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”Topology on digital label images”, which you submitted to Journal of Mathe-
matical Imaging and Vision.

Based on the advice received, the Editor feels that your manuscript could be
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When preparing your revised manuscript, you are asked to carefully consider
the reviewer comments, which are attached, and submit a list of responses to
the comments. Your list of responses should be uploaded as a file in addition
to your revised manuscript.

Authors: We would like to thank the Editor for the management of the re-
view process of this manuscript. It has been revised by taking into account the
suggestions of the reviewer.

Response to Reviewer #2:
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Abstract In digital imaging, after several decades devoted
to the study of topological properties of binary images, there
is an increasing need of new methods enabling to take into
(topological) considerationn-ary images (also called label
images). Indeed, while binary images enable to handle one
object of interest, label images authorise to simultaneously
deal with a plurality of objects, which is a frequent require-
ment in several application fields. In this context, one of the
main purposes is to propose topology-preserving transfor-
mation procedures for such label images, thus extending the
ones (e.g., growing, reduction, skeletonisation) existing for
binary images. In this article, we propose, for a wide range
of digital images, a new approach that permits to locally
modify a label image, while preserving not only the topol-
ogy of each label set, but also the topology of any arrange-
ment of the labels understood as the topology of any union
of label sets. This approach enables in particular to unify and
extend some previous attempts devoted to the same purpose.

Keywords digital imaging· topology · label images·
homotopy· simple points
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1 Introduction

In a digital image, when performing processes such as reg-
istration, deformation or thinning, the preservation of the
topological properties of the objects contained in the image
(e.g., connected components, tunnels, cavities, etc.) is an im-
portant requirement. For 50 years, several tools enabling the
analysis (adjacency graphs, digital fundamental groups, ho-
mology groups –see,e.g., [1,2,3]) and the modification un-
der topological constraints (simple points, P-simple points,
simple sets –see,e.g., [4,5,6,7]) of binary images have been
proposed and used. Nevertheless, in many fields (e.g., med-
ical imaging, remote sensing, computer vision), an image is
generally composed of several objects, and it is often impor-
tant to understand or maintain their topological properties
all together, that is the topology of each and the topology of
the scene. In such images, the objects are characterised by
specific labels on which there generally exists no meaning-
ful order relation (unlike grey-level images for instance).

1.1 Previous works

To the best of our knowledge, the literature about topology
in label images is quite limited and generally motivated by
practical considerations. The most common approach is to
consider only one label at a time, the other labels being mo-
mentarily considered as a part of the background. However,
except in the most simple cases where the label configura-
tion leads to a binary modelling (see,e.g., [8,9]), one cannot
directly deal with the relations between the labels but only
with the topology of each label and of its associated back-
ground [10,11,12] (if necessary, one uses in addition an ad-
jacency tree between labels in order to control their topo-
logical relations). These methods are often used with a cost
function, which depends on the applicative context, whose
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Fig. 1 An image with two labels (in grey and black). If we consider
the grey label as the object of the picture using the (8,4)-adjacency pair
(8-adjacency for the object and 4-adjacency for the background), the
object is a ring. The black pixels together then form the inner compo-
nent of the background, while the white pixels form the outercompo-
nent. However, if we now consider the black pixels as the object (still
in 8-adjacency), rejecting grey pixels to the background, these latters
must be understood with the 4-adjacency and they appear to have two
connected components, one inside the black torus and one outside.

purpose is to assign a given label, or not, to a point of the
image. Thereby points go from background to a label orvice
versabut not from a label to another. Note that some points
may sometimes take an undetermined status since they can-
not be assigned a label without breaking a topology defined
by ana priori knowledge or to avoid object crossings when
the objects are seen under the filter of the 8-adjacency in
the plane or 26-adjacency in the space (see Figure 1). The
question of the adjacencies to be used in a digital label im-
age is a recurrent issue. Indeed, in digital topology, in the
framework developed by Rosenfeld [13], the object and the
background of an image are understood with different (dual)
adjacencies [14]. So, when objects in a label image are pro-
cessed one at a time, being alternatelytheobject and part of
the background, they are inevitably seen under two distinct
adjacencies1. For instance, an object can have one connected
component at one step of the process and two components at
the next step though no change did occur on the image (see
Figure 1).

To overcome this problem, a class of “well composed”
images has been defined in which the same adjacency re-
lation can be used for the object and the background. This
adjacency relation is necessarily the 4-adjacency in 2D im-
ages and the 6-adjacency in 3D images [17]. This class of
images is obtained by excluding all the images in which at
least one of the three configurations depicted on Figure 2 ap-
pears. In other words, it is assumed in these images that the
boundaries of the objects (viewed as an union ofn-cubes)
are (n−1)-manifolds. In the case where label images present
forbidden configurations, an algorithm has been proposed to

1 This problem is sometimes disregarded. For instance, in [15]
(proof of Proposition 2), it is claimed “Since the 18-neighbourhood
of x is limited to binary case, and by definition of simple points the
topology of the complementary ofR is preserved: we can deduce that
the topology ofX [the complementary of R in the 18-neighbourhood of
x] is also preserved, and thus thatx is simple forX”. It is not clear here
what is meant by preserving topology. However, in the framework of
simple points [16], it is not true in general that we can swap the object
and the background without swapping together the adjacencypair.

(a) (b) (c)

Fig. 2 Forbidden configurations in (binary) well composed images.
(a) InZ2. (b,c) InZ3 (configuration (b) shall not appear neither in the
object nor in the background). A label image is well composedif each
binary image obtained by isolating a particular label is well composed.

dispose of them [18]. However, since the objects identified
by the labels are sequentially “repaired”, one needs first to
determine an order on the labels, and this order biases the
result.

Another approach [19] takes further the specificity of la-
bel images into account. A notion of “homotopy set” is de-
fined, which is the set of the labels that can be assigned to a
point without modification on the topology of each label and
of its complement in the image. A local criterion is provided
to decide whether a particular label belongs to the homotopy
set of a point or not. Thereby, a point can move from a label
to another and not solely from the background to a label or
vice versa.

In [20], the authors go further and require, before any
change of label at a point, the guarantee that not only the
topology of each label will be preserved but also the topol-
ogy of the unions of two labels in 2D images and of three la-
bels in 3D images (see Figure 3). Nevertheless, this request
is not sufficient. Figure 3(c) provides a counterexample in
2D where there is the need to consider the union of three
labels.

In [15], the authors study 3D label images with a frontier
approach. The 3D image is divided into regions which are 6-
connected (hence, the configurations of Figure 2 cannot oc-
cur) and in which the voxels share the same label. Moreover,
they only take into account the 6-adjacency between regions.
To move a voxelx from a regionA to another regionB, the
authors make requirements on surfaces betweenx andA\{x}
(resp. betweenx andB\{x}): they have to be homeomorphic
to a 2-disk. Furthermore, for each regionC 6-adjacent tox,
the frontier between the regionsA andC before the move
(resp. betweenB andC after the move), must collapse2 onto
the corresponding frontier after the move (resp. before the
move).

2 Here, collapse is the classical operation on complexes defined by
Whitehead [21] (see Section 2.2).
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Fig. 3 (a) An image with four labels. (b) The label of a single pixel has
changed. Neither the topologies of the labels nor of their complements
in the image are modified. However, the topology of the partition is not
preserved in the sense that the union 1+ 2 becomes contractible, 1+ 3
is split into two components in 4-adjacency, 3+ 4 loses a component,
2 + 3+ 4 loses a component in 4-adjacency. (c) This example is from
[20]. The authors observe that, if we look at the picture withthe (8, 4)-
adjacency pair, the central pixel can move from 3 to 2 withoutaltering
the topologies of the four labels and of the six pairs of labels but they
do not take into consideration the union 1+3+4 though it passes from
a ball to a ring. Observe also that the well-composedness of this image
is destroyed by the move of the central pixel from 3 to 2.

1.2 Purpose

The aim of this article is to study the topology of label im-
ages, following the idea to preserve any union of labels,
which amounts to require topologically sound procedures
on digital label images not to change the topological char-
acteristics of the sets of a partition ofZn and of any coarser
partition of the initial one. In other words, one could say that
the actual set of objects in a digital label image is the power
set of the partition. We have adopted a theoretical stand-
point with the will to cover a wide range of situations. In our
framework, we do not make any assumption on the topolo-
gies of individual objects (we do not usea priori knowl-
edge) and there is no forbidden configurations. Weak ho-
motopy equivalence in finite spaces (which corresponds to
homotopy equivalence in continuous ones) is used to per-
form topological comparisons. To avoid the pitfall of dis-
tinct adjacency pairs on the same object described above,
we embed the digital space of the image into a richer space
equipped with a genuine topology, that is a poset whose min-
imal points are the points of the digital image. This enrich-
ment of the space leads us to embed also the label set into
a richer one, namely an atomistic lattice whose atoms are
the labels of the digital image. Thereby, we can extend the
digital image on its poset, assigning extended labels to new
points, and we can define gradual modifications of the im-
ages more adapted to topology preservation.

1.3 Contribution and structure of the article

The remainder of this article is organised as follows.
Section 2 gathers results on binary images on which re-

lies our work. It is intended to make the article self-contained
and to introduce our notations. The last subsection of Sec-

tion 2 establishes, in particular, two new results whose proofs
are provided in Appendix B and C.

In Section 3, we introduce our framework for the topo-
logical understanding of label images. We describe a first
tool to locally modify such a label image while keeping un-
changed all homotopy groups of the objects and their unions
(to be more precise, we have weak homotopy equivalences).
When the poset is the spaceFn of cubical complexes defined
in Section 2, our tool keeps also unchanged the homotopy
groups of the complements. Furthermore, the changes can
be processed in parallel under certain conditions, thus lead-
ing to well-balanced algorithms.

In Section 4, we are interested in images in which the
sets of points that share a label (we say thesupportof the la-
bel) are closed sets, as in (26, 6) digital images. In this case,
we define an elementary modification, namedcut, inspired
by collapses. It has the same (good) topological propertiesas
the one defined in Section 3 while the supports of the labels
remain closed sets.

