪↩ I, (b−↪↩ I)−↪↩ I, (a−↪↩ I)−↪↩ I→I
(one has (b −↪↩ I) −↪↩ I, and another (a −↪↩ I) −↪↩ I as the main formula of last
application of −↪↩→). One may return to f0, g0 via substitution [b−↪↩ I/a], cuts
with isomorphisms and → (b−↪↩ I)−↪↩ (b−↪↩ I), and application of the rule → −↪↩.
Since all the steps preserve ∼, f0 ∼ g0 ⇔ f ∼ g.

The pair of derivations f, g is also an example of so called critical pair. There
is a full description of non-equivalent pairs of derivations in L(A) based on the
notion of critical pairs. The idea of critical pair was suggested by Voreadou [16],
but the proof of her main theorem used an erroneous lemma. Here we give the
formulation of the corrected theorem that was proved in [14]. Without loss of
generality (due to theorems 2.8, 2.3), and to simplify the formulations we shall
consider only the case of balanced pure 2-sequents.

Definition 3.3 A pair of derivations of the same balanced pure 2-sequent S is
critical if

(1) d1 ≡
Γ, A′ −↪↩ I d′1→ A I

1I→ I

Γ, A′ −↪↩ I, A−↪↩ I → I
−↪↩→, d2 ≡

Γ, A−↪↩ I d′2→ A′ I
1I→ I

Γ, A′ −↪↩ I, A−↪↩ I → I
−↪↩→, perm;

(2) a cut-free derivation of S can end only by some application of −↪↩→;

(3) the derivations d′1, d
′
2 are not ≡-equivalent to derivations ending by −↪↩→.

The pair is minimal if Γ does not contain single atoms as its members.

Let α be some substitution of I for variables. In [14] the “substitutions with
purification” were defined. Let d:Γ → A be a derivation of some 2-sequent.
Then α ∗ d is the derivation obtained from d by α and cuts with isomorphisms
that will make its final sequent pure. The derivation α ∗ d is defined up to ≡,
but its final sequent is defined without ambiguity.
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Theorem 3.4 (Cf. [14].) Let d1, d2 be derivations of a balanced sequent Γ→ A
and d′1, d

′
2 the corresponding derivations of a balanced pure 2-sequent. Then

d1 ≡ d2 iff there exists a substitution α of I for variables such that α ∗ d′1, α ∗ d′2
is a minimal critical pair10.

4 The “Triple-Dual” Conjecture.

Conjecture 4.1 Commutativity of the triple-dual diagram implies commuta-
tivity of all the diagrams of canonical maps f, g:A → B with balanced A → B.
More precisely: let ∼ be the smallest equivalence relation that satisfies all ax-
ioms of SMCC, is substitutive and the triple-dual diagram is commutative w.r.t.
∼. Then for all f, g:A→ B with balanced A→ B in F(A) we have f ∼ g.

An argument in favor of this conjecture is that the following theorem holds.

Theorem 4.2 (Soloviev, 1990 [13].) If ∼ is the smallest equivalence relation
that satisfies all the axioms of SMCC, is substitutive, the triple-dual diagram is
commutative w.r.t. ∼, and for all f, g and atom a

(∗) [a−↪↩ I/a]f ∼ [a−↪↩ I/a]f ⇒ f ∼ g,

then f ∼ g for all f, g:A→ B in F(A) with the same graph11.

As recently checked Antoine El Khoury, the commutativity of the triple-dual
diagram implies (without the assumption (*)) the commutativity of all diagrams
f, g:A→ B with balanced A→ B containing no more than 3 variables.

5 Main Results

Commutativity of the diagrams considered below does not imply the com-
mutativity of the triple-dual diagram, so the equivalence relation generated by
these identities are between ≡ (minimal relation) and the relation generated by
commutativity of the triple-dual.

First non-trivial “intermediate” equation was obtained due to a suggestion
of M. Spivakovsky, developed later by L. Mehats and S. Soloviev [10].

The diagram (3) studied in [10] was obtained from

(2) f, g: (a⊗ b−↪↩ I), ((b−↪↩ I)−↪↩ I), ((a−↪↩ I)−↪↩ I)
→→ I

10The conditions on the left premises that require verification of equivalence are applied
to the (finite number of) derivations with smaller final sequent. This theorem may be used
recursively to obtain deciding algorithms for ≡. In [15] an algorithm of low polynomial
complexity was described.

11Equivalently: with balanced A→ B.
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by cut with (unique) h:(((a−↪↩ I)⊗ (b−↪↩ I))−↪↩ I)−↪↩ I → (a⊗ b−↪↩ I).

Let k be a field, k[x, y] the related polynomial ring in two variables, I =
k[x, y]/(x2, xy, y) andM(k, I) the SMCC generated by I and k (as an I-module).
It was shown in [10] that in M(k, I) (3) is commutative while (2) and (1) are not
(lemma 5.8). So, if we add to the axioms of SMCC the equation corresponding
to (3), the diagrams (2) and (1) will remain non-commutative.

