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Abstract In digital imaging, after several decades devotedl Introduction

to the study of topological properties of binary imagestehe

23 Is anincreasing need of new methods enabling to take intt a digital image, when performing processes such as reg-
24 (topological) consideration-ary images (also called label istration, deformation or thinning, the preservation of th
25 images). Indeed, while binary images enable to handle oni@pological properties of the objects contained in the ienag
26 object of interest, label images authorise to simultanigous (e.g, connected components, tunnels, cavities, etc.) is an im-
27 deal with a plurality of objects, which is a frequent require portant requirement. For 50 years, several tools enalitieg t
28 mentin several application fields. In this context, one ef th analysis (adjacency graphs, digital fundamental groups, h
29 main purposes is to propose topology-preserving transfomology groups —see..g, [1,2/3]) and the modification un-
30 mation procedures for such label images, thus extending thder topological constraints (simple points, P-simple pgin
ones €.g, growing, reduction, skeletonisation) existing for simple sets —see,g, [4,5/6[7]) of binary images have been
binary images. In this article, we propose, for a wide ranggroposed and used. Nevertheless, in many fieddg (ned-

34 Of digital images, a new approach that permits to locallyical imaging, remote sensing, computer vision), an image is
35 modify a label image, while preserving not only the topol-generally composed of several objects, and it is often impor
36 ogy of each label set, but also the topology of any arrangetant to understand or maintain their topological propstrtie
37 ment of the labels understood as the topology of any unioall together, that is the topology of each and the topology of
38 oflabel sets. This approach enables in particular to umifiy a the scene. In such images, the objects are characterised by
39 extend some previous attempts devoted to the same purposgecific labels on which there generally exists no meaning-
40 ful order relation (unlike grey-level images for instance)

43 Keywords digital imaging- topology- label images

44 homotopy: simple points 1.1 Previous works

45

46 To the best of our knowledge, the literature about topology
47 in label images is quite limited and generally motivated by

48 practical considerations. The most common approach is to

49  The research leading to these results has received fundingthe  consider only one label at a time, the other labels being mo-
50 FrenchAgence Nationale de la Rechercf@rant Agreement ANR- mentarily considered as a part of the background. However
51 2010-BLAN-0205). ) . ' . '

except in the most simple cases where the label configura-

52 Loic Mazo, Nicolas Passat, Christian Ronse tion leads to a binary modelling (se=g, [8,9]), one cannot

53  Université de Strasbourg, LSIIT, UMR CNRS 7005, France directly deal with the relations between the labels but onl
54 Tel.: +33-368854413 rectly dea € relations between the 1abels but on'y
55 Fax:+33-368854455 with the topology of each label and of its associated back-
56 E-mail: loic.mazo@unistra.fr ground [10, 111, 12] (if necessary, one uses in addition an ad-
57  Loic Mazo, Michel Couprie jacency tree between labels in order to control their topo-
58 Universite Paris-Est, Laboratoire d'Informatique Gasplonge, logical relations). These methods are often used with a cost
59 Equipe A3SI, ESIEE Paris, France function, which depends on the applicative context, whose
60
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Fig. 1 Animage with two labels (in grey and black). If we consider

the grey label as the object of the picture using the (8,/gezthcy pair @) (b) (©
(8-adjacency for the object and 4-adjacency for the backgt)h the
object is a ring. The black pixels together then form the ira@npo-
nent of the background, while the white pixels form the oetampo-
nent. However, if we now consider the black pixels as the alftill
in 8-adjacency), rejecting grey pixels to the backgrouhdse latters
must be understood with the 4-adjacency and they appeawétiva
connected components, one inside the black torus and osieleut

Fig. 2 Forbidden configurations in (binary) well composed images.
(@) InZ2. (b,c) InZ8 (configuration (b) shall not appear neither in the
object nor in the background). A label image is well compa$edch
binary image obtained by isolating a particular label islweimposed.

dispose of them [18]. However, since the objects identified

purpose is to assign a given label, or not, to a point of thg,, yhe |apels are sequentially “repaired”, one needs first to
image. Thereby points go from backgroundto alab&ic@  jotarmine an order on the labels, and this order biases the
versabut not from a label to another. Note that some points o.q it

may sometimes take an undetermined status since they can- o

not be assigned a label without breaking a topology defined Another approachi[19] takes further the specificity of la-
by ana priori knowledge or to avoid object crossings whenP€l images into account. A notion of “homotopy set” is de-

the objects are seen under the filter of the 8-adjacency mned, which is the set of the labels that can be assigned to a

the plane or 26-adjacency in the space (see Figure 1). THRpintwithout modification on the topology of each label and

question of the adjacencies to be used in a digital label imof its complement in the image. A local criterion is provided

age is a recurrent issue. Indeed, in digital topology, in thdo decide V\_/hethera particularlabe! belongs to the homotopy
framework developed by Rosenfeld [13], the object and thset of a point or not. Thereby, a point can move from a label
background of an image are understood witfiedtent (dual) tQ another and not solely from the background to a label or
adjacencieg [14]. So, when objects in a label image are prd!c€ Versa
cessed one at a time, being alternatblyobject and part of In [20], the authors go further and require, before any
the background, they are inevitably seen under two distinathange of label at a point, the guarantee that not only the
adjacenci& For instance, an object can have one connectetbpology of each label will be preserved but also the topol-
component at one step of the process and two componentsady of the unions of two labels in 2D images and of three la-
the next step though no change did occur on the image (sdxls in 3D images (see Figure 3). Nevertheless, this request
Figurel). is not sufficient. Figurd_B(c) provides a counterexample in
To overcome this problem, a class of “well composed”2D where there is the need to consider the union of three
images has been defined in which the same adjacency riabels.

lation can be used for the object and the background. This |, [15], the authors study 3D label images with a frontier

adjacency relation is necessarily the 4-adjacency in 2D im35rqach. The 3D image is divided into regions which are 6-
ages and the 6-adjacency in 3D imades [17]. This class Qfonnected (hence, the configurations of Figiire 2 cannot oc-
images is obtained by excluding all the images in which at,1) and in which the voxels share the same label. Moreover,
least one of the three configurations depicted on Figure 2 aprey oniy take into account the 6-adjacency between regions
pears. In other words, it is assumed in these images that thg) 1ove a voxek from a regionA to another regior, the
boundaries of the objects (viewed as an uniom@iibes)  ,,thors make requirements on surfaces betwegTdA\ {x)

are i—1)-manifolds. In the case where label images presertyesp_ betweer andB\ {x}): they have to be homeomorphic
forbidden configurations, an algorithm has been proposed tQ, 5 »_disk. Furthermore. for each regiorb-adjacent tox

1 This problem is sometimes disregarded. For instance[ i [15the frontier between the regiosandC before the move
(proof of Proposition 2), it is claimed “Since the 18-neighthood  (resp. betweeB andC after the move), must CoIIa&ento
of x is limited to binary case, and by definition of simple poirite t  the corresponding frontier after the move (resp. before the
topology of the complementary & is preserved: we can deduce that move)
the topology ofX [the complementary of R in the 18-neighbourhood of ’
X] is also preserved, and thus tha simple forX”. It is not clear here
what is meant by preserving topology. However, in the fraprévof
simple points[[15], it is not true in general that we can swapdbject 2 Here, collapse is the classical operation on complexesetehiy
and the background without swapping together the adjaceaicy Whitehead([21] (see Sectién ?.2).
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[T (T ] tion[2 establishes, in particular, two new results whosefsro
[Tl [ 7] " . BE are provided in AppendixIB arid C.
2] | SEAE2 | [ 33 In Sectior[ 8, we introduce our framework for the topo-
[2]2]2 [2]2]2 | 2l4]4 logical understanding of label images. We describe a first
HHE tool to locally modify such a label image while keeping un-
(@) (b) (© changed all homotopy groups of the objects and their unions

Fig.3 (a)Ani ith four labels. (6) The Iabel of a single pixash (to be more precise, we have weak homotopy equivalences).
1g. a) Animage wi our labels. e label or a single pixa: . . .
changed. Neither the topologies of the labels nor of themmlements When t_he posetis the spageof cubical complexes defined

in the image are modified. However, the topology of the partis not N Sectior( 2, our tool keeps also unchanged the homotopy
preserved in the sense that the union4 becomes contractible,43  groups of the complements. Furthermore, the changes can

is split into two components in 4-adjacencyy 3l loses a component, pe processed in parallel under certain conditions, thub lea
2 + 3+ 4 loses a component in 4-adjacency. (c) This example is frorr]ng to well-balanced algorithms

[20]. The authors observe that, if we look at the picture it (8 4)- . . L. . .
adjacency pair, the central pixel can move from 3 to 2 witredtering In Sectior(#, we are interested in images in which the

the topologies of the four labels and of the six pairs of laltelt they  sets of points that share a label (we saydtpportof the la-
e oo s he ek oo amsaang D are closed ets, a n (2 dgftal mages, In i case
iidestroyed gy the move of the central pixel frgm 3to 2. ’ we define an elementary modification, nam mSplreq

by collapses. It has the same (good) topological propaaties

the one defined in Secti@h 3 while the supports of the labels
1.2 Purpose remain closed sets.

In Sectiorl b, we studgegular imagesn which the label

The aim of this article is to study the topology of label im- of a pointin the poset is defined by the labels of the minimal
ages, following the idea to preserve any union of labelspoints beneath it. Regular images can be built from digi-
which amounts to require topologically sound proceduresal images defined of" and we have proved in[22] that,
on digital label images not to change the topological charwhen the poset is the space of cubical complexes, this con-
acteristics of the sets of a partition@f and of any coarser struction puts in one-to-one correspondence the connected
partition of the initial one. In other words, one could sagtth components of the regular image with the ones of the dig-
the actual set of objects in a digital label image is the poweital image. Moreover, it induces isomorphisms between the
set of the partition. We have adopted a theoretical standundamental groups of the regular image and the digital fun-
point with the will to cover a wide range of situations. In our damental groups of the digital image (as definedln [2]). In
framework, we do not make any assumption on the topoloregularimages, we give conditions for cuts to preserve-regu
gies of individual objects (we do not usepriori knowl- larity allowing thereby to modify a regular image in a topo-
edge) and there is no forbidden configurations. Weak hdogically sound manner, the result being also a regular @nag
motopy equivalence in finite spaces (which corresponds téallowing to go back t&").
homotopy equivalence in continuous ones) is used to per- SectiorLb concludes this paper and describes further works
form topological comparisons. To avoid the pitfall of dis- in preparation.
tinct adjacency pairs on the same object described above,
we embed the digital space of the image into a richer space
equipped with a genuine topology, that is a poset whose mir2 Simplicity in sets
imal points are the points of the digital image. This enrich- ) . o )
ment of the space leads us to embed also the label set infd'€ &im of this section is to gather notions and results on

a richer one, namely an atomistic lattice whose atoms ar@hich relies this work, and also to present our notations.
the labels of the dlglta' image. Thereby, we can extend thé\lote thatin Section 218, we establish (new) results whieh ar

digital image on its poset, assigning extended labels to negpPecific to complexes. Operations and relations on funstion

points, and we can define gradual modifications of the im{in particular, onimages) will always be implicitly poinise
ages more adapted to topology preservation. ones.

2.1 Homotopy
1.3 Contribution and structure of the article

Two continuous map$,g : X — Y arehomotopidf there
The remainder of this article is organised as follows. exists a continuous map, calletheamotopyh : Xx[0, 1] —
Sectior 2 gathers results on binary images on which reY such thah(x,0) = f(x) andh(x, 1) = g(x) for all x € X.
lies our work. Itis intended to make the article self-conéai  The spaceX andY arehomotopy equivaler(or have the
and to introduce our notations. The last subsection of Secsamehomotopy typeif there exist two continuous maps
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f: X - Yandg:Y — X, calledhomotopy equivalences two cubical 3-complexeX andY such thaty c X. Their
such thago f is homotopic to the identity mapjdandf og  geometric realisations have the same homotopy type and,
is homotopic to ig. If X andY are homeomorphic, they are therefore, are weakly homotopy equivalent. Nevertheless,
homotopy equivalent: given a homeomorphigrbetween is clear that the inclusion: Y — X is not a weak homo-

X andY, ¢ andy~! are homotopy equivalences betweén topy equivalence for it associates non-contractible Idops
andY. The converse is not true in general (for example, acontractible loops. Likely, in image processing, we would
ball is homotopy equivalent —but not homeomorphic— to areject such a thinning. So, the nature of the weak homotopy
point). A topological space isontractibleif it has the ho- equivalence is an important information.

motopy type of a single point. Let be a topological space.

Two pathsp, g in X are equivalentif they have the same

extremities (.e., p(0) = g(0) andp(1) = g(1)) and are ho-
motopic by an homotopi such thath(0,u) = p(0) = q(0) ﬁ

andh(1,u) = p(1) = q(1) for all u € [0,1]. It is easy to & &
check that this relation on paths is actually an equivalence %
relation. We write p] for the equivalence class @ If p,q

are two paths irX such thatp(1) = g(0) we can define the @) ()

productp - g by: Fig. 4 (From [29]) (a) A cubical 3-compleX. (b) A subcomplexY.
. Their geometric realisations have the same homotopy typeieer,
2 f 1
(p-o)t) = { p(2t) ifte [?, i]’ the inclusioni : Y — X is not a weak homotopy equivalence.
qt-1)ifte[L,1].

This product is well defined on equivalence classesy | There is a case in which the weak homotopy equivalence
[d] = [p-d]. Let xbe a point ofX. A loopatxis a pathinX  reduces to the knowledge of the homotopy groups. When a
which starts and ends &t The product of two loops atisa  set is weakly homotopy equivalent to a point, then it is con-
loop atx and the set (X, X) of equivalence classes of loops nected and all its homotopy groups are trivial. Thus, obvi-
atxis a group for this product. Itis called tliendamental ous|y, any constant map is a weak homotopy equiva|ence_
groupof X (with basepoint xor thefirst homotopy groupf  Such a space is said to bemotopically trivial There are
X.If Xis path-connected, the grom(X, x) does notdepend spaces that are homotopically trivial and that are not con-

on the basepoint.g., for any pointsx,y € X, 71(X,X) and  tractible as shown on Figufé 5.
m1(X,y) are isomorphic). Higher homotopy groups, denoted

(X, X), are defined by replacing loops by continuous
maps from [01]" to X that associate the boundary of the
n-cube tox. The product on such maps is then defined by
gluing two faces of th@-cubes:

_ [ P2ty te,.. . 1) ifti €0, 3],
Pt to) = { 2t~ Lt ty) if tp € [, 1],

Conventionally, the set of path-connected componeni of Fig. 5 A set of points (in red), closed lines (in yellow) and closed

. . squares (in green) & whose union forms a hollow cube with a fence.
is denoted byro(X, X), but it has no group structure. Equipped with the inclusion, this set is a finite topologisphce (see

A continuous magf : X — Y is aweak homotopy equiv- pelow Subsectiofi 2.4) that is homotopically trivial but nohtractible
alenceif the morphismsf, : mn(X, X) — mn(Y,y) defined by  (the reader will be able to establish the proofs of these tygertions

f.([p]) = [f o p] are all bijective (o is just a bijection, not after the reading of SubsectidnsI2.5 &nd 2.6).

a morphism). Two space§ Y areweakly homotopy equiva-

lent if there is a sequence of spacés = X, X1,..., %X =

Y (r = 1) such that there exist weak homotopy equiva-

lencesX;_1 — X or X; — Xi_y foralli € [1,r]. Two ho- 2.2 Complexes

motopy equivalent spaces are weakly homotopy equivalent.