In Section 5, we studyregular imagesin which the label
of a point in the poset is defined by the labels of the minimal
points beneath it. Regular images can be built from digi-
tal images defined onZn and we have proved in [22] that,
when the poset is the space of cubical complexes, this con-
struction puts in one-to-one correspondence the connected
components of the regular image with the ones of the dig-
ital image. Moreover, it induces isomorphisms between the
fundamental groups of the regular image and the digital fun-
damental groups of the digital image (as defined in [2]). In
regular images, we give conditions for cuts to preserve regu-
larity allowing thereby to modify a regular image in a topo-
logically sound manner, the result being also a regular image
(allowing to go back toZn).

Section 6 concludes this paper and describes further works
in preparation.

2 Simplicity in sets

The aim of this section is to gather notions and results on
which relies this work, and also to present our notations.
Note that in Section 2.8, we establish (new) results which are
specific to complexes. Operations and relations on functions
(in particular, on images) will always be implicitly pointwise
ones.

2.1 Homotopy

Two continuous mapsf , g : X → Y arehomotopicif there
exists a continuous map, called ahomotopy, h : X× [0, 1]→
Y such thath(x, 0) = f (x) andh(x, 1) = g(x) for all x ∈ X.
The spacesX andY arehomotopy equivalent(or have the
samehomotopy type) if there exist two continuous maps

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4

f : X → Y andg : Y → X, calledhomotopy equivalences,
such thatg◦ f is homotopic to the identity map idX and f ◦g
is homotopic to idY. If X andY are homeomorphic, they are
homotopy equivalent: given a homeomorphismϕ between
X andY, ϕ andϕ−1 are homotopy equivalences betweenX
andY. The converse is not true in general (for example, a
ball is homotopy equivalent –but not homeomorphic– to a
point). A topological space iscontractibleif it has the ho-
motopy type of a single point. LetX be a topological space.
Two pathsp, q in X are equivalentif they have the same
extremities (i.e., p(0) = q(0) andp(1) = q(1)) and are ho-
motopic by an homotopyh such thath(0, u) = p(0) = q(0)
andh(1, u) = p(1) = q(1) for all u ∈ [0, 1]. It is easy to
check that this relation on paths is actually an equivalence
relation. We write [p] for the equivalence class ofp. If p, q
are two paths inX such thatp(1) = q(0) we can define the
productp · q by:

(p · q)(t) =

{

p(2t) if t ∈ [0, 1
2],

q(2t − 1) if t ∈ [ 1
2 , 1].

This product is well defined on equivalence classes by [p] ·
[q] = [p · q]. Let x be a point ofX. A loopat x is a path inX
which starts and ends atx. The product of two loops atx is a
loop atx and the setπ1(X, x) of equivalence classes of loops
at x is a group for this product. It is called thefundamental
groupof X (with basepoint x) or thefirst homotopy groupof
X. If X is path-connected, the groupπ1(X, x) does not depend
on the basepoint (i.e., for any pointsx, y ∈ X, π1(X, x) and
π1(X, y) are isomorphic). Higher homotopy groups, denoted
πn(X, x), are defined by replacing loops atx by continuous
maps from [0, 1]n to X that associate the boundary of the
n-cube tox. The product on such maps is then defined by
gluing two faces of then-cubes:

p · q(t1, . . . , tn) =

{

p(2t1, t2, . . . , tn) if t1 ∈ [0, 1
2],

q(2t1 − 1, t2, . . . , tn) if t1 ∈ [ 1
2 , 1].

Conventionally, the set of path-connected components ofX
is denoted byπ0(X, x), but it has no group structure.

A continuous mapf : X→ Y is aweak homotopy equiv-
alenceif the morphismsfn : πn(X, x) → πn(Y, y) defined by
fn([p]) = [ f ◦ p] are all bijective (f0 is just a bijection, not
a morphism). Two spacesX,Y areweakly homotopy equiva-
lent if there is a sequence of spacesX0 = X,X1, . . . ,Xr =

Y (r > 1) such that there exist weak homotopy equiva-
lencesXi−1 → Xi or Xi → Xi−1 for all i ∈ [1, r]. Two ho-
motopy equivalent spaces are weakly homotopy equivalent.
The converse is not true in general but Whitehead’s theorem
[28] implies that it is true for all spaces that are geometric
realisations of simplicial or cubical complexes.

Two weakly homotopy equivalent spacesX,Y have iso-
morphic homotopy groups. However, a weak homotopy equi-
valence is much more than a collection of isomorphisms
between homotopy groups. On Figure 4, we have depicted

two cubical 3-complexesX andY such thatY ⊂ X. Their
geometric realisations have the same homotopy type and,
therefore, are weakly homotopy equivalent. Nevertheless,it
is clear that the inclusioni : Y → X is not a weak homo-
topy equivalence for it associates non-contractible loopsto
contractible loops. Likely, in image processing, we would
reject such a thinning. So, the nature of the weak homotopy
equivalence is an important information.

(a) (b)

Fig. 4 (From [29]) (a) A cubical 3-complexX. (b) A subcomplexY.
Their geometric realisations have the same homotopy type. However,
the inclusioni : Y→ X is not a weak homotopy equivalence.

There is a case in which the weak homotopy equivalence
reduces to the knowledge of the homotopy groups. When a
set is weakly homotopy equivalent to a point, then it is con-
nected and all its homotopy groups are trivial. Thus, obvi-
ously, any constant map is a weak homotopy equivalence.
Such a space is said to behomotopically trivial. There are
spaces that are homotopically trivial and that are not con-
tractible as shown on Figure 5.

Fig. 5 A set of points (in red), closed lines (in yellow) and closed
squares (in green) ofR3 whose union forms a hollow cube with a fence.
Equipped with the inclusion, this set is a finite topologicalspace (see
below Subsection 2.4) that is homotopically trivial but notcontractible
(the reader will be able to establish the proofs of these two assertions
after the reading of Subsections 2.5 and 2.6).

2.2 Complexes

We do not recall definitions about simplicial complexes which
are generally well known. The reader who whishes to rec-
ollect such a notion, or any one rapidly exposed below, is
invited to find complementary information in a lecture book
on algebraic topology,e.g.[30,31,32,33,34]. In digital im-
ages, grids are often cubic ones. It is then convenient, in im-
age analysis, to replace simplices in complexes byn-cubes.
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As cubical complexes are not commonly used, we recall
hereafter the main basic definitions (see also [23]). We set
F1

0 = {{a} | a ∈ Z} andF1
1 = {{a, a + 1} | a ∈ Z}. A subset

f of Zn which is the Cartesian product ofm elements ofF1
1

andn − m elements ofF1
0 is a faceor anm-face(of Zn), m

is thedimensionof f , and we write dim(f ) = m. We denote
by Fn

m the set composed of allm-faces ofZn and byFn the
set composed of all faces ofZn. Let f ∈ Fn be a face. The
set {g ∈ Fn | g ⊆ f } is a cell and any union of cells is an
abstract cubical complex. Thegeometric cubical complexes
are defined in the same manner, except that we change the
definition ofF1

1 by settingF1
1 = {[a, a+1] | a ∈ Z} ⊂ Rn. The

geometric realisation|K| of a geometric cubical complexK
is the union of its faces. Figure 6 illustrates these definitions.

b

d

a

c

(a)

1

(b)

Fig. 6 (a) Four points inZ2 , a = (i, j), b = (i + 1, j), c = (i + 1, j + 1),
d = (i, j + 1). The facesf = {a}, g = {b, c} = {i + 1} × { j, j + 1} and
h = {a, b, c, d} = {i, i + 1} × { j, j + 1} are symbolically depicted with
ellipses. (b) Another (more semantic) symbolic representation, often
used in this article. In black, the 0-facef . In dark grey, the 1-faceg. In
light grey, the 2-faceh.

Whitehead [21] (an easier reference for modern read-
ers is [34]) has defined elementary transformations on com-
plexes as follows. LetX be a complex (simplicial or cubical)
and (x, y) a pair of faces inX such thatx is the only face of
X includingy (i.e., X \ {x, y} is still a complex). Then, (x, y)
is a free pair, and the setY = X \ {x, y} is anelementary
collapseof X, or X is anelementary expansionof Y. If a set
Y is obtained fromX by a sequence of elementary collapses
(a sequence of elementary collapses and expansions), thenY
is acollapseof X (X andY aresimple-homotopyequivalent
or X andY have the same simple-homotopy type) and one
write X ց Y (X�ցY). A set iscollapsibleif it collapses
onto a singleton.

If Y is acollapseof X then|Y| is a strong deformation re-
tract of|X| and thus|X| and|Y| are homotopy equivalent [21].
Figure 7 illustrates this property. In particular, if the complex
is collapsible, its geometric realisation is contractible. The
converse is not true as shown by the thin version of Bing’s
house with two rooms [26] or by Zeeman’s dunce hat [27].

Fig. 7 (a) A complexX. (d) A complexY which is an elementary
collapse ofX. (b-c) Two steps in a strong deformation retraction of|X|
onto |Y|.

2.3 Partially ordered sets

The motivation for considering partially ordered sets (orpo-
sets) comes from (i) the observation that digital images are
essentially finite (even when they are defined onZn to avoid
difficulties on boundaries), (ii ) that finite topological spaces
of interest have the T0-separation property3 but not the T1-
separation property4 (otherwise either some points could not
be distinguished from a topological viewpoint or the space
is totally disconnected), and (iii ) that T0-spaces in which any
intersection of open sets is an open set (as in finite spaces)
are posets [35,36] (this point is developed in Section 2.4).