In this paper we describe certain sequence D2, ..., Dk, ..., Dm, ... of diagrams
and certain models Kk such that in Kk the diagrams D2, ..., DGk are not com-
mutative and there exists m > k such that DGm, ... are commutative (we don’t
know whether DGk, ..., DGm−1 are commutative).

Below we shall write A∗ instead of A −↪↩ I. Let An denote the n-th “tensor
power” of an object A, An = (A⊗ ...)⊗ A, and fn the n-th “tensor power” of
a morphism f , fn = (f ⊗ ...)⊗ f . For example, enaI :(a

∗ ⊗ a)n → In.

Let bnI be defined by b1I = bI :I ⊗ I → I,, ..., bnI = b ◦ (bn−1
I ⊗ 1I):I

n+1 → I.

To obtain the diagrams D2, ..., Dk, ... we notice that there exists

hk:(((a−↪↩ I)k −↪↩ I)−↪↩ I)→ (ak −↪↩ I).

In F(A) hk = π((a∗)k)∗∗akI(1((a∗)k)∗∗ ⊗ πak(a∗)kI(b
k−1
I ◦ (ekaI ◦ ξ))) Here ξ is an

appropriate central isomorphism12.

The diagram
(D0

2) f0
2 , g

0
2:(a2)∗, a∗∗, a∗∗

→→ I

is obtained from the diagram (2) by substitution of a for b (in other words, by
identification of variables a and b). The diagram D2

(DG2) f2, g2:((a∗)2)∗∗, a∗∗, a∗∗ → I

is obtained from D0
2 by cut with (the derivation corrsponding to) h2.

We define13 the diagram D0
m, m ≥ 2, as the result of substitution of am−1

for b into diagram (2). The morphisms obtained from f, g by this substitution
are denoted f0

m, g
0
m.

12In L(A) to hk corresponds the following derivation:

a→ a I → I

a, a−↪↩ I → I

a→ a I → I

a, a−↪↩ I → I
a, a−↪↩ I, a, a−↪↩ I → I

...
a, a−↪↩ I, ..., a, a−↪↩ I → I

a, ..., a, (a−↪↩ I), ..., (a−↪↩ I)→ I
...

ak, (a−↪↩ I)k → I

(a−↪↩ I)k, ak → I

ak → ((a−↪↩ I)k −↪↩ I) I → I

ak, ((a−↪↩ I)k −↪↩ I)−↪↩ I → I

((a−↪↩ I)k −↪↩ I)−↪↩ I → (ak −↪↩ I)
13The index m will correspond to the number of factors in tensor products.
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The diagram Dm is obtained from D0
m by cut with hm (fm, gm are resulting

derivations):
(Dm) fm, gm:((a∗)m)∗∗, a∗∗, (am−1)∗∗

→→ I.

In order to obtain the models Kk we shall consider certain SMCCs of com-
mutative semimodules over commutative semirings.

For all basic definitions concerning semirings and semimodules see [4]. Below
we shall denote the “addition” of the semiring I by + and “multiplication” by
∗. In case of a semimodule M we shall denote by +M its additive operation and
∗M the action of I on M ; the index M will often be omitted.

Proposition 5.1 I-semimodiles over a commutative semiring I and their ho-
momorphisms form a SMCC with tensor product ⊗ and internal hom-functor
−↪↩ defined in usual way.

We consider the categories of semimodules over the semiring In = {0, ..., n}
with max as addition and with “bounded multiplication” ∗ as multiplication:

p ∗ q = p · q if p · q < n and p ∗ q = n otherwise.

Obviously In is a commutative semiring. When n is irrelevant or clear from
the context it will be omitted.

Notice that in this category bM :M ⊗ I →M is defined by bM (x⊗ p) = p ∗x,
in partucular if M = I then bI(p1⊗ p2) = p1 ∗ p2. For an element p1⊗ ...⊗ pn ∈
I ⊗ ...⊗ I, bn−1

I (p1 ⊗ ...⊗ pn) = p1 ∗ ... ∗ pn.

We shall consider the semimodules M over I that have some additional
properties.

(Top) There is a “top” element TM ∈M,TM 6= 0M such that for all x ∈M ,
x + TM = TM + x = TM , if x ∈ M,x 6= 0M then n ∗ x = TM and if 0 6= k ∈ I
then k ∗ TM = TM .

Obviously, I itself does satisfy these consditions if we take TI = n. For Is
considered as a semimodule over I s must be not greater than n.

Lemma 5.2 Let M1, M2 be two semimodules over I with top elements T1 and
T2 respectively. Let f :M1 → M2 be a homomorphism of semimodules, different
from constant 0. Then f(T1) = T2 and for x ∈ M1, x 6= 0, f(x) 6= 0. As a
consequence, two morphisms f, g:M1 → M2 always coincide at least on 0 and
T1.