The converse is not true in general but Whitehead's theoreM/e do not recall definitions about simplicial complexes viahic

[28] implies that it is true for all spaces that are geometricare generally well known. The reader who whishes to rec-

realisations of simplicial or cubical complexes. ollect such a notion, or any one rapidly exposed below, is
Two weakly homotopy equivalent spac€sy have iso- invited to find complementary information in a lecture book

morphic homotopy groups. However, a weak homotopy equen algebraic topology.g.[30/31132, 33, 34]. In digital im-

valence is much more than a collection of isomorphismsges, grids are often cubic ones. It is then convenient,in im

between homotopy groups. On Figlile 4, we have depictedge analysis, to replace simplices in complexes{sybes.
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As cubical complexes are not commonly used, we recal N
hereafter the main basic definitions (see also [23]). We s¢€
F§ = {{a} | a € Z} andF; = {{a,a+ 1} | a € Z}. A subset
f of Z" which is the Cartesian product of elements of}
andn — m elements offj is afaceor anm-face(of Z"), m
is thedimensiorof f, and we write dim{) = m. We denote
by Fp, the set composed of afi-faces ofZ" and byF" the
set composed of all faces @f. Let f € F" be a face. The 2.3 Partially ordered sets

set{g € F" | g ¢ f}is acell and any union of cells is an

abstract cubical complesThegeometric cubical complexes The motivation for considering partially ordered setsy{or
are defined in the same manner, except that we change tRgt$ comes fromi) the observation that digital images are
definition of F} by settingFi = {[a,a+1]| a € Z} c R". The essentially finite (even when they are defined8ito avoid
geometric realisatiotK| of a geometric cubical Comp|dﬁ difficulties on bOUndarieS)ijI that finite tOpOIOgicaI spaces

is the union of its faces. Figulé 6 illustrates these de€ingi ~ Of interest have the gfseparation propefiyout not the -
separation propeﬂ;(otherwise either some points could not

be distinguished from a topological viewpoint or the space
is totally disconnected), andi() that To-spaces in which any
intersection of open sets is an open set (as in finite spaces)
OC——30 are posets [35,36] (this point is developed in Sedtioh 2.4).

_ e Let X be a set. A binary relation oX is apartial order

if it is reflexive, antisymmetric, and transitive. partially

- ordered setor poset is a couple X, <) where the relatior

is a partial order orX. The relation>, defined onX by x>y

iff y<x, is a partial order oiX called thedual order We say

that two pointsx,y in X arecomparablef x<y or y<x. If,

Fig. 7 (a) A complexX. (d) A complexY which is an elementary
collapse ofX. (b-c) Two steps in a strong deformation retractionf
ontolY].

[ —
(b)

Fig. 6 (a) Four pointsirZ?,a=(i,j),b=(+1j),c=(+1j+1),
d=(,)+1). The facesf = {a},g = {b,c} = {i + 1} x {j,j + 1} and
h={ab,cd} = {i,i + 1} x {j, j + 1} are symbolically depicted with
ellipses. (b) Another (more semantic) symbolic represamtaoften
used in this article. In black, the 0-fadeIn dark grey, the 1-facg. In
light grey, the 2-facé.

Whitehead[[211] (an easier reference for modern read:
ers is [34]) has defined elementary transformations on co F ol =

plexes as follows. LeX be a complex (simplicial or cubical)
and , y) a pair of faces irX such thatx is the only face of
Xincludingy (i.e., X\ {x, y} is still a complex). Then,x y)
is afree pair, and the self = X\ {xy} is anelementary
collapseof X, or X is anelementary expansiaf Y. If a set

Y is obtained fronX by a sequence of elementary collapsesI
(a sequence of elementary collapses and expansions)\{thera’anoteol ht), is the length ofx

is acollapseof X (X andY aresimple-homotopgquivalent

for all pairs x, y) of elements o, x andy are comparable,
the relation< is atotal orderon X. We write x < y when
X<y andx # y and we set:

- X' ={yeX|x<ylandx™ = x"\ {x} = {ye X| x<y};
—xt={yeX|y<xjandx* = x' \ {x} = {ye X |y < x}.

If x andy are comparable, we write < y; otherwise, we
write X # y. The set of points comparable with a given point
x is denotedk! (x! = x! U xT), and we se&?™ = X'\ {x} =
x* U xT*. A pointx € X is minimalif x! = {x} andmaximal
{x}. A pointx € X is theminimumof X if X" = X and

is themaximunof X if x* = X. We say that a posetiscally
finite if for each pointx in X, there are finitely many points
comparable withx. A chainin X is a totally ordered subset
of X. Thelengthof a chain is its cardinality minus one. The
lengthof a posetX is the maximal length of a chain iX

f such a maximum exidts The heightof a pointx € X,

If x < yand there is no

or X andY have the same simple-homotopy type) and one 3 A space has thegFseparation property if for any pair of distinct

write X N, Y (X\Y). A set iscollapsibleif it collapses
onto a singleton.

If Y is acollapseof X then|Y|is a strong deformation re-
tract of|X| and thugX| and|Y| are homotopy equivalent [21].
FigurdT illustrates this property. In particular, if thengplex
is collapsible, its geometric realisation is contractibiae

points there exists an open set that contains one of them @nithe
other.

4 A space has theFseparation property if for any ordered pair of
distinct points there exists an open set that contains thedirthem
and not the other. Now, let be a point in a finite T-spaceX. For
eachy € X,y # x, there exists an open neighbourhoodxptJy, not
containingy. Hence {x} = " Uy is open, that is to say, the topology on
Xis the discrete topology in which all subsets are both operclosed
and the only connected sets are the singletons.

converse is not true as shown by the thin version of Bing’s s gome authors define thengthof a chain as its cardinality and the
house with two rooms [26] or by Zeeman'’s dunce hat [27]. the maximal length of a chain X is also called théeightof X.
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€@ Theorem 1 ([35]) Let X be an § A-space. The relatiog

d @) defined on X by gy if x € Uy is a partial order on X.
Conversely, lefX, <) be a poset. The sét defined byl =
‘ c(1) (U c X|VxeUx c Uj}is atopology on X, the poset
b (1) X equipped with this topology is an A-space and, for all

xe X, Uy = xt.
a(0)

Indeed, the choice to setyif x € Uy is purely arbitrary.
::igb c8d eT}hee u'i”asesde Wﬁiha%aemoré);(a af?sel:t;) ?ef(i:’)‘e(d dk)’y( tg)e se\we could sek<yif y € U, and in literature both settings can
(g’, bi, Eb,’d), (b(,]e)F)(F():, 9).(c.©). (d. d). (d. S’, (é e?}. I’B;Wée% pérg’mr’]e_ be found (for instance, thg choigey if y € Uy is made by
ses, we give the height of the points. The length of this pesgt [35/38] and the other choice by [37]89]40, 41]).

If Y is a subset 0K, the topology associated to the poset

. (Y, <) is the topology induced by the one associated to the

zsuch thatx < z <y, we say thay covers xand we write 456t K, <). The dual topology of the topology associated to
X <y. The Hasse diagram of the relatignis the oriented ¢ posetX, <) is the topology associated to the dual order
graph of the relatior. When orienting all arcs from bottom -,
to top, this diagram ibers a good visual representation of  F.om now on, posets will always be equipped with the

(small) posets (see Figure 8). _ _ _ topologyU described in Theorefd 1. This topology leads to
Simplicial or cubical complexes equipped with the in- 4 nice characterisation of continuous maps.
clusion,g, or its dual,2, are locally finite posets. Moreover,

for all n € N, (F", 2) is order isomorphic toF", C) (that is, Property 2 ([39]) Let X Y be posets. A function:fX — Y
the combinatorial properties of thefaces off" are equalto ;¢ continuousff it is non-decreasing.
the ones of ther(— k)-faces if we replace by 2). Note that
it is not true for simplicial complexes. In the sequel, we will often have to test if a poset is con-
We extend to posets Whitehead's definitions of free pairs¢ractible. Remember that a space is contractible if it has th
and collapses. A paix(y) in a poseX is a(combinatorial) homotopy type of a point, that is, if there exists a continu-
free pair if x is the only point (strictly) less thaypin X. If ~ ous mapH : X x [0,1] — X such thatH(x, 0) = x for any
(x,y) is a free pair inX, the setX \ {x,y} is acollapseof X. = x e Xandx — H(x, 1) is a constant map. Intuitively, a set is
When we can “thin” a subséf of X to a subseZ of X by  contractible if it can be continuously shrunk to a point. Nev
withdrawal of free pairs, we writ¥ \ Z. ertheless, this intuition is of little help in a finite spa€er
instance, consider a geometric cubical compeomposed
of a closed unit square &?, together with all its faces. Say,
2.4 A-spaces it is the one depicted on Figuté 9(a). This complex is col-
lapsible byX N\, X\ {a,b} \ {d, e, f,h,i} \, (e f,i} \ {i}.
A topological spaceX is anA-spaceif any intersection of  since each elementary collapse is associated to a strong de-
open sets is an open set. In such a space, closed sets ggfmation retract in the Euclidean spai®, the realisation
isfy the definition properties of open set X are closed  of this unit square is contractible and one can actually con-
sets, any union and any intersection of closed sets is actlos@nuously schrink the square following the above sequence
set), so one can exchange open and closed sets. The obtaiRgdollapses (which first step is the one illustrated on Fig-
topology is then called thdual topology As any set has a yre[7). Now, this complex, equipped with the inclusion, is
closure, any element of an A-space has smallest neigh-  3is0 a poset (the Hasse diagram of which is depicted on
bourhood(an open set included in any open set containing=igure[d(b)). HenceX is not only a combinatorial structure
X), denoted byy, which is the closure ofx} for the dual  pyt also a topological space. However, we cannot follow the
topology. Conversely, a topological spaXen which each  same steps to continuously shriklas before. For instance,
point has a smallest neighbourhood is an A-space. we cannot remove continuously the fgegfrom X \ {b} for
A To A-spaceis an A-space that has the-5eparation there does not exist a non-decreasing function foin{b}
property (.e,, for any two distinct pointscy, there exists  onto X \ {a, b}. Furthermore, in[25], we have shown that if
a neighbourhood containing just one of them). McCord hax y are two faces if" (n > 3) such thay c x, the poset
proved in [37] that if an A-space is nop,Tthe identification ({zc x| z# y}, ©), which looks like a sphere with a hole, is
of the points that share the same smallest neighbourhogght contractible when dimg{ < dim(x) — 2. This is clearly
leads to a homotopy equivalent quotient space whickis T ¢ounterintuitive.
There exists a canonical link betweeg A-spaces and Hopefully, even if we have to build a new intuition to
posets, established by Alexan€to deal with finite spaces, there exist very easy properties lik
the following one which provides a §icient condition to
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As the complexX(X) does not change if we consider

// \\ the dual order oiX, Theorenfilh implies tha{, <) is weakly
i homotopy equivalent taX, >)).

In the sequel of this section we direct our interest to-
wards minimal deformations of the posets which do not alter
(b) their topology. To better understand thé&eiences between
the notions described below, we will take the same example
all along the three next subsections. Consider the space
as defined in Subsectién 2.2. The Bétogether with inclu-
sion is obviously a poset. Let be a 3-face irF® andx; be
aface inx*. We setXo = F3 \ {xo} andXs = Xo \ {X1}. Our
goal is to shrinkXy onto X;.

(d)
2.5 Unipolar points
Fig. 9 (a) An abstract cubical cel’ which models a digital point

of Z2. (b) The Hasse diagram 6¥(a"). (c) The simplicial complex  Thg significance of unipolar points in posets was discovered
K(x(@). (d) The geometric realisation 6{(X(a")). by Stong[[39] in the 60’s and later rediscovered by Bertrand

[38]. Most results in this subsection were first establisined
guarantee the contractibility of a finite poset (a proof can b Stong’s article for finite spaces but can be easily adapted to
found,e.qg, in [40, Lemma 6.2]; this is also a straightforward any posets.

consequence of [39, Corollary 3]).
Definition 5 (Unipolar point) Let X be a poset. A point«

Property 3 Let X be a poset. If X has a maximum, or ax IS:

minimum, then X is contractible. In particular, for anyex - down unipolaif x}* has a maximum;

X, %' and X are contractible. Moreover, for anyx X, ¥ is — up unipolarif x™ has a minimum;

contractible. — unipolarif it is either down unipolar or up unipolar.

There is a close link between posets and simplicial compygperty 6 ([39, Proof of Theorem 2] and [25, Proposition

plexes, discovered by Alexandfd35]. Let X be a poset. 4]) Let (X, <) be a poset. A point & X is unipolar ff X \ {X}
The points inX are the vertices of a simplicial complex s a strong deformation retract of X.

K(X), the simplices of which are the finite chainsX{see
Figurel®). Conversely, itis plain that the simplices of &giv  pefinition 7 (Core) Let (X, <) be a poset. Let Yc X be a
simplicial complexK, equipped with the inclusion relation, sybset of X. We say that Y is a core of X if the p¢¥et)

form a locally finite poset, denotéd(K). has no unipolar point and it is a strong deformation retract
These correspondences are not only algebraic, indeest X

the topologies are concerned as well. The following theo-

rem, due to McCord, establishes the key properties of theroperty 8 ([39, Theorems 2, 4])

mapex : |KX(X)] — X which associates to each point in the .

geometric realisation ak(X), the highest element of the 1. Any finite poset has a core and two cores of the same

unique open simplex it belongs to (remember that a simplex poset.a.re homeomorphic. . )
of K(X) is a chain). 2. Two finite posets are homotopy equivalghthiey have

homeomorphic cores.

Theorem 4 ([37, Theorem 2])Let X be a poset. There is Observe in particular that Propeffy 8 implies that one
a weak homotopy equivalengg : |X(X)| — X. Further- can greedily remove the unipolar points of a finite poset in
more, one can associate to each continuous maXf-» Y  order to obtain a core which will be homeomorphic to any
between two posets, the simplicial mag{ f)| such that the other core of the same poset. In particular, when the poset is

following diagram is commutative. contractible, we have the following corollary.
X f Y Corollary 9 ([25, Corollary 4])If X is finite and contractible,
ox ’ ’ o there is a sequende);_, (r > 0) of points in X such that
X = {X}i_, and, for all j € [1,r], x; is unipolar in{xi}i’zo.
[CX) [FC(Y)I Furthermore, if xe X is unipolar, we can choosg x x.
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As an unipolar point in a poseK(<) is, clearly, also Proposition 14 Let (X, <) be a poset. Let x be gsimple
an unipolar point in the poseK(>), one can easily deduce pointin X. Then x ig-simple in X equipped with the reverse
from Corollary[9 and Properfy 6 the following corollary.  order and the dual topology.

Corollary 10 Let (X, <) be a finite poset. Ther(X, <) is Unipolar points grgs-simple points since ik € X is a
contractible f (X, >) is contractible. down (resp. up) unipolar poink'* (resp.x™) has a max-
imum (resp. minimum) and is therefore contractible (Prop-

Thanks to the next Property, one can build well balancearty[3). We saw previously (Propefty 6) that the removal of
shrinking algorithms by deleting unipolar points with samea unipolar point is a strong deformation retraction. It is no
heights in parallel. longer true foB-simple points (see our test 9§ of Exam-

ple[12 with dimf;) < 1 for a counterexample). Neverthe-
Property 11 ([38, Property 3] and_[25, Proposition 5f)  |ess, the next property states that homotopy groups are not
x # y are unipolar points, then eithg@) y is unipolar in  changed by such a deletion and, furthermore, the following
X\{x}, or (b) for one order on X £ or >), x is down-unipolar theorem ensures that this deletion corresponds to a strong
and covers y, for the other order y is down-unipolar anddeformation retraction on the continuous analogue.
covers x and the map : X\ {x} —» X\ {y} defined by
w(2) = zif z# y andp(y) = x is an homeomorphism. Property 15 ([41, Proposition 3.3]).et X be a finite poset.