Let X be a set. A binary relation onX is apartial order
if it is reflexive, antisymmetric, and transitive. Apartially
ordered set, or poset, is a couple (X,≤) where the relation≤
is a partial order onX. The relation≥, defined onX by x≥y
iff y≤x, is a partial order onX called thedual order. We say
that two pointsx, y in X arecomparableif x≤y or y≤x. If,
for all pairs (x, y) of elements ofX, x andy are comparable,
the relation≤ is a total order on X. We write x < y when
x≤y andx , y and we set:

– x↑ = {y ∈ X | x≤y} andx↑⋆ = x↑ \ {x} = {y ∈ X | x < y};
– x↓ = {y ∈ X | y≤x} andx↓⋆ = x↓ \ {x} = {y ∈ X | y < x}.

If x andy are comparable, we writex ≍ y; otherwise, we
write x - y. The set of points comparable with a given point
x is denotedxl (xl = x↓ ∪ x↑), and we setxl⋆ = xl \ {x} =
x↓⋆ ∪ x↑⋆. A point x ∈ X is minimalif x↓ = {x} andmaximal
if x↑ = {x}. A point x ∈ X is theminimumof X if x↑ = X and
is themaximumof X if x↓ = X. We say that a poset islocally
finite if for each pointx in X, there are finitely many points
comparable withx. A chain in X is a totally ordered subset
of X. Thelengthof a chain is its cardinality minus one. The
lengthof a posetX is the maximal length of a chain inX
if such a maximum exists5. The height of a point x ∈ X,
denoted ht(x), is the length ofx↓. If x < y and there is no

3 A space has the T0-separation property if for any pair of distinct
points there exists an open set that contains one of them and not the
other.

4 A space has the T1-separation property if for any ordered pair of
distinct points there exists an open set that contains the first of them
and not the other. Now, letx be a point in a finite T1-spaceX. For
eachy ∈ X, y , x, there exists an open neighbourhood ofx, Uy, not
containingy. Hence,{x} =

⋂

Uy is open, that is to say, the topology on
X is the discrete topology in which all subsets are both open and closed
and the only connected sets are the singletons.

5 Some authors define thelengthof a chain as its cardinality and the
the maximal length of a chain inX is also called theheightof X.
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e (3)

d (2)

c (1)

b (1)

a (0)

Fig. 8 The Hasse diagram of a poset defined by the set
{a, b, c, d, e} equipped with the order{(a, a), (a, b), (a, c), (a, d), (a, e),
(b, b), (b, d), (b, e), (c, c), (c, e), (d, d), (d, e), (e, e)}. Between parenthe-
ses, we give the height of the points. The length of this posetis 3.

z such thatx < z < y, we say thaty covers xand we write
x ≺ y. The Hasse diagram of the relation≤ is the oriented
graph of the relation≺. When orienting all arcs from bottom
to top, this diagram offers a good visual representation of
(small) posets (see Figure 8).

Simplicial or cubical complexes equipped with the in-
clusion,⊆, or its dual,⊇, are locally finite posets. Moreover,
for all n ∈ N, (Fn,⊇) is order isomorphic to (Fn,⊆) (that is,
the combinatorial properties of thek-faces ofFn are equal to
the ones of the (n− k)-faces if we replace⊆ by⊇). Note that
it is not true for simplicial complexes.

We extend to posets Whitehead’s definitions of free pairs
and collapses. A pair (x, y) in a posetX is a(combinatorial)
free pair if x is the only point (strictly) less thany in X. If
(x, y) is a free pair inX, the setX \ {x, y} is acollapseof X.
When we can “thin” a subsetY of X to a subsetZ of X by
withdrawal of free pairs, we writeYց Z.

2.4 A-spaces

A topological spaceX is anA-spaceif any intersection of
open sets is an open set. In such a space, closed sets sat-
isfy the definition properties of open sets (∅,X are closed
sets, any union and any intersection of closed sets is a closed
set), so one can exchange open and closed sets. The obtained
topology is then called thedual topology. As any set has a
closure, any elementx of an A-space has asmallest neigh-
bourhood(an open set included in any open set containing
x), denoted byUx, which is the closure of{x} for the dual
topology. Conversely, a topological spaceX in which each
point has a smallest neighbourhood is an A-space.

A T0 A-spaceis an A-space that has the T0-separation
property (i.e., for any two distinct pointsx, y, there exists
a neighbourhood containing just one of them). McCord has
proved in [37] that if an A-space is not T0, the identification
of the points that share the same smallest neighbourhood
leads to a homotopy equivalent quotient space which is T0.

There exists a canonical link between T0 A-spaces and
posets, established by Alexandroff.

Theorem 1 ([35]) Let X be an T0 A-space. The relation≤
defined on X by x≤y if x ∈ Uy is a partial order on X.
Conversely, let(X,≤) be a poset. The setU defined byU =
{U ⊆ X | ∀x ∈ U, x↓ ⊆ U} is a topology on X, the poset
X equipped with this topology is an T0 A-space and, for all
x ∈ X, Ux = x↓.

Indeed, the choice to setx≤y if x ∈ Uy is purely arbitrary.
We could setx≤y if y ∈ Ux and in literature both settings can
be found (for instance, the choicex≤y if y ∈ Ux is made by
[35,38] and the other choice by [37,39,40,41]).

If Y is a subset ofX, the topology associated to the poset
(Y,≤) is the topology induced by the one associated to the
poset (X,≤). The dual topology of the topology associated to
the poset (X,≤) is the topology associated to the dual order
≥.

From now on, posets will always be equipped with the
topologyU described in Theorem 1. This topology leads to
a nice characterisation of continuous maps.

Property 2 ([39]) Let X,Y be posets. A function f: X→ Y
is continuous iff it is non-decreasing.

In the sequel, we will often have to test if a poset is con-
tractible. Remember that a space is contractible if it has the
homotopy type of a point, that is, if there exists a continu-
ous mapH : X × [0, 1] → X such thatH(x, 0) = x for any
x ∈ X andx 7→ H(x, 1) is a constant map. Intuitively, a set is
contractible if it can be continuously shrunk to a point. Nev-
ertheless, this intuition is of little help in a finite space.For
instance, consider a geometric cubical complexX composed
of a closed unit square ofR2, together with all its faces. Say,
it is the one depicted on Figure 9(a). This complex is col-
lapsible byX ց X \ {a, b} ց {d, e, f , h, i} ց {e, f , i} ց {i}.
Since each elementary collapse is associated to a strong de-
formation retract in the Euclidean spaceRn, the realisation
of this unit square is contractible and one can actually con-
tinuously schrink the square following the above sequence
of collapses (which first step is the one illustrated on Fig-
ure 7). Now, this complex, equipped with the inclusion, is
also a poset (the Hasse diagram of which is depicted on
Figure 9(b)). Hence,X is not only a combinatorial structure
but also a topological space. However, we cannot follow the
same steps to continuously shrinkX as before. For instance,
we cannot remove continuously the face{a} from X \ {b} for
there does not exist a non-decreasing function fromX \ {b}
ontoX \ {a, b}. Furthermore, in [25], we have shown that if
x, y are two faces inFn (n ≥ 3) such thaty ⊂ x, the poset
({z⊂ x | z, y},⊆), which looks like a sphere with a hole, is
not contractible when dim(y) ≤ dim(x) − 2. This is clearly
counterintuitive.

Hopefully, even if we have to build a new intuition to
deal with finite spaces, there exist very easy properties like
the following one which provides a sufficient condition to
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d
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(a)
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b c d e
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(b)

(a)

(b) (g)

(c)

(h)(d)(i)

(e)

(f )
(g, b, a)

(g, c)

(h, a)

(c) (d)

Fig. 9 (a) An abstract cubical cella↑ which models a digital point
of Z2. (b) The Hasse diagram ofX(a↑). (c) The simplicial complex
K(X(a↑)). (d) The geometric realisation ofK(X(a↑)).

guarantee the contractibility of a finite poset (a proof can be
found,e.g., in [40, Lemma 6.2]; this is also a straightforward
consequence of [39, Corollary 3]).

Property 3 Let X be a poset. If X has a maximum, or a
minimum, then X is contractible. In particular, for any x∈
X, x↓ and x↑ are contractible. Moreover, for any x∈ X, xl is
contractible.

There is a close link between posets and simplicial com-
plexes, discovered by Alexandroff [35]. Let X be a poset.
The points inX are the vertices of a simplicial complex
K(X), the simplices of which are the finite chains ofX (see
Figure 9). Conversely, it is plain that the simplices of a given
simplicial complexK, equipped with the inclusion relation,
form a locally finite poset, denotedX(K).

These correspondences are not only algebraic, indeed
the topologies are concerned as well. The following theo-
rem, due to McCord, establishes the key properties of the
mapϕX : |K(X)| → X which associates to each point in the
geometric realisation ofK(X), the highest element of the
unique open simplex it belongs to (remember that a simplex
of K(X) is a chain).

Theorem 4 ([37, Theorem 2])Let X be a poset. There is
a weak homotopy equivalenceϕX : |K(X)| → X. Further-
more, one can associate to each continuous map f: X→ Y
between two posets, the simplicial map|K( f )| such that the
following diagram is commutative.

X Y

|K(X)| |K(Y)|

f

|K( f )|

ϕX ϕY

As the complexK(X) does not change if we consider
the dual order onX, Theorem 4 implies that (X,≤) is weakly
homotopy equivalent to (X,≥)).

In the sequel of this section we direct our interest to-
wards minimal deformations of the posets which do not alter
their topology. To better understand the differences between
the notions described below, we will take the same example
all along the three next subsections. Consider the spaceF3

as defined in Subsection 2.2. The setF3 together with inclu-
sion is obviously a poset. Letx0 be a 3-face inF3 andx1 be
a face inx↓⋆0 . We setX0 = F

3 \ {x0} andX1 = X0 \ {x1}. Our
goal is to shrinkX0 ontoX1.

2.5 Unipolar points

The significance of unipolar points in posets was discovered
by Stong [39] in the 60’s and later rediscovered by Bertrand
[38]. Most results in this subsection were first establishedin
Stong’s article for finite spaces but can be easily adapted to
any posets.