Definition 5.3 Let us call an I−semimodule r-reducible for some r ∈ I, 1 <
r < n if for every x ∈M r ∗ x = TM .

Example 5.4 Let M = I2 = {0, 1, 2} considered as a semi-module over the
semi-ring I4 = {0, 1, 2, 3, 4} (with the ordinary multiplication “bounded by 2” as
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the action). It satisfies (Top) with TM = 2 and is 2-reducible. Of course M of
this example is also 3- and 4-reducible.

We shall consider the semimodules M such that

(r-red) M is r−reducible for some r ∈ I, 1 < r < n.

Theorem 5.5 (1) All semi-modules over I satisfying (top) form an SMCC.

(2)Let r be fixed, 1 < r < n. All semi-modules M over I satisfying (top)
and (r-red) form an SMCC.

This theorem will permit us to consider the SMCC generated by ⊗ and −↪↩
from I and some given semimodule, for example I = {0, 1, 2, 3, 4} and M =
{0, 1, 2} and be sure that all the objects of this category will have a top element
and be r-reducible14.

Lemma 5.6 Let M be an r-reducible semimodule over I and f :M → I (we
may say also that f ∈M −↪↩ I). Then for all x ∈M f(x) ≥ n/k.

Let h−m denote am)⊗ (a∗)m
ξ→ (a∗ ⊗ a)m

emaI−→ Im
bm−1
I−→ I Consider the SMCC

K of semimodules satisfying (top) and (r-red) over I. Now we can easily prove
the following lemma.

Lemma 5.7 Let n, r be as above, m such that (n/r)m ≥ n and v an interpreta-
tion defined by v(a) = M ∈ Ob(K). Then the morphism |h−m|:(Mm)⊗(M∗)m →
I takes the value 0 if its argument is 0 and TI = n otherwise.

Corollary 5.8 Under the same conditions, the morphism |hm| takes only two
values: 0 when its argument is 0 and T(Mm)∗ otherwise (for every M ∈ Ob(K)).

Lemma 5.9 For all n, r,m as in lemma 5.7 and every interpretation v in the
SMCC K of I-semimodules satisying top and r-red, the diagram |Dm|v is
commutative. So it is commutative with respect to the relation ∼K .

Let 2 ≤ k, n = 3k + 1, l = n/2. Let I = In, M = {0, 1, ..., l}. Notice that
M is n/2-reducible. Consider the SMCC Kk of all semimodules satisfying top
and l-red generated by I and M .

Lemma 5.10 Let the interpretation v be defined by v(a) = M ∈ Ob(Kk). The
diagrams |D2|v, ..., |Dk|v are non-commutative.

14These properties are easier to verify and use than, for example, the property of being a
semilattice. Notice that the structure of the objects of the SMCC generated by I and M is
not necessarily simple. For example, the semimodule M −↪↩ I will be generated (non freely) by
[2]:1 7→ 2, [3]:1 7→ 3, (M −↪↩ I)⊗ (M −↪↩ I) will have four generators, etc.
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To prove this lemma we verify that the image Im(|hj |v) contains a certain
element p different from 0 and T(Mj)∗ , and there exist elements ψ ∈ M ∗∗, ϕ ∈
(M j−1)∗∗ such that the two arrows of the diagram D0

j take different values on
the argument (p, ψ, ϕ) (2 ≤ j ≤ k).

Theorem 5.11 There exist infinitely many different varieties of SMCC. Each
of these varieties is defined by taking a (single) diagram Dm of the sequence
above as a new axiom.

To prove this theorem we use the fact that for any k ≥ 2 there exists m (it is
enough to take m ≥ log2(3k + 1)) such that Dk cannot belong to the smallest
equivalence relation generated by Dm. In other words, the commutativity of
Dm does not imply the commutativity of Dk (by lemmas 5.9, 5.10).

6 Conclusion

To verify the commutativity of a diagram in a model can be very difficult.
Instead of verifying commutativity of diagrams case by case one may hope that
if one diagram is commutative then the commutativity of another will follow.

By theorem 5.11 there exist infinitely many distinct equivalence relations
∼K on derivations of F(A) (or L(A)). This fact shows the importance of the
study of dependency of diagrams in SMCC and closed categories with weaker
structure.

Taking into account the existence of efficient deciding algorithms for com-
mutativity of diagrams in free closed categories, the first step would be to verify
whether a diagram is commutative in the free case. If it is not commutative,
the study of dependency may follow. In particular, one may find some “key”
diagrams whose commutativity will imply the commutativity of others (cf. the
axiomatization of equivalence relations by critical pairs considered in [10]).

We believe that this direction of research will provide a new and promising
application of proof theory to categorical algebra.

We would like to express our thanks to Kosta Dosen and Zoran Petric,
who helped clarify many points and improve considerably the presentation of
this work, as well as to Nikolai Vasilyev for fruitful discussions concerning its
algebraic aspects.
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