Let x e X be ag-simple point. Then, the inclusion map i
Example 12 Let us consider the test seg,Xlescribed atthe X\ {x} — X is a weak homotopy equivalence.
end of Subsectidn 2.4. It is plain that tAdaces of y are up
unipolar in X. Thus, ifdim(x;) = 2, the set Xis a strong  Theorem 16 ([41, Theorem 3.10]).et X be a finite poset.
deformation retract of X If dim(x1) < 1, x; is not unipolar  Let xe X be ag-simple point and{(X), K(X\ {x}) the sim-
so X% is not a strong deformation retrdtof Xo. plicial complexes associated to X and\ Xx}, respectively.

This example shows us that unipolar points are not enou‘léﬂenﬂ((X) collapses onta(X \ {x)).
“powerful” to be used in thinning or growing procedures.  From an algorithmic point of view, like unipolar points,
This is the reason why we introduce ngvsimple points B-simple points have good properties since they can be dele-
ted in parallel. Obviously, i,y are two points inX with
] . ht(x) = ht(y), there is no need to know whethehas been
2.6 -simple points deleted fromX or not to decide if/\*, ory™ is contractible.
Moreover, as we have seen above, the decision on the con-

The ”9“0” o_fﬁ-simple poipts was firsF introduced bY Bgr- tractibility can be greedily performed. Thus, a topologep
trandl in [38] in order to define topologically sound thinning serving thinning procedure in a posétof finite length¢

algorithms in posets. In his article, Bertrand uses a Spec'f'consists of repeating until stability the removal of {he

definition for the homotopy type. On the other hand, Bar—Simple points of height for k = 0 to £,

mak and Minianl[[41] gives the same definition in the clas-

sical framgwork in order to perform a collapse operation i.nExampIe 17 Let us consider once again the test sgt X

posets which actual'ly corresponds to the collapse operatlodim(xl) - 2, we have already seen that is unipolar, so it

in complexes associated to posets. is alsog-simple. Ifdim(x;) = 1, the Hasse diagram ofl%
in the poset Xis an acyclic graph composed of the fdsr

Definition 13 (§-simple point) Let(X, <) be a poset. A point faces off® including % and the thre@-faces of® including

x € Xis: y and distinct from ¥ Thus, it is contractible and;xis up
— downg-simple (inX) if x!* is contractible; B-simple. The inclusion map i: X3 — Xp is therefore a
— upg-simple (inX) if x™ is contractible; weak homotopy equivalencedi(x;) = 0O, let yo, y1, Y2 be
— B-simple (in X) if it is either downg-simple or upg-  the three2-faces including xand included in x. The reader
simple. can check in Figure10 that these three faces are up-unipolar

_ o _ in x[* and that X* \ {yo, y1, Y} is a core of X*. Hence, ¥*
From this definition and Corollafy 10, we straightforwardy not contractible and xis notg-simple.

ly infer the next proposition.

6 In fact, it is easy to prove thaf; is not even a retract of since
x; belongs to, at least, 9 connected pairs<inand any function from
Xo to Xy, equal to identity orXy, will disconnect one of these pairs.

7 Bertrand calls the up-simple points,a-simple points, and the L .
down g-simple points8-simple points wherer andg denote the or- The example seXo highlights the need for a weaker condi-

der and its dual in the pos#t tion on points to be deleted when processing a thinning in a

2.7 y-simple points
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Fig. 10 (a) The subset]* of X,. (b) The core ok* in Xo.

digital image. The following definition of-simple poin@

xt* is less than or equal to 1. Hencexif or x'* is homo-
topically trivial, it is contractible. Thanks to Propeft@,ive
deduce thak'* is contractible and therefore homotopically
trivial.

The next property ensures that the deletion efsample
point does not modify the homotopy groups.

Property 22 ([42]) ([42, Proposition 3.10]).et X be afinite
poset. Let xe X be ay-simple point. Then, the inclusion
i1 X\ {x} - Xis aweak homotopy equivalence.

Finally, the following theorem states that, when deleting
avy-point in a finite poset, the homotopy type of the contin-

and their properties are due to Barmak and Miniari [42]Uous analogue is unchanged.

Bertrand[[38] defines a quite similar notion.

Property 18 leads to an alternative definitioredimple
points: a pointx is g-simple f x'* is contractible. In turn,
this alternative definition leads to the definitiomesimple
points.

Property 18 ([42, Proposition 3.3]}et X be a finite poset
and x a pointin X. Then!x is contractible i x'* or x™* is
contractible.

Definition 19 A point x of a poset is g-simple pointif the
poset X* is homotopically trivial.

Theorem 23 ([42]) ([42, Theorem 3.15]) et X be a finite
poset and let s X be ay-simple point. Thefk(X \ {x})|
and|X(X)| are simple-homotopy equivalent.

In a 3D imageX, the cost to decide whether the &t is
homotopically trivial is not expensive. Indegd(x**) is a 2-
dimensional simplicial complex and it is enough to compute
its connected components and its Euler characteristic. An
alternative to look af-simple points, in any dimension, is to
removes-simple points ik until stability. If the resultis a
singleton, by Properfy 15 is weak homotopy equivalent
to a point and therefore homotopically trivial. Moreovée t

As we have observed (see Subseclion 2.4) that the h§cheme proposed for the deletion of simple points is still

motopy groups of a poset are unchanged if we consider t
reverse order oiX, we can state the following proposition.

Proposition 20 Let X be a finite poset and x beyasimple
pointin X. Then x ig-simple in X equipped with the reverse
order and the dual topology.

nyalid (y-simple points with same height can be removed in

parallel).

Example 24 Let us consider the test sep. Ve have seen
that x is ag-simple pointf dim(x;) > 1. Suppose now that
dim(x,) = 0. The chain compleX(x!*) (see Subsectidn2.4)
is depicted in Figureé1 in @D-space and in 8D-space. It

Since a contractible space is obviously homotopicallyis clearly contractible, so™ is homotopically trivial (The-

trivial, a 8-simple point is ay-simple point. In general, the

orem(4). Thus, xis ay-point and the injectioni X; — Xo

converse is false as it will appear in Examplé 24. NevertheiS @ weak homotopy equivalence.

less, if the length oK is less than or equal to 2 (intuitively,
if Xis 2-dimensional), then anysimple point is g8-simple
point [42].

The following property gives a siicient condition for a

2.8 Complexes and simplicity

point to bey-simple. This condition enables to decrease than this subsection, we establish some specific properties of

cost of looking fory-simple points since the length af*
or x'* is always less than or equal to the lengthxbf .

Property 21 ([42, Proposition 3.17])et X be a finite poset
and x a point in X. Then®x is homotopically trivial if **
or X* is homotopically trivial.

If the length of the space is less than or equal to 3,>and
is neither a maximum nor a minimum, the heighdf and

8 Barmak and Minian call them-points. To be consistent with the
previous subsection, we prefer to call thersimple points.

spaces of cubical or simplicial complexes. The proofs of
these new results are provided in Appendicks Bland C.

In Sectior 4, the proof of Theorem147 needs the space
to have a property that can be understood in the framework
of complexes as asking the boundary of a cell with a “large
hole” to be homotopically trivial. So, we introduce the fol-
lowing definition.

Definition 25 A poset X has thpierced sphere properify
for any xy € X such that y covers x, the set*x {y} is
homotopically trivial.
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(b)

Fig. 11 (a) The pure simplicial 2-compléi<(x1*) in a 2D space. The
larggmiddleg/small circles are vertices associated tg231-faces of
x}*. (b) The complexK(xI*) in a 3D space. The seven vertices as-
sociated to the 3-faces odl* are in corner position and the vertices
associated to the 1-faces are in centre position.

The next proposition states that this pierced sphere pro

(I PR le
1
Fig. 12 Hasse diagram of the label det {Ii}i‘:1 U{L}

Remark 28 We do not know if this theorem remains true in
any dimension if we replace the hypothesis “y |8-aimple
point” by “y is a y-simple point”. Nevertheless, if the di-
mension of X is 2y-simple points arg-simple points, so it

is obviously true in this case. Moreover, we have proved, by
checking all configurations with the help of a computer pro-
gram, that it is also true irF2, the space o8-dimensional
cubical complexes. In Appendx D, Counterexarfple 61 pro-
vides a case where Theoréni 27 is false when the space X is
not a complex for the dual order.

p_

erty is satisfied by the spaces of cubical or simplicial com-
plexes. In Appendik B, we actually prove an extended Vers | abel images

sion of this statement (Propositibn] 58).

Proposition 26 Let X be a cubical or a simplicial complex
equipped with the ordep. Then, X has the pierced sphere

property.

In digital topology, the usual requirement for a pojrid
be simple for an object in a spaceX (that is a point which
can be removed fronY in a topologically sound thinning
procedure) is tha) the inclusion : Y \ {y} — Y induces a

Let L be a finite poset with a minimal element, denoted
and such that two distinct elementdif{.L} are not compa-
rable. We set* = L\ {1} and we writef for the cardinality
of L*. The elements df* are callecproto-labels The Hasse
diagram of the posét is depicted in FigurgZ12. Aabel dig-
ital imageis a function defined ofz", with values inL, and
equal toL everywhere except on a finite set of pointsZ8f
Letl € L, | # L be a proto-label and a label digital

one-to-one correspondence between the connected comp@iage. The sefi™*({l}) is the supportof the proto-label

nents of the object before and after the remoicel,(Y and
Y\ {y}), (ii) the inclusion’” : X\ Y — (X\ Y) U {y} induces

(in the label digital imagel). The union of the supports of
all proto-labels is thelomain of the imaga. (This domain

a one-to-one correspondence between the connected coi-finite by definition.) The set™*({.1}) is the background

ponent of the background before and after the remaxa] (
X\YandX\ Y U{y}), (iii) the inclusioni induces isomor-

of the imagel. The background and the supports define a
partition of Z".

phisms between the fundamental groups of the connected In order to equip the discrete grid &f' with a topol-

components of the object before and after the remdal,

ogy, we enrich this grid by adding low dimensional points

the inclusioni’ induces isomorphisms between the funda-between the xels dt” (for instance, irz®, we add surfels,

mental groups of the connected components of the baclinels and pointels) whose purpose is to link the distinct ad
ground before and after the removal[43].In][29], it has beeracent xels and to confer a poset structure to the discrete
proved, thanks to the linking number borrowed to knots thespace. Typically, such a space is the space of cubical com-
ory, that for 3D digital images interpreted with the (6,26)PlexesF", or any poset associated to a cellular decomposi-
or the (26,6) pair of adjacencies, there is no need to corfion of the space [44,45,46,47]48]. Thereby, the label digi
sider the fundamental groups of the background since thefl images considered in this article are defined on a locally
preservation is implied by the three first conditions. THe fo finite poset K, <): we wish to link points of2" to finitely
lowing theorem generalises, in our framework, this prapert many neighbours. Indeed, all sef$ andx‘* which appear
to spaces of any dimension (and, in a certain sense, defin&it the definitions ofg/y-simple points will be finite. This
in [22], for any pair of adjacencies). will allow us to use the results of Sectibh 2.

Furthermore, we suppose that the embeddirig'ah X
Theorem 27 Let X be a cubical complex equipped with the puts in one-to-one correspondence the poin@"okith the
order 2 which is also a cubical complex for the dual order minimal points ofX. The reader must be aware that this
C. Let Y be a proper subset of X and y bg-aimple point is counterintuitive. For instance, if the poset is the space
inY. Theny ig-simple in(X \ Y) U {y}. of cubical complexest", this one must be ordered by the
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Fig. 13 Label images. The proto-labels arey, b (depicted in red, L s——oc—o ne—oc— a1
green and blue). The other labels are obtained by using ttitivad (b) (© (d)

colour model €.g, {r,b} is depicted in magenta) except which is
depicted in black { is depicted in white). (aX is a subset oF?. T Fig. 14 (a) A label image whose domain ¥ and whose codomain
is the power set®™. Observe that in this image, there are points of is the power seT = 21 = (0, {b}, {r}, {b, r}} equipped with the inclu-
height 0 that have distinct dimensions. gbjs built from an hexagonal ~sion. The points with labgb} are depicted in blue, those with lale]
tessellationT is the power set®?, The labels of the points of height in red and those with labdb, r} in magenta. The points of the back-
greater than 0 are assigned according to the rule which willded in ~ ground (labelL = ) are depicted in white with a black border or are
Sectior[b: a label is the supremum of the labels of the minppaits ~ not depicted. (b) In blue, the support of the lafigl (c) In red, the
in the neighbourhood. (cX is built from a semi-regular tessellation. support of the labefr}. (d) In magenta, the support of= {b, r}.
The labels are given according to the same rule as in (bJ isihot a
power setT ={1,r,g,b, T}.
this issue in this article. This is why we actually just sed th
following definition for label images.
dual of the inclusionp, i.e., the height of a face is its codi- . . o
mension. The reason to do so is to put the xel&bfwhich  Definition 29 (Label images) Let X be a locally finite poset
contain all the information of the original image, at the sam @nd T an atomistic lattice. Aabel imageis a functiony :

heightin the poset, namely “on the floor”. Then, we can add,X - T.
above those minimal points, the topological “glue” that is Figure[IB provides various examples of label images.
needed to interpret the image. Most of the time, the labels of ~\ye have seen that when we start from a label digital im-
the minimal points will be proto-labels, ar, that is mini- ageld : Z" — L and we construct a label image X — T,
mal labels inT and the image will be non-decreasing. In thehe |abels of the minimal points of (i.e., the xels) are the
sequel, we identify the points @' with their images irX  4toms ofT (i.e., the proto-labels). When a label image has
so thexelsare the minimal points oX. this property, we say that this imagegisre

Since we enrich the initial space with low dimensional A label image can be seen as a superposition of binary
faces in order to get both a topological space and an algdayers. Indeed, if: is a label image, anble L* is a proto-
braic structure, we are led to do so with the label set tdabel, the imagg, = uAl is a binary image whose codomain
extend the digital label image on these supplementary lows {.L, I} (remember that we denote byandv the infimum
dimensional faces. That is why we embed the label set in aand supremum operations of the latticesee AppendixA).
atomistic lattice T, <) whose minimum is the embedding of The next proposition establishes thais the supremum of
1 and atoms are the embeddings of the proto-labels(@f all the binary imageg, | € L*.
few definitions and properties about lattices can be found in
Appendix[8). In the sequel, we identify the elementsLof Proposition 30 Lety : X — T be a label image. Let’L
with their images ifT. We denote byr the maximum off.  be the set of atoms of T. Then= \/|. 1 Where, for all
A labelis an element oT . Given a (proto-)label set* the e L*, yy=punl
smallest latticeT includingL is T = L U {T}. This is the
lattice used by Ronse and Agnus in49,50] to define mor
phological operators on label images. The largest atomisti
lattice in which we can embeldis the power set'2 (with
the natural embedding which associatds L and the sin-
gleton({l} to any proto-label).

Proof We setL* = {Ii}le. Letx be a pointinX. LetAC L*
be the set of atoms ifi which are less than or equal g@x).
Then,u(X) = \/aaa for T is atomistic. Letl € L*, be an
atominT. We have g AD(X) = () Al = (Vaead) Al Itis
plainthat f AN(X) =liffl e Aand u A 1)(X) = Liff| ¢ A

Thus,u(X) = Vaea@ = Viea@(®) A D) = Vier (@ A l) =
Some ways to associate labels to pointXithat are not Vi L*(Z(/\)I)(X;-/a A ViealtG) A1) = View (0 A D O

xels are discussed in [44,51]. We have proposed, in [22],

our ownmodus operandio embed a binary digital image Letu : X — T be a label image andbe a label. The
defined onZ" in a binary image defined oR". It can be  support of t inu is the subsett), of X equal to{x € X |
straightforwardly extended to label images and we use it, im(x) At # L}. When there is no ambiguity, we also say the
a particular case, in Sectidm 5 but we do not develop morsupport of tinstead of the support dfin u and we write
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i simple pointfor (the label) t if the following two conditions
o are verified:
[

AP — (i) foralllabelsue T suchthatuu(x) # L and uAt = L,
(@) X is B-simple for the setu) ;
0 o o (i) foralllabelsue T suchthatuu(x) = Landuat # L,

i 0] I X is g-simple for the sequ) U {x}.