Definition 5 (Unipolar point) Let X be a poset. A point x∈
X is:

– down unipolarif x↓⋆ has a maximum;
– up unipolarif x↑⋆ has a minimum;
– unipolarif it is either down unipolar or up unipolar.

Property 6 ([39, Proof of Theorem 2] and [25, Proposition
4]) Let (X,≤) be a poset. A point x∈ X is unipolar iff X \ {x}
is a strong deformation retract of X.

Definition 7 (Core) Let (X,≤) be a poset. Let Y⊆ X be a
subset of X. We say that Y is a core of X if the poset(Y,≤)
has no unipolar point and it is a strong deformation retract
of X.

Property 8 ([39, Theorems 2, 4])

1. Any finite poset has a core and two cores of the same
poset are homeomorphic.

2. Two finite posets are homotopy equivalent iff they have
homeomorphic cores.

Observe in particular that Property 8 implies that one
can greedily remove the unipolar points of a finite poset in
order to obtain a core which will be homeomorphic to any
other core of the same poset. In particular, when the poset is
contractible, we have the following corollary.

Corollary 9 ([25, Corollary 4])If X is finite and contractible,
there is a sequence(xi)r

i=0 (r ≥ 0) of points in X such that

X = {xi}
r
i=0 and, for all j ∈ [1, r], xj is unipolar in {xi}

j
i=0.

Furthermore, if x∈ X is unipolar, we can choose xr = x.
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As an unipolar point in a poset (X,≤) is, clearly, also
an unipolar point in the poset (X,≥), one can easily deduce
from Corollary 9 and Property 6 the following corollary.

Corollary 10 Let (X,≤) be a finite poset. Then,(X,≤) is
contractible iff (X,≥) is contractible.

Thanks to the next Property, one can build well balanced
shrinking algorithms by deleting unipolar points with same
heights in parallel.

Property 11 ([38, Property 3] and [25, Proposition 5])If
x , y are unipolar points, then either(a) y is unipolar in
X\{x}, or (b) for one order on X (≤ or≥), x is down-unipolar
and covers y, for the other order y is down-unipolar and
covers x and the mapϕ : X \ {x} → X \ {y} defined by
ϕ(z) = z if z, y andϕ(y) = x is an homeomorphism.

Example 12 Let us consider the test set X0, described at the
end of Subsection 2.4. It is plain that the2-faces of x0 are up
unipolar in X0. Thus, ifdim(x1) = 2, the set X1 is a strong
deformation retract of X0. If dim(x1) ≤ 1, x1 is not unipolar
so X1 is not a strong deformation retract6 of X0.

This example shows us that unipolar points are not enough
“powerful” to be used in thinning or growing procedures.
This is the reason why we introduce nowβ-simple points.

2.6 β-simple points

The notion ofβ-simple points was first introduced by Ber-
trand7 in [38] in order to define topologically sound thinning
algorithms in posets. In his article, Bertrand uses a specific
definition for the homotopy type. On the other hand, Bar-
mak and Minian [41] gives the same definition in the clas-
sical framework in order to perform a collapse operation in
posets which actually corresponds to the collapse operation
in complexes associated to posets.

Definition 13 (β-simple point) Let(X,≤) be a poset. A point
x ∈ X is:

– downβ-simple (inX) if x↓⋆ is contractible;
– upβ-simple (inX) if x↑⋆ is contractible;
– β-simple (in X) if it is either downβ-simple or upβ-

simple.

From this definition and Corollary 10, we straightforward-
ly infer the next proposition.

6 In fact, it is easy to prove thatX1 is not even a retract ofX0 since
x1 belongs to, at least, 9 connected pairs inX0 and any function from
X0 to X1, equal to identity onX1, will disconnect one of these pairs.

7 Bertrand calls the upβ-simple points,α-simple points, and the
down β-simple points,β-simple points whereα andβ denote the or-
der and its dual in the posetX.

Proposition 14 Let (X,≤) be a poset. Let x be aβ-simple
point in X. Then x isβ-simple in X equipped with the reverse
order and the dual topology.

Unipolar points areβ-simple points since ifx ∈ X is a
down (resp. up) unipolar point,x↓⋆ (resp.x↑⋆) has a max-
imum (resp. minimum) and is therefore contractible (Prop-
erty 3). We saw previously (Property 6) that the removal of
a unipolar point is a strong deformation retraction. It is no
longer true forβ-simple points (see our test setX0 of Exam-
ple 12 with dim(x1) ≤ 1 for a counterexample). Neverthe-
less, the next property states that homotopy groups are not
changed by such a deletion and, furthermore, the following
theorem ensures that this deletion corresponds to a strong
deformation retraction on the continuous analogue.

Property 15 ([41, Proposition 3.3])Let X be a finite poset.
Let x ∈ X be aβ-simple point. Then, the inclusion map i:
X \ {x} → X is a weak homotopy equivalence.

Theorem 16 ([41, Theorem 3.10])Let X be a finite poset.
Let x∈ X be aβ-simple point andK(X), K(X \ {x}) the sim-
plicial complexes associated to X and X\ {x}, respectively.
Then,K(X) collapses ontoK(X \ {x}).

From an algorithmic point of view, like unipolar points,
β-simple points have good properties since they can be dele-
ted in parallel. Obviously, ifx, y are two points inX with
ht(x) = ht(y), there is no need to know whetherx has been
deleted fromX or not to decide ify↓⋆, or y↑⋆ is contractible.
Moreover, as we have seen above, the decision on the con-
tractibility can be greedily performed. Thus, a topology-pre-
serving thinning procedure in a posetX of finite lengthℓ
consists of repeating until stability the removal of theβ-
simple points of heightk for k = 0 to ℓ.

Example 17 Let us consider once again the test set X0. If
dim(x1) = 2, we have already seen that x1 is unipolar, so it
is alsoβ-simple. Ifdim(x1) = 1, the Hasse diagram of x↑⋆1
in the poset X0 is an acyclic graph composed of the four2-
faces ofF3 including x1 and the three3-faces ofF3 including
y and distinct from x0. Thus, it is contractible and x1 is up
β-simple. The inclusion map i1 : X1 → X0 is therefore a
weak homotopy equivalence. Ifdim(x1) = 0, let y0, y1, y2 be
the three2-faces including x1 and included in x0. The reader
can check in Figure 10 that these three faces are up-unipolar
in x↑⋆1 and that x↑⋆1 \ {y0, y1, y2} is a core of x↑⋆1 . Hence, x↑⋆1
is not contractible and x1 is notβ-simple.

2.7 γ-simple points

The example setX0 highlights the need for a weaker condi-
tion on points to be deleted when processing a thinning in a
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(a) (b)

Fig. 10 (a) The subsetx↑⋆1 of X0. (b) The core ofx↑⋆1 in X0.

digital image. The following definition ofγ-simple points8

and their properties are due to Barmak and Minian [42].
Bertrand [38] defines a quite similar notion.

Property 18 leads to an alternative definition ofβ-simple
points: a pointx is β-simple iff xl⋆ is contractible. In turn,
this alternative definition leads to the definition ofγ-simple
points.

Property 18 ([42, Proposition 3.3])Let X be a finite poset
and x a point in X. Then xl⋆ is contractible iff x↓⋆ or x↑⋆ is
contractible.

Definition 19 A point x of a poset is aγ-simple pointif the
poset xl⋆ is homotopically trivial.

As we have observed (see Subsection 2.4) that the ho-
motopy groups of a poset are unchanged if we consider the
reverse order onX, we can state the following proposition.

Proposition 20 Let X be a finite poset and x be aγ-simple
point in X. Then x isγ-simple in X equipped with the reverse
order and the dual topology.

Since a contractible space is obviously homotopically
trivial, a β-simple point is aγ-simple point. In general, the
converse is false as it will appear in Example 24. Neverthe-
less, if the length ofX is less than or equal to 2 (intuitively,
if X is 2-dimensional), then anyγ-simple point is aβ-simple
point [42].

The following property gives a sufficient condition for a
point to beγ-simple. This condition enables to decrease the
cost of looking forγ-simple points since the length ofx↑⋆

or x↓⋆ is always less than or equal to the length ofxl⋆ .

Property 21 ([42, Proposition 3.17])Let X be a finite poset
and x a point in X. Then xl⋆ is homotopically trivial if x↓⋆

or x↑⋆ is homotopically trivial.

If the length of the space is less than or equal to 3, andx
is neither a maximum nor a minimum, the height ofx↑⋆ and

8 Barmak and Minian call themγ-points. To be consistent with the
previous subsection, we prefer to call themγ-simple points.

x↓⋆ is less than or equal to 1. Hence, ifx↑⋆ or x↓⋆ is homo-
topically trivial, it is contractible. Thanks to Property 18, we
deduce thatxl⋆ is contractible and therefore homotopically
trivial.

The next property ensures that the deletion of aγ-simple
point does not modify the homotopy groups.

Property 22 ([42]) ([42, Proposition 3.10])Let X be a finite
poset. Let x∈ X be aγ-simple point. Then, the inclusion
i : X \ {x} → X is a weak homotopy equivalence.

Finally, the following theorem states that, when deleting
aγ-point in a finite poset, the homotopy type of the contin-
uous analogue is unchanged.

Theorem 23 ([42]) ([42, Theorem 3.15])Let X be a finite
poset and let x∈ X be aγ-simple point. Then|K(X \ {x})|
and |K(X)| are simple-homotopy equivalent.

In a 3D imageX, the cost to decide whether the setxl⋆ is
homotopically trivial is not expensive. Indeed,K(xl⋆) is a 2-
dimensional simplicial complex and it is enough to compute
its connected components and its Euler characteristic. An
alternative to look atγ-simple points, in any dimension, is to
removeβ-simple points inxl⋆ until stability. If the result is a
singleton, by Property 15,xl⋆ is weak homotopy equivalent
to a point and therefore homotopically trivial. Moreover, the
scheme proposed for the deletion of simple points is still
valid (γ-simple points with same height can be removed in
parallel).

Example 24 Let us consider the test set X0. We have seen
that x1 is aβ-simple point iff dim(x1) ≥ 1. Suppose now that
dim(x1) = 0. The chain complexK(x↑⋆1 ) (see Subsection 2.4)
is depicted in Figure 11 in a2D-space and in a3D-space. It
is clearly contractible, so x↑⋆ is homotopically trivial (The-
orem 4). Thus, x1 is aγ-point and the injection i: X1 → X0

is a weak homotopy equivalence.

2.8 Complexes and simplicity

In this subsection, we establish some specific properties of
spaces of cubical or simplicial complexes. The proofs of
these new results are provided in Appendices B and C.

In Section 4, the proof of Theorem 47 needs the space
to have a property that can be understood in the framework
of complexes as asking the boundary of a cell with a “large
hole” to be homotopically trivial. So, we introduce the fol-
lowing definition.

Definition 25 A poset X has thepierced sphere propertyif,
for any x, y ∈ X such that y covers x, the set x↑⋆ \ {y} is
homotopically trivial.
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(a) (b)

Fig. 11 (a) The pure simplicial 2-complexK(x↑⋆1 ) in a 2D space. The
large/middle/small circles are vertices associated to 3-/2-/1-faces of
x↑⋆1 . (b) The complexK(x↑⋆1 ) in a 3D space. The seven vertices as-

sociated to the 3-faces ofx↑⋆1 are in corner position and the vertices
associated to the 1-faces are in centre position.

The next proposition states that this pierced sphere prop-
erty is satisfied by the spaces of cubical or simplicial com-
plexes. In Appendix B, we actually prove an extended ver-
sion of this statement (Proposition 58).

Proposition 26 Let X be a cubical or a simplicial complex
equipped with the order⊇. Then, X has the pierced sphere
property.

In digital topology, the usual requirement for a pointy to
be simple for an objectY in a spaceX (that is a point which
can be removed fromY in a topologically sound thinning
procedure) is that(i) the inclusioni : Y \ {y} → Y induces a
one-to-one correspondence between the connected compo-
nents of the object before and after the removal (i.e., Y and
Y \ {y}), (ii) the inclusioni′ : X \ Y→ (X \ Y) ∪ {y} induces
a one-to-one correspondence between the connected com-
ponent of the background before and after the removal (i.e.,
X \ Y andX \ Y ∪ {y}), (iii) the inclusioni induces isomor-
phisms between the fundamental groups of the connected
components of the object before and after the removal,(iv)
the inclusioni′ induces isomorphisms between the funda-
mental groups of the connected components of the back-
ground before and after the removal [43]. In [29], it has been
proved, thanks to the linking number borrowed to knots the-
ory, that for 3D digital images interpreted with the (6,26)
or the (26,6) pair of adjacencies, there is no need to con-
sider the fundamental groups of the background since their
preservation is implied by the three first conditions. The fol-
lowing theorem generalises, in our framework, this property
to spaces of any dimension (and, in a certain sense, defined
in [22], for any pair of adjacencies).

Theorem 27 Let X be a cubical complex equipped with the
order⊇ which is also a cubical complex for the dual order
⊆. Let Y be a proper subset of X and y be aβ-simple point
in Y. Then y isγ-simple in(X \ Y) ∪ {y}.

l1 l2 . . . lℓ

⊥

Fig. 12 Hasse diagram of the label setL = {l i }ℓi=1 ∪ {⊥}.

Remark 28 We do not know if this theorem remains true in
any dimension if we replace the hypothesis “y is aβ-simple
point” by “y is a γ-simple point”. Nevertheless, if the di-
mension of X is 2,γ-simple points areβ-simple points, so it
is obviously true in this case. Moreover, we have proved, by
checking all configurations with the help of a computer pro-
gram, that it is also true inF3, the space of3-dimensional
cubical complexes. In Appendix D, Counterexample 61 pro-
vides a case where Theorem 27 is false when the space X is
not a complex for the dual order.

3 Label images

Let L be a finite poset with a minimal element, denoted⊥,
and such that two distinct elements inL\ {⊥} are not compa-
rable. We setL⋆ = L \ {⊥} and we writeℓ for the cardinality
of L⋆. The elements ofL⋆ are calledproto-labels. The Hasse
diagram of the posetL is depicted in Figure 12. Alabel dig-
ital imageis a function defined onZn, with values inL, and
equal to⊥ everywhere except on a finite set of points ofZn.

Let l ∈ L, l , ⊥ be a proto-label andλ a label digital
image. The setλ−1({l}) is the supportof the proto-labell
(in the label digital imageλ). The union of the supports of
all proto-labels is thedomain of the imageλ. (This domain
is finite by definition.) The setλ−1({⊥}) is thebackground
of the imageλ. The background and the supports define a
partition ofZn.

In order to equip the discrete grid onZn with a topol-
ogy, we enrich this grid by adding low dimensional points
between the xels ofZn (for instance, inZ3, we add surfels,
linels and pointels) whose purpose is to link the distinct ad-
jacent xels and to confer a poset structure to the discrete
space. Typically, such a space is the space of cubical com-
plexes,Fn, or any poset associated to a cellular decomposi-
tion of the space [44,45,46,47,48]. Thereby, the label digi-
tal images considered in this article are defined on a locally
finite poset (X,≤): we wish to link points ofZn to finitely
many neighbours. Indeed, all setsx↑⋆ andx↓⋆ which appear
in the definitions ofβ/γ-simple points will be finite. This
will allow us to use the results of Section 2.

Furthermore, we suppose that the embedding ofZn in X
puts in one-to-one correspondence the points ofZn with the
minimal points ofX. The reader must be aware that this
is counterintuitive. For instance, if the poset is the space
of cubical complexes,Fn, this one must be ordered by the
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(a) (b) (c)

Fig. 13 Label images. The proto-labels arer, g, b (depicted in red,
green and blue). The other labels are obtained by using the additive
colour model (e.g., {r, b} is depicted in magenta) except⊤ which is
depicted in black (⊥ is depicted in white). (a)X is a subset ofF2. T
is the power set 2{b,r}. Observe that in this image, there are points of
height 0 that have distinct dimensions. (b)X is built from an hexagonal
tessellation.T is the power set 2{r,g,b}. The labels of the points of height
greater than 0 are assigned according to the rule which will be used in
Section 5: a label is the supremum of the labels of the minimalpoints
in the neighbourhood. (c)X is built from a semi-regular tessellation.
The labels are given according to the same rule as in (b) butT is not a
power set:T = {⊥, r, g, b,⊤}.

dual of the inclusion,⊇, i.e., the height of a face is its codi-
mension. The reason to do so is to put the xels ofZn, which
contain all the information of the original image, at the same
height in the poset, namely “on the floor”. Then, we can add,
above those minimal points, the topological “glue” that is
needed to interpret the image. Most of the time, the labels of
the minimal points will be proto-labels, or⊥, that is mini-
mal labels inT and the image will be non-decreasing. In the
sequel, we identify the points ofZn with their images inX
so thexelsare the minimal points ofX.

Since we enrich the initial space with low dimensional
faces in order to get both a topological space and an alge-
braic structure, we are led to do so with the label set to
extend the digital label image on these supplementary low
dimensional faces. That is why we embed the label set in an
atomistic lattice (T,≤) whose minimum is the embedding of
⊥ and atoms are the embeddings of the proto-labels ofL (a
few definitions and properties about lattices can be found in
Appendix A). In the sequel, we identify the elements ofL
with their images inT. We denote by⊤ the maximum ofT.
A label is an element ofT. Given a (proto-)label setL⋆ the
smallest latticeT including L is T = L ∪ {⊤}. This is the
lattice used by Ronse and Agnus in [49,50] to define mor-
phological operators on label images. The largest atomistic
lattice in which we can embedL is the power set 2L

⋆

(with
the natural embedding which associates∅ to ⊥ and the sin-
gleton{l} to any proto-labell).

Some ways to associate labels to points inX that are not
xels are discussed in [44,51]. We have proposed, in [22],
our ownmodus operandito embed a binary digital image
defined onZn in a binary image defined onFn. It can be
straightforwardly extended to label images and we use it, in
a particular case, in Section 5 but we do not develop more

(a)

(b) (c) (d)

Fig. 14 (a) A label image whose domain isF2 and whose codomain
is the power setT = 2{b,r} = {∅, {b}, {r}, {b, r}} equipped with the inclu-
sion. The points with label{b} are depicted in blue, those with label{r}
in red and those with label{b, r} in magenta. The points of the back-
ground (label⊥ = ∅) are depicted in white with a black border or are
not depicted. (b) In blue, the support of the label{b}. (c) In red, the
support of the label{r}. (d) In magenta, the support of⊤ = {b, r}.

this issue in this article. This is why we actually just set the
following definition for label images.

Definition 29 (Label images) Let X be a locally finite poset
and T an atomistic lattice. Alabel imageis a functionµ :
X→ T.

Figure 13 provides various examples of label images.
We have seen that when we start from a label digital im-

ageλ : Zn → L and we construct a label imageµ : X → T,
the labels of the minimal points ofX (i.e., the xels) are the
atoms ofT (i.e., the proto-labels). When a label image has
this property, we say that this image ispure.

A label image can be seen as a superposition of binary
layers. Indeed, ifµ is a label image, andl ∈ L⋆ is a proto-
label, the imageµl = µ∧l is a binary image whose codomain
is {⊥, l} (remember that we denote by∧ and∨ the infimum
and supremum operations of the latticeT : see Appendix A).
The next proposition establishes thatµ is the supremum of
all the binary imagesµl , l ∈ L⋆.

Proposition 30 Let µ : X → T be a label image. Let L⋆

be the set of atoms of T. Then,µ =
∨

l∈L⋆ µl where, for all
l ∈ L⋆, µl = µ ∧ l.