[ e R = e

Iy

o
O eemm 0 C— O o
o

]

oD oCc—ao

[ L1 In this definition, the first conditionyAu(X) # L anduat =

o) © « ° :(eﬂ): ° 1, means thax is in the support ofl in i but it will no more
be in it if the image is modified by giving the labeto x.

Fig. 15 (a) A label image: whose domain i§2 and whose codomain  Conversely, the second conditiamu(X) = L anduAt # 1,

is the power seT = 2I"9% equipped with the inclusion. The labels are means thax is not in the support af in i but it will be in it if

depicted as in Figuile 14 plus the labgsb}, {r, g} which are depicted  {ne image is modified by giving the laltetb . In each case,

respectively in cyan and yellow. The poixts the 0-face at the centre b - to b imole for th ¢

of the figure. We havei(x) = {b}. We want to test if the poink is y requmng.x 0 bep-simple for the S_e §U),, We ensure

simple for the label = {r} (that is, we want to know if we can label the thatthere exists a weak homotopy equivalence between each

point x with t while keeping unchanged the topology of the supportssupport before and after the modification of the imaged,

of the 2 — 1 non-minimal labels irT). There are two labels such if X = F", the cosupports will also be weakly homotopic

thatu A u(X) # L andu At = L: {b} and{g,b}. (b) In blue, the set - .. .

x* (b} which is contractible. (c) In cyan, the set n({g, b}y which (see Propgsmo@4). Remember that this |mplles also Fhat

is contractible. Hence, the first half of the test (namelyicition (), ~ the operation corresponds to strong deformation retrastio

in Definition[3]) succeeds. Now, let us consider the labéts which  on the realisations of the simplicial complexes associated

uAp( = LanduAts L:{rjandir,g). (d) Inred, the sex'* n(irh)  these supports (Theordml16). In a binary imaige, With

which is contractible. (e) In yellow, the sgt* N ({r, g}) which is not L. .

contractible (it has two(c)onn(}e/cted components). T%e sebalidf the T = {L, T}) Definition[31 C_Omes _down to requiceto l?e

test (namely, conditionii), in Definition[31) then fails. Therefore, the B-Simple in{T) or x to bes-simple in{T) U {x}, depending
point x is not simple for the labelr}. Giving the labelr} to xwould  on x s in the object or in the background. Observe also that
connect two distinct components of the latreb}. any point in,u‘l(t) is simple for the labdl.

Since the poseX is locally finite, the set’™ andx!* are
(ty instead oft,. The support of a proto-label (in a label finite. Therefore, according to Corolldry 9, one can test the

image) is the subset of whose points have a label greater Simplicity of a pointx e X by greedily removing unipolar

or equal to this proto-label. The support of a labet 1 Points in the set™ N Y andx'* n Y whereY = (u) or
is the union of the supports of the proto-labelstinx e Y = (uu{x}, forallu e T. When the latticd is distributive,

M o u) Atz L o dtatomt < u() At o Tt < the following proposition allows us to speed up this test by
tatom,x € (t). The support of the label is the empty reducing temporarily the size @t by identifying the atoms
set. Thecosupport of t inu (or the cosupport of X is the of T not “involved” in u(x*) with the label.L. Observe that
complement inX of the support ot in x. We denote it by if.the IgtticeT is distributive andu is dgfined'from a Iabel
(D5 or (t)°. Figure[T# illustrates these definitions. digitalimaged : Z" — L as suggested in the introduction of
We have seen in Sectibh 1 that in a label digital image ip>ectiorL 8, therT is a finite, atomistic and distributive lattice
which one wants to preserve the topological properties inWhose atoms are identified with the elementd.bf that is
side the supports of the proto-labaisdbetween these sup- | IS the power set'’2 (see Appendikh).
ports, it is important, when performing a change of label on
a point, to maintain the topology of any union of supports of TOPOSition 32 Letu : X — T be a label image. Let t be a
proto-labels. In other words, we have to preserve the topol2P€l and x be a pointin X. Let’Lbe the set of atoms in T
ogy of any set identified by a proto-label in the partition of@nd Lx be the subset ofLwhose elements are less than or
the space associated to the initial digital label image Isata €dual to an element gi(x'). Lety : T — T be the function
of any set defined by any coarser partition of the space. IH'at maps any label u onto the labgfu) = \V{a € Ly | a <
the proposed framework, the supports (of the labels) are sub)

sets ofX that are exactly the unions of the supports of thej) i the point x is simple for t in: then te ¢(T) and x is
proto-labels. Hence, the supports of the label iare the simple for t in the image o u : X — ¢(T).

sets for which we must ensure the topological invariancq-,i) Conversely, if the lattice T is distributivegty(T), and
This has lead us to the following definition, exemplified in ~  ig simple for t in the image o 4, then the point x is

Figure[15. simple for t inu.

Definition 31 (Simple point for a label) Letu : X - T be  Proof (i) We assume that is simple fort in u. Let us sup-
a label image. Let tc T be a label. A point x¢ X is a pose that ¢ ¢(T). Then it must exist an atom ¢ Ly such
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thata < t (otherwiset = ¢(t) € ¢(T)). This labela is such
thata A u(X) = L (by definition ofaandLy) anda At # L.
But x cannot bgg-simple for the seta), U{x} sincexl*r\(a)ﬂ
is empty (by definition o andLy). Thus, we have a contra-
diction with the simplicity ofx for t in u. Sot € ¢(T). Letu
be a label inp(T) such thau A p(u(X)) # L anduat = L.
Since, trivially,¢ reduces to identity op(x'), we have that
UAu(X) = uap(u(x)) # L. Asxis simple fort, unu(X) # L
anduAt = L, it comes thak is 8-simple for the segu),. We
have already observed that the imagesdy o u are equal
on xt. Note, moreover, that thg-simplicity only involves a
subset ofx'. Hence x is g-simple for the setu)g.,. Simi-
larly, whenu is a label ing(T) such thati A ¢(u(x)) = L and
uAt# L, we deduce as above thais g-simple for the set
(Wyou U {X}. We can then conclude thatis simple fort in
pou.

(i) We now assume thatis simple fort in ¢ o u with
t € ¢(T). Let u be a label inT such thatu A u(xX) # L
andu At = L. By the very definition oLy, we haveu A

p(X) = @(u A u(X)). Thusp(u A u(x)) < uande(u A p(x) <

Based on these definitions, we have the following result.

Proposition34 Letu : X — T be a label image. Let x
be a simple point for the label t. Them,andu + (x,t) are
equivalent, strongly equivalent if X F".

Proof Let v be the imageu + (x,t). Let u be a label. By
definition of the imagev, the supportgu), and(u), are
equal, except possibly an Therefore, if 0 A u(X) = L and
UAt=1)or(uApu(X) # LanduAt # 1), then(u), = (u),.
In the other cases, from DefinitibnI34js -simple for(u),
(if x € (W) or x is g-simple for{uy, U {x} (if x ¢ (u),).
Henceu), is weak homotopy equivalent ta,. If X = F",
we derive from Theorem 27 thatis y-simple for(u); (if
X € {uy,) or x is y-simple for(u)ﬁ U {x} (if x ¢ (u),). Thus,
(U7 and(u);; are weak homotopy equivalent (Property 22).
O

The next proposition is an easy consequence of Defini-
tions[I3 and_31. From a practical point of view, it is quite

u(X). Then, sincep is an opening (see AppendiX A), we have important since it allows us to define parallel thinning (or

U A u(X)) < o(u) andep(u A u(X)) < eu(x). Thereatter,
unu(x) = e(uau(x)) < e(U)Ap(x)). Thuse(u)Aeu(x)) #
L. We have als@(u) At = p(u) A ¢(t), since an opening is
idempotent and € ¢(T), ande(u) A ¢(t) < UAt, since an
opening is anti-extensive. Thus, we géti)) At = 1. AsXxis
simple fortin pou, (u) Ap(u(X)) # L andp(U) At = L, we
derive thatx is g-simple for the se{p(u)),., Which implies
that x is g-simple for the setuy, (for xX** n(uy, = x* N
(@(U))pou). Whenu is a label inT such thatu A u(x) = L
andu At # L, we derive thatp(u) A p(u(X)) = L (with
similar arguments as above). Let us now assumeThiat
distributive. It can easily be seen that ¢(T) implies that
UAt € o(T) (any atom less than or equalttes in Ly). Thus,
L#UAt=gpUAL) < p(u)Agp(t) =¢() At. We conclude,
as previously, thak is g-simple for(u), U {x}. Hence x is
simple fort in p. O

In Appendix[D, Counterexample B2 illustrates the fact
that Propositio 32 is generally false when the lattice is no

distributive.
Let us now define the topological properties we want t
preserve when processing a label image.

Definition 33 Letu,v : X — T be two label images.

— If, for all labels te T, (t), and(t), are weak homotopy
equivalent, we say that these images enggivalentand
we writeu ~ v.

(0]

growing) algorithms in label image by simultaneously mod-
ifying the label of simple points with the same height.

Proposition 35 Letup : X —» T be a label image. Let¢ T
be a label. Let Y= {yj}¥, (k > 1) be a set of points with
the same height, simple for the label t. For a# [1, k], we
setu; = pi—1 + (Yi—1,1). Then, for all i€ [0, K], y; is a simple
point for the label t in;.

Figure'16 provides an example of label thinnigngwing
by giving the labet to simple points fot, processing points
with same height during the same pass on the image.

4 Closed support images

In this section, we focus on digital images that could be as-
sociated to digital images considered with thé {31, 2n)-
adjacency pair imD cubic grids (namelyz"). This adja-
cency pair corresponds to the adjacency of closed objects
of the continuous spack [52] and has therefore led us to in-
vestigate label images in which the support of any label is
a closed set. Hence, we definelased support (label) im-
ageas a label image whose supports are closed sets (for any
label). The following proposition establishes that theseld
support label images are the non-decreasing maps ¥om
ontoT (that is the continuous maps frokito T (Property

— If, furthermore,(t)ﬁ and(t)$ are weak homotopy equiva- 2).

lent for all labels t, we say that the images ateongly
equivalent

We writeu + (X, t) for the image equal tp except inx,
where its value is.

Proposition 36 Lety : X — T be a label image. The sup-
ports of the labels ip are closed setgfiu is a non-decreasing
function from(X, <) to (T, <).
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Fig. 16 (a) A label image defined fromf to T = 2% whereL*
contains 6 proto-labels. (b) The light green label has béeank by
removing simple points in its support, dimension by dimensuntil
stability. (c) The same label has been expanded by additg $apport
simple points, dimension by dimension, until stabilityelch case ((b)
and (c)), we claim that the process maintains the topologgnéty, the
weak homotopy type) of the 6342 1) supports and 63 cosupports
that are defined by the initial partition.

HYHIN

LT
(@

Fig. 17 (a) A closed support image : F2 — 285 The labels are
depicted as in Figufe13. The pointwhich has a label(y) = {r, b}, is
simple for the labelr}. (b) The image: + (y, {r}) is no longer a closed
support image.

images, we have to go further since, without improvement,
these conditions fail to maintain closed supports as we can
see in Figuré&17.

In the poseiX, a setF is closed ff for any pointx € F
the points greater thaxare also inF. This is like in a sim-
plicial complex, where any subset of a face of the complex
is also a face of the complex. It is well known that the set
of simplicial complexes is closed under the collapse opera-
tion, which furthermore “preserves topology™[21]. So, we
have adapted this notion to label images in order to main-
tain both the closedness and the topology of any label sup-
port. Roughly speaking, we have found that this goal can
be achieved if we require the supports of some labels in the
sub-posek’ to be contractible (wherg is the point whose
label has to be modified).

Proposition 37 Lety : X — T be a closed support image.
Let x < y be two points in X. The following statements are
equivalent.

(i) Forallu e T such that ye (uy, X! N (u) is contractible.

of X. Letx,y be two points ofX such thatx<y. If u(x) = L,

for (uy U {x}.

obviouslyu(x) < u(y). We assume now tha{x) # L. When (iii) The point x is simple for the labei(y).

we defined the supports, we have established(i(x)) =
Utea(tiy whereAis the set of atoms iif that are less than
or equal tau(x). By definition of a supportx € (t;) for each
atomt; € A. Thus, as the supports are closed agg, y €

Proof (i) = (ii) Let u be a label such that € (u) and
X ¢ (u). Then,x™* N ((uy U {x}) = x* N (u) is contractible by
hypothesis. Sox is g-simple for the setu) U {x} (Property

(tjy for each atont; such that; < u(x). It means that each [18 and Definition 113).

atom less than or equal tgx) is less than or equal {a(y).
Hence, ag is atomistic, we havg(x) < u(y).

Conversely, suppose thatis non-decreasing. Ldétbe
a label andx be a point in(t)°. Then, for ally € x!, we

(ii) = (iii) First, we observe that, singds a closed support
image,u is non-decreasing (Propositifn]36). Thus) <
u(y) and, thereforey A u(X) < uA u(y) forallu e T. There-
after, there does not exist any laleduch thau A u(X) # L

getu(y) < u(x) (for u is non-decreasing) and furthermore, andu A u(y) = L. If uis a label such thalt A u(X) = L

uly) At < u(X) At = L. Therebyy € (t)°. We conclude that
(t)® is an open set and therefqte is a closed set. O

4.1 Cut

In Sectior B we have given fficient conditions for an ele-

andu A u(y) # L, by hypothesisxis g-simple for{u) U {x}.
Hence x is simple foru(y).

(i) = (i) Let u be a label such that € (u). Then either
x € (uy and, since the set’ is contractible in any poset
(Property(B), in particular in the posat), x* N (u) is con-
tractible, orx ¢ (u) and, by the hypothesig,is g-simple for
(uy U {x}, that is,x! N (uy = x™* N ((uy U {x}) is contractible.

mentary modification of a label image to preserve the topol- O

ogy. However, if we want to work with closed support label
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HER EER (I Conversely, suppose that the lattites distributive and
e e i that (x, y) is free fort in the imagepop. Sincep(u(y)) = u(y),
7
!1 I ! !1 I ! g H I ! we derive from Propositidn 32, thatis simple for the label
BB [] ] 100100 u(y) in the imageu. Furthermore, lez be a point iny!* such

(@)

(b)

©

thatu(2) At # L. As u is non-decreasing, any atom of

less than or equal ta(2) is less than or equal t@y). Thus,
e(u(2) = u(2 andp(u(2)) At # L. From the hypothesis we
derive thaz = x. Therebyy‘* n(t), = {x} and ,y) is a free
pair for the labet in w. O

Fig. 18 Label imagesF2 — 2r9P The labels are depicted as in
Figure[I3. (a) X, y) is a free pair for the labelb}: the only labelu
such thaty € (uy andx ¢ (uy is {r} and the sek™ n ({r}) is clearly
contractible. (b) %, y) is not a free pair fofb} since({r}) n x' is not

connected (this set contaipshe 0-face in magenta and the two 0 faces . . . . }
in black). (c) &, y) is free for the labe{b} (since here, there is no label The definition of free parsin a label Image Is an exten

u such thaty € (u) andx ¢ (u), Definition[38 reduces to the classical Si(.)r.1 of the ngtion of free pair in Complexes:)(fis a sim-
definition of a free pair in complexes). plicial or cubical complexy : X — T a label image and

(x,y) a free pair for the labdlin g, then . y) is a free pair
for the complext),. The following proposition shows that
Definition[38 reduces to the classical definition of a free pai
when the two points in the pair share the same label.