Proof We setL⋆ = {l i}ℓi=1. Let x be a point inX. Let A ⊆ L⋆

be the set of atoms inT which are less than or equal toµ(x).
Then,µ(x) =

∨

a∈A a for T is atomistic. Letl ∈ L⋆, be an
atom inT. We have (µ∧ l)(x) = µ(x) ∧ l = (

∨

a∈A a)∧ l. It is
plain that (µ ∧ l)(x) = l iff l ∈ A and (µ ∧ l)(x) = ⊥ iff l < A.
Thus,µ(x) =

∨

a∈A a =
∨

l∈A(µ(x) ∧ l) =
∨

l∈L⋆ (µ(x) ∧ l) =
∨

l∈L⋆ (µ ∧ l)(x). ⊓⊔

Let µ : X → T be a label image andt be a label. The
support of t inµ is the subset〈t〉µ of X equal to{x ∈ X |
µ(x) ∧ t , ⊥}. When there is no ambiguity, we also say the
support of tinstead of the support oft in µ and we write
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(a)

(b) (c) (d) (e)

Fig. 15 (a) A label imageµ whose domain isF2 and whose codomain
is the power setT = 2{r,g,b} equipped with the inclusion. The labels are
depicted as in Figure 14 plus the labels{g, b}, {r, g} which are depicted
respectively in cyan and yellow. The pointx is the 0-face at the centre
of the figure. We haveµ(x) = {b}. We want to test if the pointx is
simple for the labelt = {r} (that is, we want to know if we can label the
point x with t while keeping unchanged the topology of the supports
of the 23 − 1 non-minimal labels inT). There are two labelsu such
that u ∧ µ(x) , ⊥ andu ∧ t = ⊥: {b} and {g, b}. (b) In blue, the set
x↓⋆∩〈{b}〉which is contractible. (c) In cyan, the setx↓⋆∩〈{g, b}〉which
is contractible. Hence, the first half of the test (namely, condition (i),
in Definition 31) succeeds. Now, let us consider the labelsu for which
u∧ µ(x) = ⊥ andu∧ t , ⊥: {r} and{r, g}. (d) In red, the setx↓⋆ ∩ 〈{r}〉
which is contractible. (e) In yellow, the setx↓⋆ ∩ 〈{r, g}〉 which is not
contractible (it has two connected components). The secondhalf of the
test (namely, condition (ii ), in Definition 31) then fails. Therefore, the
point x is not simple for the label{r}. Giving the label{r} to x would
connect two distinct components of the label{r, g}.

〈t〉 instead of〈t〉µ. The support of a proto-label (in a label
image) is the subset ofX whose points have a label greater
or equal to this proto-label. The support of a labelt , ⊥
is the union of the supports of the proto-labels int↓: x ∈
〈t〉 ⇔ µ(x) ∧ t , ⊥ ⇔ ∃ti atom, ti ≤ µ(x) ∧ t ⇔ ∃ti ≤
t atom, x ∈ 〈ti〉. The support of the label⊥ is the empty
set. Thecosupport of t inµ (or the cosupport of t) is the
complement inX of the support oft in µ. We denote it by
〈t〉cµ or 〈t〉c. Figure 14 illustrates these definitions.

We have seen in Section 1 that in a label digital image in
which one wants to preserve the topological properties in-
side the supports of the proto-labelsandbetween these sup-
ports, it is important, when performing a change of label on
a point, to maintain the topology of any union of supports of
proto-labels. In other words, we have to preserve the topol-
ogy of any set identified by a proto-label in the partition of
the space associated to the initial digital label image but also
of any set defined by any coarser partition of the space. In
the proposed framework, the supports (of the labels) are sub-
sets ofX that are exactly the unions of the supports of the
proto-labels. Hence, the supports of the labels inT are the
sets for which we must ensure the topological invariance.
This has lead us to the following definition, exemplified in
Figure 15.

Definition 31 (Simple point for a label) Letµ : X→ T be
a label image. Let t∈ T be a label. A point x∈ X is a

simple pointfor (the label) t if the following two conditions
are verified:

(i) for all labels u∈ T such that u∧µ(x) , ⊥ and u∧ t = ⊥,
x isβ-simple for the set〈u〉 ;

(ii) for all labels u∈ T such that u∧µ(x) = ⊥ and u∧ t , ⊥,
x isβ-simple for the set〈u〉 ∪ {x}.

In this definition, the first condition,u∧µ(x) , ⊥ andu∧ t =
⊥, means thatx is in the support ofu in µ but it will no more
be in it if the image is modified by giving the labelt to x.
Conversely, the second condition,u∧µ(x) = ⊥ andu∧t , ⊥,
means thatx is not in the support ofu in µ but it will be in it if
the image is modified by giving the labelt to x. In each case,
by requiringx to beβ-simple for the sets〈u〉µ, we ensure
that there exists a weak homotopy equivalence between each
support before and after the modification of the imageµ and,
if X = Fn, the cosupports will also be weakly homotopic
(see Proposition 34). Remember that this implies also that
the operation corresponds to strong deformation retractions
on the realisations of the simplicial complexes associatedto
these supports (Theorem 16). In a binary image (i.e., with
T = {⊥,⊤}), Definition 31 comes down to requirex to be
β-simple in〈⊤〉 or x to beβ-simple in〈⊤〉 ∪ {x}, depending
on x is in the object or in the background. Observe also that
any point inµ−1(t) is simple for the labelt.

Since the posetX is locally finite, the setsx↑⋆ andx↓⋆ are
finite. Therefore, according to Corollary 9, one can test the
simplicity of a pointx ∈ X by greedily removing unipolar
points in the setsx↑⋆ ∩ Y and x↓⋆ ∩ Y whereY = 〈u〉 or
Y = 〈u〉∪{x}, for all u ∈ T. When the latticeT is distributive,
the following proposition allows us to speed up this test by
reducing temporarily the size ofT by identifying the atoms
of T not “involved” in µ(xl) with the label⊥. Observe that
if the latticeT is distributive andµ is defined from a label
digital imageλ : Zn→ L as suggested in the introduction of
Section 3, thenT is a finite, atomistic and distributive lattice
whose atoms are identified with the elements ofL⋆, that is
T is the power set 2L

⋆

(see Appendix A).

Proposition 32 Letµ : X → T be a label image. Let t be a
label and x be a point in X. Let L⋆ be the set of atoms in T
and Lx be the subset of L⋆ whose elements are less than or
equal to an element ofµ(xl). Letϕ : T → T be the function
that maps any label u onto the labelϕ(u) =

∨

{a ∈ Lx | a ≤
u}.

(i) If the point x is simple for t inµ then t∈ ϕ(T) and x is
simple for t in the imageϕ ◦ µ : X→ ϕ(T).

(ii ) Conversely, if the lattice T is distributive, t∈ ϕ(T), and
x is simple for t in the imageϕ ◦ µ, then the point x is
simple for t inµ.

Proof (i) We assume thatx is simple fort in µ. Let us sup-
pose thatt < ϕ(T). Then it must exist an atoma < Lx such
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thata ≤ t (otherwiset = ϕ(t) ∈ ϕ(T)). This labela is such
thata∧ µ(x) = ⊥ (by definition ofa andLx) anda∧ t , ⊥.
But xcannot beβ-simple for the set〈a〉µ∪{x} sincexl⋆∩〈a〉µ
is empty (by definition ofa andLx). Thus, we have a contra-
diction with the simplicity ofx for t in µ. Sot ∈ ϕ(T). Let u
be a label inϕ(T) such thatu∧ ϕ(µ(x)) , ⊥ andu∧ t = ⊥.
Since, trivially,ϕ reduces to identity onµ(xl), we have that
u∧µ(x) = u∧ϕ(µ(x)) , ⊥. As x is simple fort, u∧µ(x) , ⊥
andu∧ t = ⊥, it comes thatx is β-simple for the set〈u〉µ. We
have already observed that the imagesµ andϕ ◦ µ are equal
on xl. Note, moreover, that theβ-simplicity only involves a
subset ofxl. Hence,x is β-simple for the set〈u〉ϕ◦µ. Simi-
larly, whenu is a label inϕ(T) such thatu∧ϕ(µ(x)) = ⊥ and
u∧ t , ⊥, we deduce as above thatx is β-simple for the set
〈u〉ϕ◦µ ∪ {x}. We can then conclude thatx is simple fort in
ϕ ◦ µ.

(ii ) We now assume thatx is simple fort in ϕ ◦ µ with
t ∈ ϕ(T). Let u be a label inT such thatu ∧ µ(x) , ⊥
andu ∧ t = ⊥. By the very definition ofLx, we haveu ∧
µ(x) = ϕ(u∧ µ(x)). Thusϕ(u∧ µ(x)) ≤ u andϕ(u∧ µ(x)) ≤
µ(x). Then, sinceϕ is an opening (see Appendix A), we have
ϕ(u ∧ µ(x)) ≤ ϕ(u) andϕ(u ∧ µ(x)) ≤ ϕ(µ(x)). Thereafter,
u∧µ(x) = ϕ(u∧µ(x)) ≤ ϕ(u)∧ϕ(µ(x)). Thus,ϕ(u)∧ϕ(µ(x)) ,
⊥. We have alsoϕ(u) ∧ t = ϕ(u) ∧ ϕ(t), since an opening is
idempotent andt ∈ ϕ(T), andϕ(u) ∧ ϕ(t) ≤ u ∧ t, since an
opening is anti-extensive. Thus, we getϕ(u)∧ t = ⊥. As x is
simple fort in ϕ◦µ, ϕ(u)∧ϕ(µ(x)) , ⊥ andϕ(u)∧ t = ⊥, we
derive thatx is β-simple for the set〈ϕ(u)〉ϕ◦µ which implies
that x is β-simple for the set〈u〉µ (for xl⋆ ∩ 〈u〉µ = xl⋆ ∩
〈ϕ(u)〉ϕ◦µ). Whenu is a label inT such thatu ∧ µ(x) = ⊥
and u ∧ t , ⊥, we derive thatϕ(u) ∧ ϕ(µ(x)) = ⊥ (with
similar arguments as above). Let us now assume thatT is
distributive. It can easily be seen thatt ∈ ϕ(T) implies that
u∧ t ∈ ϕ(T) (any atom less than or equal tot is in Lx). Thus,
⊥ , u∧ t = ϕ(u∧ t) ≤ ϕ(u) ∧ ϕ(t) = ϕ(u) ∧ t. We conclude,
as previously, thatx is β-simple for〈u〉µ ∪ {x}. Hence,x is
simple fort in µ. ⊓⊔

In Appendix D, Counterexample 62 illustrates the fact
that Proposition 32 is generally false when the lattice is not
distributive.

Let us now define the topological properties we want to
preserve when processing a label image.

Definition 33 Letµ, ν : X→ T be two label images.

– If, for all labels t ∈ T, 〈t〉µ and〈t〉ν are weak homotopy
equivalent, we say that these images areequivalentand
we writeµ ≈ ν.

– If, furthermore,〈t〉cµ and〈t〉cν are weak homotopy equiva-
lent for all labels t, we say that the images arestrongly
equivalent.

We writeµ + (x, t) for the image equal toµ except inx,
where its value ist.

Based on these definitions, we have the following result.

Proposition 34 Let µ : X → T be a label image. Let x
be a simple point for the label t. Then,µ andµ + (x, t) are
equivalent, strongly equivalent if X= Fn.

Proof Let ν be the imageµ + (x, t). Let u be a label. By
definition of the imageν, the supports〈u〉µ and 〈u〉ν are
equal, except possibly onx. Therefore, if (u∧ µ(x) = ⊥ and
u∧ t = ⊥) or (u∧ µ(x) , ⊥ andu∧ t , ⊥), then〈u〉ν = 〈u〉µ.
In the other cases, from Definition 31,x is β-simple for〈u〉µ
(if x ∈ 〈u〉µ) or x is β-simple for 〈u〉µ ∪ {x} (if x < 〈u〉µ).
Hence,〈u〉ν is weak homotopy equivalent to〈u〉µ. If X = Fn,
we derive from Theorem 27 thatx is γ-simple for〈u〉cµ (if
x ∈ 〈u〉µ) or x is γ-simple for〈u〉cµ ∪ {x} (if x < 〈u〉µ). Thus,
〈u〉cν and〈u〉cµ are weak homotopy equivalent (Property 22).

⊓⊔

The next proposition is an easy consequence of Defini-
tions 13 and 31. From a practical point of view, it is quite
important since it allows us to define parallel thinning (or
growing) algorithms in label image by simultaneously mod-
ifying the label of simple points with the same height.

Proposition 35 Letµ0 : X→ T be a label image. Let t∈ T
be a label. Let Y= {yi}

k
i=0 (k ≥ 1) be a set of points with

the same height, simple for the label t. For all i∈ [1, k], we
setµi = µi−1 + (yi−1, t). Then, for all i∈ [0, k], yi is a simple
point for the label t inµi .

Figure 16 provides an example of label thinning/growing
by giving the labelt to simple points fort, processing points
with same height during the same pass on the image.

4 Closed support images

In this section, we focus on digital images that could be as-
sociated to digital images considered with the (3n − 1, 2n)-
adjacency pair innD cubic grids (namelyZn). This adja-
cency pair corresponds to the adjacency of closed objects
of the continuous space [52] and has therefore led us to in-
vestigate label images in which the support of any label is
a closed set. Hence, we define aclosed support (label) im-
ageas a label image whose supports are closed sets (for any
label). The following proposition establishes that the closed
support label images are the non-decreasing maps fromX
ontoT (that is the continuous maps fromX to T (Property
2)).

Proposition 36 Let µ : X → T be a label image. The sup-
ports of the labels inµ are closed sets iff µ is a non-decreasing
function from(X,≤) to (T,≤).
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(a)

(b) (c)

Fig. 16 (a) A label image defined fromF2 to T = 2L⋆ where L⋆

contains 6 proto-labels. (b) The light green label has been shrunk by
removing simple points in its support, dimension by dimension, until
stability. (c) The same label has been expanded by adding to its support
simple points, dimension by dimension, until stability. Ineach case ((b)
and (c)), we claim that the process maintains the topology (namely, the
weak homotopy type) of the 63 (26 − 1) supports and 63 cosupports
that are defined by the initial partition.

Proof Let us suppose that, for allt ∈ T, 〈t〉 is a closed set
of X. Let x, y be two points ofX such thatx≤y. If µ(x) = ⊥,
obviouslyµ(x) ≤ µ(y). We assume now thatµ(x) , ⊥. When
we defined the supports, we have established that〈µ(x)〉 =
⋃

ti∈A〈ti〉 whereA is the set of atoms inT that are less than
or equal toµ(x). By definition of a support,x ∈ 〈ti〉 for each
atomti ∈ A. Thus, as the supports are closed andx≤y, y ∈
〈ti〉 for each atomti such thatti ≤ µ(x). It means that each
atom less than or equal toµ(x) is less than or equal toµ(y).
Hence, asT is atomistic, we haveµ(x) ≤ µ(y).

Conversely, suppose thatµ is non-decreasing. Lett be
a label andx be a point in〈t〉c. Then, for ally ∈ x↓, we
getµ(y) ≤ µ(x) (for µ is non-decreasing) and furthermore,
µ(y) ∧ t ≤ µ(x) ∧ t = ⊥. Thereby,y ∈ 〈t〉c. We conclude that
〈t〉c is an open set and therefore〈t〉 is a closed set. ⊓⊔

4.1 Cut

In Section 3 we have given sufficient conditions for an ele-
mentary modification of a label image to preserve the topol-
ogy. However, if we want to work with closed support label

y

(a) (b)

Fig. 17 (a) A closed support imageµ : F2 → 2{r,g,b}. The labels are
depicted as in Figure 13. The pointy, which has a labelµ(y) = {r, b}, is
simple for the label{r}. (b) The imageµ + (y, {r}) is no longer a closed
support image.

images, we have to go further since, without improvement,
these conditions fail to maintain closed supports as we can
see in Figure 17.

In the posetX, a setF is closed iff for any pointx ∈ F
the points greater thanx are also inF. This is like in a sim-
plicial complex, where any subset of a face of the complex
is also a face of the complex. It is well known that the set
of simplicial complexes is closed under the collapse opera-
tion, which furthermore “preserves topology” [21]. So, we
have adapted this notion to label images in order to main-
tain both the closedness and the topology of any label sup-
port. Roughly speaking, we have found that this goal can
be achieved if we require the supports of some labels in the
sub-posetxl to be contractible (wherex is the point whose
label has to be modified).

Proposition 37 Let µ : X → T be a closed support image.
Let x < y be two points in X. The following statements are
equivalent.

(i) For all u ∈ T such that y∈ 〈u〉, xl ∩ 〈u〉 is contractible.
(ii) For all u ∈ T such that y∈ 〈u〉 and x< 〈u〉, x isβ-simple

for 〈u〉 ∪ {x}.
(iii) The point x is simple for the labelµ(y).

Proof (i) ⇒ (ii ) Let u be a label such thaty ∈ 〈u〉 and
x < 〈u〉. Then,xl⋆ ∩ (〈u〉 ∪ {x}) = xl ∩ 〈u〉 is contractible by
hypothesis. So,x is β-simple for the set〈u〉 ∪ {x} (Property
18 and Definition 13).
(ii )⇒ (iii ) First, we observe that, sinceµ is a closed support
image,µ is non-decreasing (Proposition 36). Thusµ(x) ≤
µ(y) and, therefore,u∧ µ(x) ≤ u∧ µ(y) for all u ∈ T. There-
after, there does not exist any labelu such thatu∧ µ(x) , ⊥
andu ∧ µ(y) = ⊥. If u is a label such thatu ∧ µ(x) = ⊥
andu∧ µ(y) , ⊥, by hypothesis,x is β-simple for〈u〉 ∪ {x}.
Hence,x is simple forµ(y).
(iii ) ⇒ (i) Let u be a label such thaty ∈ 〈u〉. Then either
x ∈ 〈u〉 and, since the setxl is contractible in any poset
(Property 3), in particular in the poset〈u〉, xl ∩ 〈u〉 is con-
tractible, orx < 〈u〉 and, by the hypothesis,x is β-simple for
〈u〉 ∪ {x}, that is,xl ∩ 〈u〉 = xl⋆ ∩ (〈u〉 ∪ {x}) is contractible.

⊓⊔
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y x

(a)

y x

(b)

y x

(c)

Fig. 18 Label images:F2 → 2{r,g,b}. The labels are depicted as in
Figure 13. (a) (x, y) is a free pair for the label{b}: the only labelu
such thaty ∈ 〈u〉 and x < 〈u〉 is {r} and the setx↑⋆ ∩ 〈{r}〉 is clearly
contractible. (b) (x, y) is not a free pair for{b} since〈{r}〉 ∩ x↑ is not
connected (this set containsy, the 0-face in magenta and the two 0 faces
in black). (c) (x, y) is free for the label{b} (since here, there is no label
u such thaty ∈ 〈u〉 and x < 〈u〉, Definition 38 reduces to the classical
definition of a free pair in complexes).

Definition 38 (Free pair) Let µ : X → T be a closed sup-
port image and t∈ T be a label. A pair(x, y) of points in〈t〉
is a free pair for the labelt if x is the only point in〈t〉 such
that x< y and the statements of Proposition 37 are satisfied
by the pair(x, y).

The labelt involved in Definition 38 cannot be the label
⊥ since〈t〉 contains at least the two points of the free pair
and〈⊥〉 = ∅. We exemplify in Figure 18 the definition of
free pairs.

The following proposition is the analogue of Proposition
32 for free pairs.

Proposition 39 Let µ : X → T be a label image. Let t be a
label and x, y be two points in〈t〉. Let L⋆ be the set of atoms
in T and Lx be the subset of L⋆ whose elements are less
than or equal to an element ofµ(x↑). Letϕ : T → T be the
function that maps the label u onto the labelϕ(u) =

∨

{a ∈
Lx | a ≤ u}. If the pair (x, y) is free for t inµ then(x, y) is
free for t in the closed support imageϕ ◦ µ : X → ϕ(T).
Conversely, if the lattice T is distributive and(x, y) is a free
pair for t in the imageϕ ◦ µ, then the pair(x, y) is free for t
in µ.