Definition 38 (Free pair) Letu : X — T be a closed sup-
portimage and € T be a label. A pai(x, y) of points in(t)
is afree pair for the label if x is the only point irt) such

that x < y and the statements of Propositlod 37 are satisfied - .
by the pair(x, y). Proposition 40 Let u be a closed support image,& T a

label and(x,y) a pair of points int). If u(x) = u(y) and
The labett involved in Definitior 38 cannot be the label yix n (t) = {x}, then(x, ) is a free pair for the label t.
1 since(t) contains at least the two points of the free pair

and(L) = 0. We exemplify in Figuré_I8 the definition of Proof Sinceu(x) = u(y), there is no labeli € T such that

free pairs. y € (Uuy andx ¢ (u) so the statemeiii) of Propositiod 3V is
The following proposition is the analogue of Propositionsatisfied. O
[32 for free pairs.

Proposition 41 Let u be a closed support image,& T a
label and(x, y) a free pair for t. Then, x is a minimal element
in (t), y is down unipolar int) and x< y in X.

Proposition 39 Lety : X — T be a label image. Lett be a
label and xy be two points ift). Let L* be the set of atoms
in T and L be the subset ofLwhose elements are less
than or equal to an element pfx"). Lety : T — T be the
function that maps the label u onto the lakgl) = \/{a €
Lx | @ < u}. If the pair (x,y) is free for t inu then(x,y) is
free for t in the closed support imageo u : X — ¢(T).
Conversely, if the lattice T is distributive alid y) is a free
pair for t in the imagep o u, then the pair(x, y) is free for t

Proof The pointx is a minimal element oft) for x is the
only point in(t) such thaix < y. The pointy is down unipo-
lar for the same reason. Finally, &3 is a closed set(' is
included in(t) and there does not exist any point(iix be-
tweenx andy for y! N (t) = {x,y}. Thereaftex < y. O

in . The next definition introduces the notionaft Broadly

Proof Before beginning the proof, note that the definitionSP&aking, a cut of the labelin a closed support image

of Ly is the same as in Propositibn|32 though we have sé_%onsists of removi.ngfrom a free pair % y) for t. Indeed,
Ly=f{aeL* |3dyex,a<ufy)instead oLy = {acL*| N order to maintain the boundaries between supports, the

Jy e x,a < u(y)}. Indeed, any atora less than or equal to label of y must move towards the other pointsJf and
an elemeni(2), z < x, is less than or equal jg(x) since here the labels “behind the boundary’e., the labels of/** \ {x],

4 is non-decreasing (Propositibnl 36). Thus, the two definimust replaceon{x, y}. Figured 19 exemplifies this definition.
tions coincide.

Now, suppose thak(y) is free fort in u. Sincep is an open-  Definition 42 (Cut) Lety : X — T be a closed support
ing (see AppendikA) and an opening is order-preservingmage, te T alabel and(x, y) a free pair for the label t. The
¢ o u is non-decreasing and is thus a closed support imagabel imageuy; : X — T defined by:

(Propositiori 36). Moreoveg is anti-extensive sp(z) At =

1 = @ou(? At =1 andyp reduces to identity op(x*) so Vaey (2 ifz e {xy}

() = u(¥). ThUS,Y™* N (Do = Y* N, = (X} Now, w2 = u@ vuly) ifzex™\{y)

from Propositio 32, we derive thatis simple for the label u(2 otherwise

u(y) in the imagep o u. We conclude thatq y) is a free pair

for tin the imagep o u. is acutoftatyin u (if y* \ {x} = 0, we seju(x) = u(y) = L).
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Fig. 19 (a) An imageu with a free pair & y) for the label{b} (see  Fig. 20 (a) A closed supports label image: X — T. The Hasse
Figure[18(a)) (b) The cyt’ = . Lety be the O-face in black just diagram of T is depicted in (b) T is not distributive). The labels
belowy andx’ the 1-face in magenta just beneatiThe pair §,y’) is 1,R G, B, T are depicted respectively in white, red, green, blue and
free for{b} in . (c) The cuty, - black. (c) The cu’ = uy g which is equal tqu.

Figure[20 shows that cuts are of no interest in non-distrity.t(2) = u(2) v u(y) thusz € (U, (i.e, py(y) AU # L) iff
butive lattices since it may happen that the label to be reZ € (), (for T is distributive). m
moved from a free pair is still present in the cut.

The notion of cut is an extension to label images of th
notion of collapse for complexes. Whehis a simplicial or
cubical complex and is distributive, the following propo-
sition states that a cut for the labils a collapse for the
support oft and in particular, ifT = {1, T}, that is wheru
is a binary image, a cut is nothing but a collapse.

As stated at the beginning of this subsection, the main
eadvantage of free pairs and cuts on simple points for labels
is to enable to remain inside the set of closed supportimages
when we modify a label image with topological constraints.

Proposition 45 Letu : X — T be a closed support image,
t € T alabel and(x,y) a free pair for the label t. Then the

N ) Cutuy, is a closed supportimage.
Proposition 43 Letug, u; be two closed supportimages from

the complex X to the distributive lattice T and T be a la-
bel. If us is a cut ofyg for t, then(t),, is a collapse oft),,.

Proof Let (x,y) be a free pair for a labéin a closed support
imageu. By hypothesisu is non-decreasing (Proposition
[36). Let us prove thaty; is also non-decreasing. Latb be
two points inX such thata < b and, thereafter, such that
u(a) < u(b). The proof is made by exhaustion.

— If b ¢ X" thena ¢ x". Thenpy(b) = w(b) andyy(a) =
u(a). In this case, obviously, we hayg;(a) < uy.(b).

- If b e {x,y} anda ¢ X' thena € y** \ {x} anduy(a) =
(@) <V geyin\xg 4(2) = pry (D). Thus,uy(a) < py(b).

— If a,b e {x,y} thenuy(a) = uy+(b).
Note that it is impossible to have € {x,y} anda €
X"\ {x,y} for x < yin X (Propositio.41).

— If bex\{xy}anda¢ X" thenuy:(a) = u(a) < u(b) <
u(b) v uly) = py(0).

- Ifbe X\ {x y}anda € {X,y}, py(a) = V seyir\1x 4(2) <

When the latticeT is distributive, the following propo- uy) (for w is non-decreasing) andy) < u(b) v u(y) =

sition enables to specify which supports are modified by a  Hyt(b). Therebyuy () < uy(b).

cut. If the latticeT is not distributive, this proposition fails = If &b e X"\ {x,y}, thenuy(a) = () v u(y) anduy(b) =

(see Counterexamplel63 in Appenfik D). u(b) v u(y) thuspy (@) < py(b).

In each possible case, we hayg(a) < uy(b). Hence uy;
is non-decreasing. O

Proof Let up be a closed support imagex, ¥) a free pair
of uo for the labelt andyu; the cutuy;. From Definitior 38,
the pair &, y) is free for the sett),, and from Definition
[42, the supports dfin up andu; are equal except possibly
in x'. As 1o is a closed support image! is included in
(Do AS 11(2) = po(2) v po(y) for all z e XM\ {x,y}, the set
X"\ {x, y} is still included in(t),, . The label of the points, y
in the imageuy IS\ zeyi+\(x #o(2). Sincex is the only point
in (t),, N y** and we assumg to be distributive, we have
PO AL = i AL =V geyin g (0D AY) = Vgeyin g L = L.
Thus, neithex nory is in (t),, and(t),, = (), \ {X, y}. We
conclude that the complex),,, is a collapse oft),,. O

Proposition 44 Let T be a distributive lattice and : X —
T be a closed support image. L(ety) be a free pair for the
labelte T anduy, the cut of t aty inu. For any label ue T
whose support does not contain y, we haveg,, = (u),.

When a label image is obtained from a label digital
image (defined oZ") by the procedure we have described
at the beginning of Sectidd 4, this image is put€x] is
Proof Let u be a label such that ¢ (u), and, sincgzisa  an atom, orL, for any xelx). Cuts preserve purity under
closed supportimage,¢ (u),. From Definitiori42y(2) =  an hypothesis which is satisfied, for example, by pseudo-
u(2) for any pointz € (uy, notin x'. Sinceu is non-decreas- manifolds (seee.qg, [53)).
ing, u(2) < u(y) forall z <'y. Hence,\ zeyis\ i #(2) < u(y).
THUS fay 1Y) A U = f1y0(X) AU = (V zeyioy g 4(2) AU S pa(y) A
u=1,thatisxy ¢ (u),,. Finally, for any pointz € x'*\ {y},

Proposition 46 Letu : X — T be a pure, closed support
image, te T a label and(x,y) a free pair for the label t. If
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any point in X that covers a xel (a minimal point) covers at

most one other xel and no other points, thgpis pure.

Proof Lety : X — T be a pure, closed support image. We
assume that any point M that covers a xel covers at most
one other xel and no other points. Let ¥) be a free pair

for the labelt. If ht(X) > 1 then the xels oK have the same [ | |

label inuy; as inu. As'y coversx (Propositior4lL), ifx is
a xel, then we derive from the hypothesis ti#it \ {x} = 0
ory* \ {x} = {z} for some xelz € X. Then,uy(X) = L or
tyt(X) = p(2) andu(2) is an atom, op(z) = L, sinceu is
pure. |

Note that the condition “any point iK that covers a xel

IF3, for which this condition is, or is not, satisfied.

‘1 I

Fig. 21

(a) A poset (a subset @) in which a pointy covers a xel and cov-
ers points that are not xels (1-facesF). (b) A cubical 2-complex
(embedded i) in which a 1-facey covers three xels. (c) A cubical
2-complex in which any 1-face covers at most two xels.

4.2 Homotopy

L
m/EIn
[]

@
SEEEEmEE/m mm=
HiEiN BiEiE EEE N
] ] [] []

(b) © (d) (e)
Fig. 22 The four steps in Theorem#7. (a) The initial closed support

~ ! imageu with a free pair &, y) for the label{b} (see Figur&18 (b)). (b)
(a minimal point) covers at most one other xel and no otheThe image:+ (x, u(y)). (c) The smallest closed support imaggreater

points” could be stated in a complex as “any point of heighthan or equal t + (x, u(y)). (d) The image’ + (v, {r}). (¢) The image
1 covers at most two xels” but this is generally not equivalen/s = (7 + (- ) + (< {r}).

(in a poset, the height of a point that covers a minimal point
need not be one). Figurel21 shows some posets, included éphere property and if the lattice T is distributive, the gt
is equivalent tq: and, if X = F", uy; is strongly equivalent

to u.

Proof 1. By Definition[38,x is simple for the label(y) in

2.

Theoreni 4l establishes that connected components and ho-
motopy groups are preserved by cuts provided that the do-
main of the image has the pierced sphere property (see Sub-
section Z.B) and the codomain is distributive. Figure 22 il-

lustrates the sequence of changes described in the proof.

In

Appendix(D, some counterexamples show that this preser-

vation is no longer guaranteed whé&nis not distributive

(Figure[30) or wherX has not the pierced sphere property

(Counterexample4).

Theorem 47 Letu : X —» T be a closed support image
and(x, y) a free pair for the label € T. If X has the pierced

3.

the imageu. Thereaftery’ = u + (X, u(y)) is equivalent
to u (strongly equivalent i) = F", according to Propo-
sition[33).

Letv be the smallest closed support image greater than
or equal toy’. Sinceyu is a closed support image,is
defined byv(2) = u(2) v u(y) if z> xandv(2) = u(2)
otherwise. We shall prove thats equivalenttq/. To do
so, thanks to Propositidn B5, it ffices to establish that
the pointsz € x™ with same heighk, k > 1, are simple
for the label(2) in the imageu defined byuy(a) = v(a)

if a € X and ht@) < k andu(a) = u(a) otherwise.
Thereby, according to Definitidn B1, we consider a point
zin x™ such that(2) # u(2), i.e., u(y) £ u(2), and let
k be the height o Letu be a label such tha € (u),
andz ¢ (uy,, (if z ¢ (u), or z € (u),,, then the support
of u in the imageux + (z v(2) is equal to the support
of u in the imageuy). Observe thajy(2 = (2 and
u(X) = u(y). Then, fromz € (u), andz ¢ (u),,, we
deriveL # v(AuU = (u(@Vvuy)Au = (u(@vuly))Au =
(@ V(AU = (@ AUV () AU) = u(X)Au (the
last equality follows fronz ¢ (u),,, whenceux(z) A u =
1). Thus,x € (u),,. Asz ¢ (u), (sincez ¢ (uy,) andu
is non-decreasing, no point # is in the support ofi in
u. Moreover, agy = uon X\ x', no pointinz! \ x' is in
the support ofi in x. Hencez* N (uy,, has a minimal
elementyx, and is contractible (Propeffy 3). Therebis
B-simple for(u),, U {z}. This establishes thatis simple
for the labelv/(2) in the imageu. Thus, the imagesand
' are equivalent, strongly equivalent{fis F".

Letu =/ eyin\(x 4(2). We prove now thay is simple for
the labelu in the imagev. Remember that(y) = u(y)
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andu < u(y) for u is non-decreasing. TherefoneA u <
wAv(y) forallw e T. Letw be a label such thaAv(y) #
LandwAu = L. Obviously, for allz € y** \ {x}, we have
1(2) < uand, thereaftem A u(2) < wA u = L. Hence,
Y N (w)y, C (X5 Now, X € (w), for v(X) = u(y) = (y).
Thus,y** A (w), = {x} andy is S-simple for the support
of w in the imagev. We derive thaly is simple for the
labelu in the imagey and that the images+ (y, u) and
v are equivalent, strongly equivalent{f= F".

4. Finally, let us prove thax is simple for the label =
V zeyi\x 4(2) in the imagey” = v + (y, u) in which the

label of x is v(X) = u(y). Remember that we have estab-

lished thatvAu < wAp(y) forallw € T. Letw be a label
such thatv A u(y) # L andw A u = L. Sincev is non-

decreasing and € (w),, one has<"™ c (w), and there-
afterx™ n¢w),, = xX™*\{y}. Now, by hypothesisX has the
pierced sphere property. Theft \ {y} is homotopically
trivial and x is ay-simple point for{w),,. Furthermore
x™* N (W)$, = {y} is clearly contractible s&is ag-simple

point (and thus g-simple point) fokw)¢,. Hence (Prop-
erty[22), for all labelsv, (w),, and(w),.(x.y are weakly
homotopy equivalent an@v), and(w)° are weakly

V' +(X,U)
homotopy equivalent (i#v is such thawv A u(y) = L or

Proof It is plain that, for any poink,y in X, X<y = x~ C

y- = u(X) < u(y). Hence, a regular label image is non-
decreasing and thereafter is a closed support image (Propo-
sition[38). O

Theregularisationof a label image: is the regular im-
ageu’ which coincides with: on the xels ofX.

If uis a closed support image apd is its regularisa-
tion, theny’(X) = Vyex- '(Y) = Vyex uly) < p(x) (for p
is non-decreasing) for akt € X. It can easily be seen that
the regularisation of a closed support image is the smallest
closed support image which coincides witton the xels of
X.

Let us define the functioti : LZ" — TX which maps,
in a one-to-one manner, a label digital image on a regular
image. Given a label digital image: Z" — L, (1) : X —

T is the only regular image such that, for any xek X,
Z(D(X) = A(X) (actually,Z(2)(i(X) = j(A(x)) wherei and |
are respectively the embedding&fin X and ofL in T).

In general, the binary imagesA |, whereu is a regular
image and € L is a proto-label, are not regular (see Coun-
terexamplé 65 in AppendiXx_]D). Nevertheless, if we regu-
larise these binary images, we find that any regular image is

WA U # L, the above equivalences are equalities). It isa supremum of regular binary images.

plain that the image’ +(x, u) is equal to the cyty;. Thus

uyt andy’ are equivalent (strongly equivaleniif= F").

By transitivity, 4y andu are equivalent (strongly equiv-
alentif X = F"). O

5 Regular label images

In this section, we are interested in labels images corstiluc
from label digital images, that is, images definedZnThe

particularity of these label images is that they are entirel
determined by their values on the xels (the minimal point

of X, which are also —by identification— the pointsz5.

As X is locally finite, for any pointx € X the setx™ =
{y € x| ht(y) = 0} is not empty and is finite. Thus, we
can define the label of a poirtin X depending only on the
labels of the elements of .

5.1 Regular and regularised images

Definition 48 (Regular label image) A labelimage: : X —
T is aregular (label) imagé, for all x € X,

#0) = \/ u(y)

yex-

Proposition 49 Letu : X — T be a regular label image.
Theny is a closed support image.

S

Proposition 50 Letu : X — T be aregular labelimage. Let
{li}"_, (¢ > 1) be the set of the atoms of T. Ther: \/{_; i/
where, for all i€ [1, ], 4 denotes the regularisation of the
binary imageu; = u A l;.

Proof We prove first that a supremum of regular images is
regular:

| 4
[VM}w=VMm=
i=1

i=1

4
\ \ #)

i=1 yex-

=\/ Qﬂ;(y) =\/ [Vu{](y)-

yex— i=1 yex- \i=1

Now, obviously,u(y) = wui(y) for all xel y and therefore,
VL H(Y) = VL, pily) for all xel y. From Propositioi 30,
we haveu = \/lepi. Thusu and\/lepi’ are regular images
which coincide on the xels of. Henceu = \/{_; i/ O

5.2 Regular images onto a Boolean lattice

In this subsectiomywe assume the lattice T to be Boolean
For all pair ¢, u) of labels, we set\ u =t A U® whereu® is
the complement afiin T.

The next proposition establishes that the reduction of the
number of labels, by identification of some labels with the
background, preserves the regularity of the image.
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Proposition 51 Letu : X — T be a regular image. Let
t e T be alabel. Then, the imageA t : X — t! defined, for
all x € X, by(u A t)(X) = u(X) A t, is regular.

Proof For any pointx € X, we have g A t)(X) = u(X) A

t= (Vyex #Y)) At = Vyer () A ) = Vyex (1 A D(Y).
Therefore, the image A tis regular. O

Applied to proto-labeld;, Propositiorf 5ll says that the
binary images: A |, whose supremum js (see Proposition
[30), are regular.

With the following proposition, we show that the func-
tion £ permutes with the reduction of the lattiGeto t! for
any labelt € T.

Proposition 52 Let 2 : Z" — L be a label digital image.
Theff, forallt e T, 2() At = Z(A A Y).

In other words, we have the following commutative dia-
gram:
LZ" > TX
]
u— uAnt

TX

/ll—)/l/\t\

Lz
4

Proof Since the imageg1) At andZ(AAt) are regular (from
Propositior[ 5ll and the very definition ¢f, it suffices to
show that they are equal on the xelsofLet x be a xel. On
one side, one haq1 A t)(X) = (A A t)(X) = A(X) Atand on
the other side,f(1) A )(X) = Z(A)(X) At = A(X) A t. Thus,
ZAAD(X) = (£(2) A(X9). 0

After reducing the number of labels by taking the infi-
mum with a particular label we can consider the remain-
ing labels as a unique label. The result is a binary imag
whose support igt). Starting from a label digital image,

the following proposition shows that this operation can be

made before or after the use of the functionCombining

this proposition with Proposition 52 and the results estab-_ gince & v is a free pair fort, no pointz € y* \ {x)

Proof The proof consists of showing thatB.£ (1) is regular
and 2. the function8.£(1) andZ(B.4) coincide on the xels
of X.

1. Letu: X —» T be aregularimagdB.u : X — {L, T} be
the binary image defined tl§.u(2) = L if u(2) = L and
B.u(2) = T otherwise anck be a point of height greater
than or equal to 1. We hav®u(x) = L © u(X) =
L Vyculy) =L o Vyex,uly) =L e Vye
X7, Bu(y) = L © Vyex Bu(y) = L. We can straightfor-
wardly conclude thaB.u is regular.

2. Letx be a xel. We haveB.Z())(X) = L © Z(A)(X) =
1L e AX)=1L o BAX) =L e (B.A)(X) = L. Hence,
B.£(2) = ¢(B.12) are equal on the xels of and, since
they are regular, they are equal.

O

The following lemma gives a way to locally regularise
some closed supportimages. We will use this lemma in Sub-
sectior[ 5.8, to regularise a label image after a cut.

Lemma54 Letu : X — T be a closed support image and
(' be the regularisation gf. Let(x, y) be a free pair for the
label t = u(X) \ ¢/ (X) in the imageu such thatu(x) = u(y).
Then, the cuty; is equal tou on X\ {X, y} and toy’ on{Xx, y}.

Proof Sinceu(x) = u(y) andu is non-decreasing(y) <
u(2) for all ze x. Now, for any pointz e X' \ {y}, by Defi-
nition[4d, uy1(2) = u(2) v u(y) and thereafteyy(2) = u(2).
By Definition[42 againy,:(2) = u(2) for any pointzin X\x'.
Thus,uy; is equal tqu on X'\ {X, y}.

As (x,y) is a free pair fort, we derive that # L. In partic-
ular, x is not a xel (by definitiony’ coincides withu on the
gels ofx). Then:

= (X) = Vax (2 < Ve (2 < \/zeyi*\(x}/l(z) =
Hy(X);
= Vaeyin\ g #(2) < u(y) = u(X) (for u is non-decreasing);

lished in [25], it means that the connected components and 7 » x s in the support of the labéj thus Hyt(X) At =

the digital fundamental groups of any binary digital image

(\/zeyi*\(x},u(z)) At= \/zeyi*\(x}(ﬂ(z) At = L.

obtained by just considering a particular union of labels in . S N
a label digital image are isomorphic to the ones obtained by he latticeT is distributive, so itis modular (see Appenfik A).

the same operation in the label image.
In Propositio 5B, the latticE need not be distributive.

Proposition 53 Leta : Z" — L be a label digital image. Let
B.1:Z" — {1, T} be the binary image defined by ) =
L if A2 = L and BA(2) = T otherwise. Let B(1) :
X — {L, T} be the binary image defined by/B1)(2 = L
if 2(1)(2 = L and BZ(1)(2 = T otherwise. Then, B(1) =
£(B.2).

9 The notation is a bit tricky here. In fact, sintez L, we should
defineAnt by (AAt)(2) = A(2) if A(2) is an atom underand @AAt)(2) = L
otherwise. Of course, we hay@l)(2) At = (AAt)(2) for A(2) is an atom.

Then, sincey’(X) < pyi(X) < u(X) anduy(X) At = L,
we getuyi(X) = yi(X) A p(X) = py() A (EV (X)) =
(uys () A ) V1 (X) = 1/ (X).

As regards the poiryt, we haveuy(y) = py(X) = 0’ (X) <
wy) = V zey- 2 < \/zeyi*\[x}/l(z) = pyt(y). Hencepy(y) =
H (). o

5.3 Digitally simple xels

A cutin a regular image is seldom regular. For instance, the
cut of Figurd_IP (b) is not regular since the 1-face undier
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Fig. 23 (a) A pure and regular image : F2 — 2I"%% (labels are
depicted as in Figufe13). (b) A cutfor the label{b} in 2. The image
wis notregular. (c) A cut for the labelb} in u. The imager is regular.
The blue xelx at the centre oft is digitally simple for the labefr} in

the imagel sinced andy coincide on all xels oF? except orx. (d) A

pure and regular image: F2 — 2(r9bt The proto-labet is depicted
with rounded boxes. The blue xglat the centre oft is not digitally
simple, for any proto-label, since giving it the red or theer proto-
label would disconnect the support @if} from {t} and giving it the
rounded proto-label would make a hole in the lafog), b}.

HIiEN I I

B |
(a) (b) (©)

Fig. 24 (a) A regular image: : F2 — 2:80 (b) The set Attg, {b}).
(c) The set Attg, {r}).

We set also Cartl( = Card{u € L* | u < t}) = Card¢‘n
L*). The integer Card] is the number of proto-labels under
the labett.

The following proposition provides a ficient condi-
tion for a xelx to be digitally simple for a labdl € T in a
pure and regular image. It is required the existence of a
free pair &, y) for the labelu(x) with y € (t) (condition(i)),
the possibility to shrink onto Att(x, u(x)) by withdrawal
of (combinatorial) free pairs in such a way that the points
whose label is less than or equal to the labgl afe removed
first (condition(ii)) and that no point inx" \ Att(x, u(x)) has
more than one proto-label distinct from those/¢€ondition

magenta instead of red. But, since, most of the time, the ddiii) ). The proof consists of regularising step by step (thanks

main of the initial image is a subset@f, one may want the
final image, after processing, to be also defined&bnUn-
fortunately, it is not correct (from a topological viewptin

to Lemmad.5H) the labels of the points)df\ {x, y} in the non-
regular imageyy,,x, beginning by the points whose label is
less than or equal to the oneyfFigure[25 illustrates some

to extract a label digital image from a label image by justof these steps. In Appendix| D, Counterexaniple 66 shows
retaining the xels (for instance, in Figdre 19 (b), the suppo that in the following proposition, conditiofiii) is not nec-
of the label{g, b} is connected thanks to a 1-face in magenteessary. This condition is used in the second part of the proof
but the support of this label is disconnected in the undeglyi to ensure that for any free pair considered, the two points
digital image). To properly overcome this issue, it is necesshare the same label. Thereby, our example is built in such
sary to use the inverse function of the function we used @ way that this last property is true, even if condit{@) is

to construct the label image. Singés a bijection between

label digital images and regular images (topologicallyrsbu

not respected.

as we have seen in Subsecfior 5.2), we need to improve cuBsoposition 56 Letu : X — T be a pure and regular image
in order to have a means to locally modify a pure and regulawhose codomain T is distributive and whose domain X is
image in such a way that the result is still a pure and regulaguch that any point in X that cover a xel covers at most one

image. Figuré 23 exemplifies the following definition.

Definition 55 (Digitally simple xel) Lety : X — T be a
regular image and € T be a label. A xel x X isdigitally
simple fort if there exists a sequence of cg)]_,, r > 0,
whereug = u, yj isa cuting;_; foralli € [1,r], u, is regular,
X € (t),, andu(y) = u(y) for any xel y distinct from x.

In the sequel, so we do not impose the spAc® be

other xel and no other points. Let t be a label of T and x a
xel of X, not irct). If:

(i) there exists a point g (t) such that(x, y) is a free pair
for the labelu(x),
(i) xT\ Oy N O\ () VAN A,
(iii) for any pointze X' \ A, Cardu(2) \ u(y)) < 1,

where A= Att(x, u(x))), then the xel x is digitally simple for
the label t.

F", we borrow the notion of attachment to authors that have
worked on image processing in the framework of cubical

complexes/[54,23].

Lety : X — T be aregular images a xel in X andt
a label inT. We set Attk t) = x™ n (t),, where the image
(’ is the regularisation gf + (x, 1L). The points in Attk, t)
are the points that "attach” the xelto the support of (see
Figure24).

Proof We setty = u(X). Since &,y) is a free pair for the
labelty, it is also a combinatorial free pair for the s&. Let
((xi, yi))i_, be a sequence of combinatorial free pairs fodm
to A = Att(x, to) such thatxy = X, Yo = y andU o{x, yi} =
(X"t (u(y)Y) \Awith k € [0, r]. We sett; = u(y)\to. From
the hypothesis oX andu, we derive that; is an atom and,
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Fig. 25 (a) The label imagga and ,y) = (X0, o), a free pair fop(x).
(b) The label image:; and €, Y1), @ combinatorial free pair for the
setx" \ {x,y} whose faces are not in Ait(u(x)) and whose labels are
less than or equal ta(y). (c) The label imag@s = ux.1 and &, y2) =
(X1, Yie1), @ combinatorial free pair for the set\ U‘J-‘:O{xj .Yj} whose
faces are not in Ati(, u(x)). (d) The label image’ = y;.

thereafter, that; < t. Letu; be the cufuyy,. By Definition
42, pa(h) = t1if h e (xy}, pa(h) = w(h) vty if h e x\
{x,y} andui(h) = u(h) otherwise. In particulaty v t; <
u1(h) for any pointh € xT \ {x,y} (for u is non-decreasing).
By the very definition ofk, for any pointh € U!;O{xi,yi},
pa(h) = p(h) vty < to Vv t1. Thereforeus(h) = to v ty for
any pointh € U!;l{xi,yi}. In particular,u1(x1) = pa(ys).
Observe that, singeis regularu; = ¢’ v v; wherey’ is the
regularisation ofs; andvy(h) = tg if h e xT\ ({x, y} U A)
andvy(h) = L otherwise {1 = u1 \ i'). Now Xy € (to),,
and (to),, N Y \ X = ((to), N yH) \ X' is empty fory; ¢
A. Thus, &i,Y1), which is a combinatorial free pair il \
{x,y}, is also a combinatorial free pair {tv),,. Then, from
Propositio 4D{x, y1} is a free pair for the labd} = v1(x1).
The cutuy = (u1)y, 1, verifiesuo(h) = /(M) if h e {x¢,y1} and
uz2(h) = ui(h) otherwise (Lemm&B4). Thereby, gradually,
we can show that the pairgi(yi), 1 < i < k, are free for
to in the imagey; = ¢’ v vi wherevj(h) = to for all h €
X"\ (AU UZp(x;. yj}) andvi(h) = L otherwise.

The pair §u.1, Yke1) is in XT \ u~1({to, to V t1}) thus we
havety vt < ux(Xr1) = u(X1) Vtz andto Vit < u(Yie1) =

u(Yk+1) V tr. Now, Cardfe(Xc:1) \ (to V t1)) = Cardfu(yis1) \
(to v t1)) < 1 (Hypothesidi) ). Hence, necessarily, we have

Cardu(x+1) \ (to V t1)) = Cardfu(yii1) \ (o V 1)) = 1.
Sinceux(Xk+1) < uk(Yk+1), for u is a closed support image

In [55] , Couprie and Bertrand have established a “con-
fluence” property for collapses inside a cubical cell of di-
mension 2, 3 or 4: iixT N\, Att(x,(t)) and X is a complex
such that Attk, (1)) ¢ X c X, thenx! \, X iff X \,
Att(x, (t)). Thanks to this property, we can apply Proposi-
tion[58 to test whether a xel€ F" (n < 4) is digitally sim-
ple for a labelt by the mean of the following greedy algo-
rithm. Of course if the following algorithm returns “false”
it just means that the hypothesis of Proposifioh 56 are hot al
satisfied and, since this proposition only providefisient
conditions, the tested xel can nevertheless be digitathy si
ple. Figurd 26 provides examples of images obtained from
the same label digital image by applying the following al-
gorithm to perform thinning or growing on the support of a
label.

Algorithm 1

Require: (x,y): a free pair for the labeil
Ensure: Boolean

1Y « X\ Att(xT, (1))

2: T« {zeY]|Cardu( \ uly) > 1}

3:if T # 0then
4:  return false

5: end if

6 Z—{zeY|pu@ <uy)

7: while A(h,h") € Z x Z, (h, i) free pair inY do
8 Z<z\{hh},Y=Y\{hh)}

9: end while
10: if Z # 0 then
11: return false
12: end if
13: while 3(h,h") € Y x Y, (h, h") free pair inY do
14: Y=Y\{hh)}
15: end while
16: if Y # 0 then
17:  return false
18: end if
19: return true

6 Conclusion

In this article we have proposed some tools to locally mod-
ify a label image with respect not only to the topologies of
the labels but also to the topology of the partition, in the
sense that the topologies of any union of labels can also be

and cuts of closed supportimages are closed supportimagpseserved (depending on the choice for the lattice of [3bels

(Propositior_4b), we havex(X:1) = uk(Yks1). Thereafter
we deduce as above tha&(s, Yk+1) is a free pair inuy for
tp and the cufu,1 is equal tau’ V vii1 With v, 1(h) = to for
allhe x\ (AU U']fzo{xj,y,- ) andvi(h) = L otherwise. We
continue the same reasoning on each pajy{) for k + 2 <
i <r.The last cutigy with yr = ¢’ v vy wherev(h) = tg
forallhe x™\ (AU Uj_ofx;,y;}) andv(h) = L otherwise,
i.e, vy = L andyu, = u’. So, we are done. O

Here, topology preservation is understood as the existence
of weak homotopy equivalence: when a pairis removed
from a setX, the inclusion : X\ {x} — X puts in one-to-one
correspondence the connected componens\ofx} andX
and induces isomorphisms between the homotopy groups of
both spaces.

Let us now have a look at some of the more relevant
models for label images evoked in the introduction. Assum-
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Fig. 26 (a) A label digital imagely : Z? — L (the background is not
depicted). (b) The regular image= (o) : F? — 2. (c) The pre-
imageAd; = £~(u1) whereu; is obtained fromu by applying Algorithm
[Dto shrink the green label. (d) The regular image(e) The pre-image
A2 = {Y(uz) whereys, is obtained fromu by applying Algorithnil to
expand the green label. (f) The regular image(g—i) The same detail
in the imagesly, 41, 1,. (j) A part of the above detail in the image.
Observe that the isolated green square is not digitally leirfgr the
brown label: the change of label will fill a hole in the browtéh

ing X = F", it can be seen that we can process 3D well com-
posed images inside our framework in such a way that the
result is still a well composed image by adding a condition
in Algorithm[: any proto-label on a 1-face of the xel being
processed must be present on at least one of the two 2-faces
including the 1-face and included in the xel (in 2D, no condi-
tion is required). The requirement found In[20] to preserve
the topology of any union of two or three labels is obviously
satisfied in our model since we preserve the topology of any
union of labels wherT is the power set of the proto-labels.
Moreover, we observe that AlgoritHmh 1 forbids to have more
than three labels in the neighbourhood of a point adjacent to
the processed xel (but it is a pointXf not a point ofz3). In

[15], the authors provide eight figures, five in 2D and three
in 3D, to illustrate their definition of simple points in ldbe
images. On two of them, all conditions are satisfied and the
point is actually simple. On the six other figures, at least
one condition is not satisfied and the point is not simple.
We have tested our own conditions on this set of examples
and we have obtained the same conclusions (see Appendix
[B). Thereby it seems that we are able to encompass several
approaches with the model presented in this article, provid
ing a framework to write precise topological statements and
establish reliable proofs.

Nevertheless, some questions remain. Can Thebrém 27
be extended to a wider family of spaces? This would ensure
strong equivalences between label images in other spaces
thanF". Is it possible to enrich the model in order to be able
to work with other types of regular images as those defined
in [22]? This could be interesting for the modelling of the
(18, 6)-adjacency pair iZ3. We hope to be able to give some
answers to these issues in further works.

A Lattices

In this appendix, we recall some vocabulary and propertses! in the
article. More information on lattices can be foundexg, [56] or [57].

Lattice. Alatticeis a poset in which every paia(b) of elements have
a supremum, denotelv b, and an infimum, denotealA b. There-
after in afinite lattice, there exists a least and a greatest element.
Atom/Atomistic. In a lattice, an element is atomif it covers the
minimal element. Aratomistic latticeis a lattice in which each
element that is not the least element is a supremum of a set of
atoms.
Modular. A lattice ismodularif x < zimpliesxVv (yA2) = (XVY) Az
Distributive. A lattice idistributiveif xv (yA2) = (xVy)A(xV 2), or,
equivalently, ifx A (yV 2) = (XA Y) V (XA 2). A distributive lattice
is modular
Boolean. In a latticey is acomplemenof x if the infimum of x andy
is the minimum element and the supremunxaindy is the maxi-
mum element. A lattice iBooleanif it is distributive and each el-
ement has a complement. Moreover, in this case, this congpuiem
is unique. A finite distributive lattice is Booleaff it is atomistic.
Opening. Letl be alattice. A functiorp : L — L is anopeningif ¢ is
anti-extensiveg(x) < xfor all x e L) andp(X) <y = ¢(X) < ¢(Y)
for all x,y € L. An opening is order-preserving € y = ¢(x) <
¢(y)) and idempotent{ o ¢ = ¢). Let A be a subset ofE. The
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functiongp : L — L defined bypa(X) =
opening.

V{iae Ala< xtisan

B Proof of Proposition[28

The proof of Propositiof 26 (Subsectionl2.8) relies on soamehsna-
torial properties of cubical and simplicial complexes thatestablish
hereafter.

Lemma 57 Let X be a cubical or a simplicial complex equipped with

the order2. Let xe X be an m-face(( < m < dim(X)).

(i) Letye X" be ak-face@ < k < m). There exist exactly #k faces
in X" of dimensior(k + 1) which include y.

(i) Let xq, xo be two faces in ksuch thatdim(x;)) = m—-1, x =
X UxJH. Let Z be the set of faces if hat intersect both xand
X2. The functiorg : Z — x{ defined by(z) = zn x, is a bijection
anddim(@(2)) = dim(z) — 1forallze Z.

Proof (i) If k= m, Lemmd&Y is trivial. We suppose now that m.
If Xis a simplicial complex, there are+ 1 vertices inkandk+ 1
vertices iny. Hence, there exist exactlyn(+ 1) — (k+ 1) = m-k
faces ofx of dimensionk + 1 includingy (thus containing the
k + 1 vertices ofy plus one). IfX is a cubicain-complex, we can
assume without loss of generality that [](, Ii wherel; € ]Fi
if i <m, I; € F} otherwise (see Subsectibn?.2) ane [T, J
whered c J, c |j if i < m-kandJ; = |; otherwise. It is plain
that the only k + 1)-faces included ix and includingy are the
m-kfacesz;, 1 < j < m-kdefined byz; = [T, K; with K; = J;
ifi # jandKj = |j.

If X'is a simplicial complex, because dir) = dim(x) — 1 and
X = X; U Xp, X2 is @ singleton. Then, forale Z,6(2) = zn x; =
Z\ X. So, it is plain tha® is a bijection whose inverse™? is
defined byo~(2) = zU x,. Furthermore, for alt € Z, dim(z) > 0
and the simplexn x; = z\ X, has dimensiotk — 1.

If Xis a cubical complex, becauge= x; Lix, we have dimg,) =
dim(x,) = m—1. As above, we can assume that [, |; where
li e FLif i <m, |; € F; otherwisex, = [T, 3t andx, = [, J?
with 3t =2 = 1;if i # m 0 c I}, € IpandJ3 = I\ J%. In these
conditions, it can easily be seen tlat {[], Ki | Ki = I; if i >
m, andd c K; c I;, otherwisg and6([TiL, Ki) = TTiL, K/ with
K/, = J} andK/ = K; otherwise. Hencej is bijective. Moreover,
obviously, Cardf | K/ € F}}) = Card{i | Kj € F}}) - 1.

(ii)

m]

We establish below a proposition which straightforwardigyides
Propositio 26 as a corollary. This proposition will be usethe proof
of Theoreni2l7 (see AppendiX C). Some steps of the proof aiietéep
in Figure[ZT.

Proposition 58 Let X be a cubical or a simplicial complex equipped
with the order2. Let xy € X, x 2 vy, be two faces witllim(y) =
dim(x) — 1. Let Y be a subset of yontaining y. Then,™ \ Y is con-
tractible.

Proof We setm = dim(x) andX, = x™ \ Y. If m = 1, Propositiof 58
is trivial (X is a singleton). Suppose now that> 2. We denote by’
the face opposite tgin x': x = yLy'. Observe that diny) = 0 if X is

a simplicial complex and ding() = m-1if Xis a cubical complex. We
will shrink X, to {y’} by removing unipolar points fronX,. First, we
remove the faces of, that are iny™, in decreasing order relatively to
their dimension. For anyn{—2)-facezin y' \ Y we derive from Lemma
[57 that there are twa{— 1)-faces inx" including z, one of which is

y. Hence,zis down unipolar inXy and, thanks to Properti€$ 6 dnd 11,

10 We write LI for the disjoint union.

(d)

(e)

Fig. 27 Some steps of the proof of Proposition] 58. (a) The>d&t
with dim(x) = 3. In grey, the subseéf (y is the 2-face ir¥). (b) The set
Xo = X"*\ Y. (c) The seZ. (d) The seZ \ {z¢ y' | dim(2) = 1}. (e)
The celly”.

we deduce that the s& = {z€ Xo | z ¢ y' or dim@ < m-2}isa
strong deformation retract ofy. Since, according to Lemnials7, any
(m-K)-face iny™ is covered by exactlit faces inx" and byk -1 faces

in y', we can inductively remove all faces @ffrom X, with the same
argumentation as above. HenZe= Xy \ y' is a strong deformation
retract ofX,. In a second step, we are going to prove that the faces in
Z\y" are successively up unipolar if we remove them in an incngasi
order with respect to their dimension. Note that, sireey LIy, there

is no O-face irz\ y'!. So, let us suppose that we have removed all faces
in Z\ yT of dimension less thak(1 < k < m- 1) and letz be ak-face

in Z\ yT. If Xis a cubical complex, LemnfaK#i) ensures that there
exists inz'* exactly one kK — 1)-face iny'T, namelyzny, and, ifX is

a simplicial complex, obviouslg'™ Ny = {y’}. Thus,zis up unipolar
inZ = {te Z | dim{t) > k} Uy". So, we can inductively prove that
y is a strong deformation retract 6. As any cell is contractible
(Property(B), we are done. O

C Proof of Theorem[27

Lemma 59 Let X be a cubical or a simplicial complex. Let< k <
m < n, xe X be an m-face and g x' be a k-face. The sef x1 y'*
is homeomorphic to an abstract simplicigh — k — 1)-cell with an
homeomorphisnp such thatdim(e(z)) = dim(z — k- 1forall z €
XNyt

Proof LetV be the set of + 1)-faces inx! N y‘*. By Lemmd5Y, we
have Card{) = m - k. We will prove by induction thak’ n y'* is
homeomorphic to*2 (equipped with the inclusion). Lebe an integer
such thak < i < mandx be ani-face includingy and included irx.
LetV; be the set ofk+1)-faces ir1>g-T Nyt* (V; is a subset o¥). Suppose
thatV; = 0 or we have defined an homeomorphigmn: >g-T Ny —
2¥1\{0} such that Card((2)) = dim@-k-1forallze x/ Ny*. Let X1
be a face including; and included irkandVi,; be the set ok+1-faces
in >g.11myl*. From Lemm&X[{i), we deduce that there exists a fada
V such thaw/,; = V; U{a}. Letx be the face included ir,; such that
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Xi+1 = X UX (dim(x) = 0if X is a simplicial complex and dim() = i
if X is a cubical complex). LeY be the set of faces ix' that intersect
bothx andx/. We define the functiodt : Y — >g.T by 6(2) = zn x. By
Lemmd5Hii), 6 is a bijection. Leb be a face ik, ny**. If be X,
we sety;.1(b) = ¢i(b). If b ¢ xiT, thenb intersects botlx; andx (bN X
is not empty for it includey) so we can sep;,1(b) = {a} U ¢;(0(b)).
Conversely, for allZ € 2%+ \ {0}, we sety(Z) = ¢(2) if a ¢ Z,
¥(Z) = 67(¢7 (2 \ {a))) otherwise. It is plain thap., is a bijection
whose inverse ig. Letb be face i, , ny!*. If b e x|, dim(gi..1(b)) =
dim(gi(b)) = dim(b) — k — 1 by the induction hypothesis. i ¢ xiT,
dim(gi41(b)) = 1+dim(g;i (b)) = 1+dim@(b)) k-1 = dim(b)-k-1
(for the last equality, we use Lemrpal &#)). Since 2+ \ {0} is a cell,
from the equality dimg;,1(b)) = dim(b) — k — 1, we infer thatp;, is
non-decreasing. Agi,1 is a bijectiong;}, is also non-decreasing and,
thanks to Propertlyl 25,1 is an homeomorphism. ]

Propositior 5B could be stated in terms@aimplicity: letx < y
be two points in a compleX equipped with the ordep andY be a set
such thaty € Y c y'. Then, the poink is ag-simple point inX \ Y. It
is no longer true if we remove the condition dih& dim(x) — 1 (see
[25] for counterexamples). Nevertheless, it remains tfueeireplace
B-simplicity by y-simplicity.

Proposition 60 Let X be a cubical or a simplicial complex equipped
with the order2. Let x be a face in X and ¥ x™ be a subset that has
a maximum or a minimum. Then, the point xisimple in X\ Y.

Proof Proving thatxisy-simple inX\ Y comes down to establish that
X* \ Y is homotopically trivial. First caseY has a minimum notegl.
The proof is made by induction an, the dimension ok. If m= 1, the
result is obvious. We assume now tmat> 2. If dim(y) = m- 1, we
apply Propositiof 38. If diny) < m- 2, letzbe an (n - 1)-face ofx'
includingy. From the induction hypothesigl* \ Y is homotopically
trivial. Hence,z is ay-point in x™* \ Y. So, xX'* \ (Y U {2) is weak-
homotopy equivalent ta'™ \ Y (Property22). Now, from Proposition
[B8, we deduce that™ \ (Y U {z) is contractible and we are done: by
transitivity, x™ \ Y is homotopically trivial.

Second caseY has a maximum notey. The proof is made by
induction on CardY). If Card(Y) = 1,i.e., Y = {y}, we use the first part
of the proof to conclude. Suppose now that C&jd¢ 2. Letz, z # y,
be a face irY such that din®) = min{dim(t) |t € Y\ {y}}. We observe
thatzZ’™* N'Y = {y}. Now, we seZ = (X"™* \ Y) U {z} = X* \ (Y \ {Z).
As Card{ \ {z}) < Card(Y), we deduce from the induction hypothesis
that Z is homotopically trivial. Let us prove thatis ay-point for Z.
We havez'* N Z = Z'* \ {y} which, from the first part of the proof, is
homotopically trivial. Hencez is ay-simple point forZ. Thereafter,
the injectioni : X' \ 'Y — Z is a weak homotopy equivalence and we
conclude straightforwardly. ]

Proof (Theorem[Z23)

Lety € Y c X be ag-simple point inY. Theny™* nY ory** nYis
contractible. We suppose first that N'Y is contractible. From Corol-
lary[9, we know that there exists a sequengg/( (r > 0) such that
y*nyY = {Xi}_o and x; is unipolar in{xi}iJ:0 for all j € [1,r]. The
proof consists to establish thaf is ay-simple point iny™ \ {xi}ij;g
for all j € [1,r]. This will imply (by transitivity) that the injection of

y™*\ Yiny™ \ {Xo} is a weak homotopy equivalence. Then Proposition

will permit us to conclude easily. So, let us suppose firatx; is
up-unipolar in{)q}ij=0 for somej € [1,r]. We setY; = xJT* al {x;}ijzo.
From Propositiol_60, we derive thaf* \ Yj is homotopically triv-
ial (sinceY; has a minimum). As<JT* N Y™\ {x;}ij;g) = xJT* \Yj, Xj
is ay-simple point iny™ \ {xi}ijz’é. We suppose now thag is down-
unipolar in{xi}ij=0 and we sety; = xj“ al {x;}ijzo. We observe thay;

has a maximum. Thanks to Leminal 59, we can consider an homeo-

morphisme : y' N x* — Z whereZ is a simplicial cell. From Prop-
erty[2 (any continuous function between posets is non-dsirg), we
derive thatep((y™ N xf*)) = ¢(y)™ and thate(Y;) has a maximum

(for Y; has a maximum). Then we invoke Proposifionh 60 to assert that

o((y™ n x}*) \Y)) = o)™ \ ¢(Y)) is homotopically trivial. Hence,

(y™n x}*) \Yj = Xr n(y™ \{xi}ij:'g) is homotopically trivial and; is

ay-pointiny™ \ {x}/_2.

We suppose now that* N'Y is contractible. Taking the reverse
order onX (sinceX = F", (X, <) is homeomorphic toX, >)), we derive
from Propositiofi 14 thatis as-simple point forY and from Corollary
thaty™ N 'Y is contractible. Then it follows from the first part of
the proof thaty is ay-simple point for K \ Y) U {y} equipped with
the inclusion and we conclude, invoking Proposifioh 20f thia ay-
simple point for K\ Y) U {y} with the initial order. O

D Counterexamples

Counterexample 61 (Theorenf 2I7)Figure[28 illustrates the fact that
Theoren 27 is generally false when the pq$ék) is a cubical com-
plex, but(X, >) is not a cubical complex.

Counterexample 62 (Propositiori 3R) Figure [29 illustrates the fact
that Propositiod 3P is generally false in a non-distribatilattice.

Counterexample 63 (Propositio 44) Figure [30 illustrates the fact
that Propositior’4¥ is generally false in a non-distribetifattice. Fur-
thermore, this figure shows that the number of connected coemts
of the supports is not preserved by a cut in such a latticerefoee,
this counterexample is also a counterexample for Thepbréwh&n the
lattice is not distributive.

Counterexample 64 (Theoreni 4l7)Figure[3] illustrates the fact that
Theoreni 4F7 is generally false if the poset X has not the piespbere
property.

Counterexample 65 (Propositiori 5D) Figure[32 shows that if the lat-
tice T is not distributive, the binary imageA a wherey is a regular
image and a is an atom of T can be non-regular.

Counterexample 66 (Propositior 5b) Figure[33 shows that in Propo-
sition[58, Condition (iii) is not necessary.

E Comparison between ML-simple points and digitally
simple points

In Figurel34, we borrow the images usedin/[15] to illustraeemnotion
of ML-simple point in label digital images in order to compahis
notion with our own notion of digitally simple point in regul label
images (we have omitted the first image[ofl[15] which is veryikir
to the second one).

References

1. O. P. Buneman, A grammar for the topological analysis ahel
figures, in: B. Meltzer, D. Michie (Eds.), Machine Intelliuee,
Vol. 5, 1969, pp. 383-398]1

2. T.Y. Kong, A digital fundamental group, Computers & Grigsh
13 (2) (1989) 159-166.10] 3



O©CO~NOOOTA~AWNPE

25

/y
ms o mn
IHINIEI IBINIEI]
mimim lmiEE,

Fig. 28 (a) A setX which is a cubical complex but whose dual is not
a complex (because of the boundary). In black, a subset X. The
pointy is a 1-face ofY. In light grey, the complement &f in X, X\ Y.

(b) In black, the seY \ {y}. In light grey, the setX \ Y) U {y}. Clearly,

y is aB-simple forY (y is up-unipolar inY) buty is noty-simple for
(X\'Y) U {y} since this later set has not the same number of connectec

components aX \ Y.
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Fig. 29 (a) A label imagex : X — T. (b) The Hasse diagram of \ ‘\ \ ‘\
T (which is not distributive). The labels, R, G, B, Y, T are depicted ..\\\ y ..\\\
respectively in white, red, green, blue, yellow and bladke Vellow 2-
facexis not simple for the labet since the labeB is such thaGAY = “
L andGAT # L butxis notg-simple for(G)U{x}. (c) The label image Y1
pou: X — ¢T) (for the definition ofy, see Proposition 32). In this - - - -
image, the poinkis simple for the labetr. m “-.,
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Fig. 30 (a) A closed supports label imaga : X — “ “

T with T = {0,{r},{g}. (b}, {t}.{r, 9. {g,b}. {r,g.b. t}}, equipped N, N,

with the inclusion. (b) The Hasse diagram df. The labels m v m
{r},{g}, {b}, {r, g}, {g. b}, {r,g,b,t} are depicted respectively in red,
green, blue, yellow, cyan and black. (c) The gyiq. In the image

u, the support of is empty. But, in the cufy 4, the support of is no
longer empty (it contains the three points in black).
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Fig. 31 (a) Animageu : X — 29, In the pose, the pointsz and
Z are identified. ThusX has not the pierced sphere propenty*(\ {y} ~ Fig. 33 (a) A regular imagg: : X — 2"9Pe where the four proto-

is a ring). The support d} is a ball. (b) The cuty,q. The support of  |abelsr, g, b, e are depicted respectively in red, green, blue and grey.

{g} is aring. We take the notations of the proof of Propositionh 56. Thexislat the
. I . I . center of the image. Its labeltg = {e}. (b) The label digital image as-
sociated tqu (in Z%). (c) The culuy = pyy,. (d) The culuz = (u1)y, - (€)
The cutus = (u2)y, 1,- (f) The cutus = (u3)y, s, Which is regular. Hence,
the xelx s digitally simple. Nevertheless we havéys) = \/{r, g, b, €},
so Condition(jii) of Propositiori5b is not satisfied.
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Fig. 32 (a) A regular imagey : X — T with T =
{0, {r},{g}, {b}, {r, g, b}} equipped with the inclusion. (b) The binary im-
ageu A {b} which is not regular.
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Fig. 34 These seven label images must be considered as defined on

Z" for ML-simple points or onE" for digitally simple points. In the 18,

latter case, we assume the image to be regular, so there isaabta
represent the faces of dimension less than or equaHa. There are

four proto-labels depicted in red, green, blue and grey.vibel x is 19.

the central voxel (in blue). The test consists in checkirtfpéf voxelx
is (ML or x)-simple for the red label. Note that ML-simple pts are

to be used with the (8) or the (618) adjacency pair. (ay is ML- 20.

simple [15] and it can easily be seen tlas digitally simple. (b) to (g)
x is not ML-simple [15] andk is not digitally simple (these checks are
not difficult and left to the reader). Observe that on subfigure (8, th

grey label is not taken into account to decide thit not a ML-simple  21.

point. Likely, the authors of [15] have chosen to add a folatfel here
to put in evidence that the move of the central voxel from theeb

label to the red label could modify the topology of the greavel. Itis  22.

different with digitally simple points. Because of the grey labeither
Conditioni nor Conditioniii of Propositiori 5b are satisfied. But, if we
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3. R. Gonzalez-Diaz, P. Real, On the cohomology of 3D digit

NN

vances in Discrete Geometry and Topoldgly. 1
4. C. J. Hilditch, Linear skeletons from square cupboards.,
B. Meltzer, D. Michie (Eds.), Machine Intelligence, Vol. 1969,
pp. 403-420[11
5. G. Bertrand, On P-simple points, Comptes Rendus de '&ceel
des Sciences, Série Mathématiques 1 (321) (1995) 1084-D
6. C. Ronse, A topological characterization of thinningedtetical
Computer Science 43 (0) (1986) 31-f1. 1 29
7. N.Passat, L. Mazo, An introduction to simple sets, PafRecog-
nition Letters 30 (15) (2009) 1366-1374. 1
8. J.-F. Mangin, V. Frouin, I. Bloch, J. Régis, J. LopezKe, From  3q
3D magnetic resonance images to structural represergatiche 31
cortex topography using topology preserving deformatidosir-
nal of Mathematical Imaging and Vision 5 (4) (1995) 297-318. 32
m

9. S. Miri, N. Passat, J.-P. Armspach, Topology-preserdisgrete 33,

deformable model: Application to multi-segmentation ofibr
MR, in: International Conference on Image and Signal Psece
ing - ICISP 2008, Vol. 5099 of Lecture Notes in Computer Sci-

ence, Springer, 2008, pp. 67-15. 1 35.

10. F. Poupon, J.-F. Mangin, D. Hasboun, C. Poupon, I. Magnin

V. Frouin, Multi-object deformable templates dedicateth®seg-  36.

mentation of brain deep structures, in: MICCAI'98: Prodegd

11.

() 12,

=

. O. Duda, P. E. Hart, J. H. Munson, Graphical data process-

16.

4.
images, Discrete Applied Mathematics 147 (2005) 245263, a 5.

27.
28.

34.

of the First International Conference on Medical Image Comp
ing and Computer-Assisted Intervention, Springer-Verla808,
pp. 1134-1143411

P.-L. Bazin, D. Pham, Topology-preserving tissue diaasion of
magnetic resonance brain images, |IEEE Transactions ondsledi
Imaging 26 (4) (2007) 487-496] 1

J. Liu, S. Huang, W. Nowinski, Registration of brain atta MR
images using topology preserving front propagation, Jauof
Signal Processing Systems 55 (1) (2009) 209-P16. 1

A. Rosenfeld, Connectivity in digital pictures, Jourofthe As-
sociation for Computer Machinery 17 (1) (1970) 146-180. 2

ing research study and experimental investigation, Tedp. R
AD650926, Stanford Research Institute (1967). 2

. G. Damiand, A. Dupas, J.-O. Lachaud, Fully deformabled®)>

ital partition model with topological control, Pattern Reggoition
Letters 32 (2011) 137413831 [Z]2Z] 26

G. Bertrand, Simple points, topological numbers anddgsic
neighborhoods in cubic grids, Pattern Recognition LettEss
(1994) 1003-101112

L. J. Latecki, Multicolor well-composed pictures, Ratt Recog-
nition Letters 16 (4) (1995) 425-431] 2

S. Siqueira, L. Latecki, N. Tustison, J. Gallier, J. Gepological
repairing of 3D digital images, Journal of Mathematical gimagy
and Vision 30 (3) (2008) 249-27@] 2

Y. Cointepas, |. Bloch, L. Garnero, A cellular model for
multi-objects multi-dimensional homotopic deformatipRaittern
Recognition 34 (2001) 1785-1798. 2

P.-L. Bazin, L. Ellingsen, D. Pham, Digital homeomogphs in
deformable registration, in: N. Karssemeijer, B. LelieigEds.),
IPMI, Vol. 4584 of Lecture Notes in Computer Science, Speing
2007, pp. 211-2221P1B. P2

J. H. C. Whitehead, Simplicial Spaces, Nuclei and m-@spBro-
ceedings of the London Mathematical Society s2-45 (1938)-24
327.2[B[TH

L. Mazo, N. Passat, M. Couprie, C. Ronse, Digital imagifg
unified topological framework, Journal of Mathematical irey
and Vision (doi: 10.100810851-011-0308-9[.] B, 10111122

G. Bertrand, M. Couprie, Two-dimensional thinning aitions
based on critical kernels, Journal of Mathematical Imagingd
Vision 31 (1) (2008) 35-54.]15, 20

J. Munkres, Topology, Prentice Hall, 1999.

L. Mazo, N. Passat, M. Couprie, C. Ronse, Paths, homotopy
and reduction in digital images, Acta Applicandae Mathécaat
113 (2) (2011) 167-193] Bl [71[B119]124

. R. Bing, Some aspects of the topology of 3-manifoldstedla

to the Poincaré conjecture, Lectures on Modern Mathemdkic
(1964) 93-128[1

E. Zeeman, On the dunce hat, Topology 2 (1964) 341{358. 5
J. H. C. Whitehead, Combinatorial homotopy. ., Bulieti the
american Mathematical Society 55 (1949) 213-245. 4

. S. Fourey, R. Malgouyres, A concise characterizatioB»&im-

ple points, Discrete Applied Mathemathics 125 (1) (2003)&®
@[

. C. R. F. Maunder, Algebraic Topology, Dover, 1996. 4
. J. Munkres, Elements of Algebraic Topology, WestvievesBr

1996.2

. A. May, A Concise Course in Algebraic Topology, U. Chicag

Press, 199914

A. Hatcher, Algebraic Topology, Cambridge Universitye$s,
2002.2

P. Giblin, Graphs, surfaces and homology, Cambridgeeusity
Press, 2011415

P. Alexandrff, Diskrete Raume, Rec. Math. [Mat. Sbornik] N.S.
(1937) 501-5191%161 7

G. Birkhdt, Rings of sets, Duke Mathematical Journal 3 (3)
(1937) 443-45415



O©CO~NOOOTA~AWNPE

27

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.
54.

55.

56.

57.

M. McCord, Singular homology groups and homotopy groups
of finite topological spaces, Duke Mathematical Journal 38 (
(1966) 465-4741617

G. Bertrand, New notions for discrete topology, in: DCE9:
Proceedings of the 8th International Conference on DiedBat-
ometry for Computer Imagery, 1999, pp. 218-224.16]F1 8, 9

R. E. Stong, Finite topological spaces, TransactionseoAmeri-
can Mathematical Society 123 (25) (1966) 325-340. 6, 7

J. P. May, Finite topological spaces (lecture notes),

url  :  www.math.uchicago.edimayMISC/FiniteSpaces.pdf
(2008).[6[Y

J. A. Barmak, E. G. Minian, Simple homotopy types and dinit
spaces, Advances in Mathematics 218 (2008) 87-{1114. 6, 8

J. A. Barmak, E. G. Minian, One-point reductions of firsipaces,
h-regular CW-complexes and collapsibility, Algebraic &dbeet-
ric Topology 8 (3) (2008) 1763—-1780] 9

T. Y. Kong, A. Rosenfeld, Digital topology: Introduati@nd sur-
vey, Computer Vision, Graphics, and Image Processing 48919
357-393[1IPp

V. A. Kovalevsky, Finite topology as applied to image lgsis,
Computer Vision, Graphics, and Image Processing 46 (2)9198
1411611011

V. Kovalevsky, Axiomatic digital topology, Jounal of khemati-
cal Imaging and Vision 26 (1) (2006) 41-58.] 10

V. Kovalesky, Geometry of Locally Finite Spaces, Publig
House Dr. Baerbel Kovalevski, 2008.110

G. T. Herman, Geometry of Digital Spaces, Birkhuser81LE%)

E. Kronheimer, The topology of digital images, Topolayd its
Applications 46 (1992) 279-30B. 110

C. Ronse, V. Agnus, Morphology on label images: Flatetyper-
ators and connections, Journal of Mathematical Imaging\and
sion 22 (2) (2005) 283-30F. 111

C. Ronse, V. Agnus, Geodesy on label images, and apphisab
video sequence processing, Journal of Visual Communicatial
Image Representation 19 (2008) 392—408. 11

R. Ayala, E. Dominguez, A. Francés, A. Quintero, Riblight-
ing functions, in: procs. Discrete Geometry for Computeadery,
LNCS, Springer Verlag, Vol. 1347, 1997, pp. 139-150 11

C. Ronse, An isomorphism for digital images, Journal @fm®i-
natorial Theory, Series A 39 (2. 113

E. H. Spanier, Algebraic Topology, Springer, 1994. 16

T. Y. Kong, Topology-preserving deletion of 1's from 3-,and
4-dimensional binary images, in: DGCI '97: Proceedings haf t
7th International Workshop on Discrete Geometry for Coraput
Imagery, Springer-Verlag, 1997, pp. 3—181 20

M. Couprie, G. Bertrand, New characterizations of semmints
in 2D, 3D and 4D discrete spaces, IEEE Transactions on Ratter
Analysis and Machine Intelligence 31 (4) (2009) 637-648. 21
T. Blyth, Lattices and Ordered Algebraic Structuresririgger,
London, 200522

G. Gratzer, General Lattice Theory, 2nd Edition, Bilber,
Basel, 200322