Proof Before beginning the proof, note that the definition
of Lx is the same as in Proposition 32 though we have set
Lx = {a ∈ L⋆ | ∃y ∈ x↑, a ≤ µ(y)} instead ofLx = {a ∈ L⋆ |
∃y ∈ xl, a ≤ µ(y)}. Indeed, any atoma less than or equal to
an elementµ(z), z≤ x, is less than or equal toµ(x) since here
µ is non-decreasing (Proposition 36). Thus, the two defini-
tions coincide.
Now, suppose that (x, y) is free fort in µ. Sinceϕ is an open-
ing (see Appendix A) and an opening is order-preserving,
ϕ ◦ µ is non-decreasing and is thus a closed support image
(Proposition 36). Moreover,ϕ is anti-extensive soµ(z) ∧ t =
⊥ ⇒ ϕ ◦ µ(z) ∧ t = ⊥ andϕ reduces to identity onµ(xl) so
ϕ(µ(x)) = µ(x). Thus,y↓⋆ ∩ 〈t〉ϕ◦µ = y↓⋆ ∩ 〈t〉µ = {x}. Now,
from Proposition 32, we derive thatx is simple for the label
µ(y) in the imageϕ ◦ µ. We conclude that (x, y) is a free pair
for t in the imageϕ ◦ µ.

Conversely, suppose that the latticeT is distributive and
that (x, y) is free fort in the imageϕ◦µ. Sinceϕ(µ(y)) = µ(y),
we derive from Proposition 32, thatx is simple for the label
µ(y) in the imageµ. Furthermore, letzbe a point iny↓⋆ such
that µ(z) ∧ t , ⊥. As µ is non-decreasing, any atom ofT
less than or equal toµ(z) is less than or equal toµ(y). Thus,
ϕ(µ(z)) = µ(z) andϕ(µ(z)) ∧ t , ⊥. From the hypothesis we
derive thatz= x. Thereby,y↓⋆∩〈t〉µ = {x} and (x, y) is a free
pair for the labelt in µ. ⊓⊔

The definition of free pairs in a label image is an exten-
sion of the notion of free pair in complexes: ifX is a sim-
plicial or cubical complex,µ : X → T a label image and
(x, y) a free pair for the labelt in µ, then (x, y) is a free pair
for the complex〈t〉µ. The following proposition shows that
Definition 38 reduces to the classical definition of a free pair
when the two points in the pair share the same label.

Proposition 40 Let µ be a closed support image, t∈ T a
label and(x, y) a pair of points in〈t〉. If µ(x) = µ(y) and
y↓⋆ ∩ 〈t〉 = {x}, then(x, y) is a free pair for the label t.

Proof Sinceµ(x) = µ(y), there is no labelu ∈ T such that
y ∈ 〈u〉 andx < 〈u〉 so the statement(ii) of Proposition 37 is
satisfied. ⊓⊔

Proposition 41 Let µ be a closed support image, t∈ T a
label and(x, y) a free pair for t. Then, x is a minimal element
in 〈t〉, y is down unipolar in〈t〉 and x≺ y in X.

Proof The pointx is a minimal element of〈t〉 for x is the
only point in〈t〉 such thatx < y. The pointy is down unipo-
lar for the same reason. Finally, as〈t〉 is a closed set,x↑ is
included in〈t〉 and there does not exist any point in〈t〉 be-
tweenx andy for y↓ ∩ 〈t〉 = {x, y}. Thereafterx ≺ y. ⊓⊔

The next definition introduces the notion ofcut. Broadly
speaking, a cut of the labelt in a closed support imageµ
consists of removingt from a free pair (x, y) for t. Indeed,
in order to maintain the boundaries between supports, the
label of y must move towards the other points ofx↑⋆ and
the labels “behind the boundary”,i.e., the labels ofy↓⋆ \ {x},
must replacet on{x, y}. Figure 19 exemplifies this definition.

Definition 42 (Cut) Let µ : X → T be a closed support
image, t∈ T a label and(x, y) a free pair for the label t. The
label imageµy,t : X→ T defined by:

µy,t(z) =























∨

z∈y↓⋆\{x} µ(z) if z ∈ {x, y}
µ(z) ∨ µ(y) if z ∈ x↑⋆ \ {y}
µ(z) otherwise

is acut of t aty in µ (if y↓⋆\{x} = ∅, we setµ(x) = µ(y) = ⊥).
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y x

(a)

y x

(b)

y x

(c)

Fig. 19 (a) An imageµ with a free pair (x, y) for the label{b} (see
Figure 18(a)) (b) The cutµ′ = µy,{b}. Let y′ be the 0-face in black just
belowy andx′ the 1-face in magenta just beneathx. The pair (x′, y′) is
free for{b} in µ′. (c) The cutµ′y′ ,{b}.

Figure 20 shows that cuts are of no interest in non-distri-
butive lattices since it may happen that the label to be re-
moved from a free pair is still present in the cut.

The notion of cut is an extension to label images of the
notion of collapse for complexes. WhenX is a simplicial or
cubical complex andT is distributive, the following propo-
sition states that a cut for the labelt is a collapse for the
support oft and in particular, ifT = {⊥,⊤}, that is whenµ
is a binary image, a cut is nothing but a collapse.

Proposition 43 Letµ0, µ1 be two closed support images from
the complex X to the distributive lattice T and t∈ T be a la-
bel. Ifµ1 is a cut ofµ0 for t, then〈t〉µ1 is a collapse of〈t〉µ0.

Proof Let µ0 be a closed support image, (x, y) a free pair
of µ0 for the labelt andµ1 the cutµy,t. From Definition 38,
the pair (x, y) is free for the set〈t〉µ0 and from Definition
42, the supports oft in µ0 andµ1 are equal except possibly
in x↑. As µ0 is a closed support image,x↑ is included in
〈t〉µ0. As µ1(z) = µ0(z) ∨ µ0(y) for all z ∈ x↑ \ {x, y}, the set
x↑ \ {x, y} is still included in〈t〉µ1. The label of the pointsx, y
in the imageµ1 is

∨

z∈y↓⋆\{x} µ0(z). Sincex is the only point
in 〈t〉µ0 ∩ y↓⋆ and we assumeT to be distributive, we have
µ1(x)∧t = µ1(y)∧t =

∨

z∈y↓⋆\{x}(µ0(z)∧t) =
∨

z∈y↓⋆\{x} ⊥ = ⊥.
Thus, neitherx nor y is in 〈t〉µ1 and〈t〉µ1 = 〈t〉µ0 \ {x, y}. We
conclude that the complex〈t〉µ1 is a collapse of〈t〉µ0. ⊓⊔

When the latticeT is distributive, the following propo-
sition enables to specify which supports are modified by a
cut. If the latticeT is not distributive, this proposition fails
(see Counterexample 63 in Appendix D).

Proposition 44 Let T be a distributive lattice andµ : X →
T be a closed support image. Let(x, y) be a free pair for the
label t ∈ T andµy,t the cut of t at y inµ. For any label u∈ T
whose support does not contain y, we have〈u〉µy,t = 〈u〉µ.

Proof Let u be a label such thaty < 〈u〉µ and, sinceµ is a
closed support image,x < 〈u〉µ. From Definition 42,µy,t(z) =
µ(z) for any pointz ∈ 〈u〉µ not in x↑. Sinceµ is non-decreas-
ing, µ(z) ≤ µ(y) for all z < y. Hence,

∨

z∈y↓⋆\{x} µ(z) ≤ µ(y).
Thus,µy,t(y)∧ u = µy,t(x)∧ u = (

∨

z∈y↓⋆\{x} µ(z))∧u ≤ µ(y)∧
u = ⊥, that isx, y < 〈u〉µy,t . Finally, for any pointz ∈ x↑⋆\{y},

y

(a)

⊤

R G B

⊥
(b) (c)

Fig. 20 (a) A closed supports label imageµ : X → T. The Hasse
diagram ofT is depicted in (b) (T is not distributive). The labels
⊥,R,G, B,⊤ are depicted respectively in white, red, green, blue and
black. (c) The cutµ′ = µy,B which is equal toµ.

µy,t(z) = µ(z) ∨ µ(y) thusz ∈ 〈u〉µy,t (i.e., µy,t(y) ∧ u , ⊥) iff
z ∈ 〈u〉µ (for T is distributive). ⊓⊔

As stated at the beginning of this subsection, the main
advantage of free pairs and cuts on simple points for labels
is to enable to remain inside the set of closed support images
when we modify a label image with topological constraints.

Proposition 45 Let µ : X → T be a closed support image,
t ∈ T a label and(x, y) a free pair for the label t. Then the
cutµy,t is a closed support image.

Proof Let (x, y) be a free pair for a labelt in a closed support
imageµ. By hypothesis,µ is non-decreasing (Proposition
36). Let us prove thatµy,t is also non-decreasing. Leta, b be
two points inX such thata < b and, thereafter, such that
µ(a) ≤ µ(b). The proof is made by exhaustion.

– If b < x↑ thena < x↑. Thenµy,t(b) = µ(b) andµy,t(a) =
µ(a). In this case, obviously, we haveµy,t(a) ≤ µy,t(b).

– If b ∈ {x, y} anda < x↑ thena ∈ y↓⋆ \ {x} andµy,t(a) =
µ(a) ≤

∨

z∈y↓⋆\{x} µ(z) = µy,t(b). Thus,µy,t(a) ≤ µy,t(b).
– If a, b ∈ {x, y} thenµy,t(a) = µy,t(b).

Note that it is impossible to haveb ∈ {x, y} and a ∈
x↑ \ {x, y} for x ≺ y in X (Proposition 41).

– If b ∈ x↑ \ {x, y} anda < x↑ thenµy,t(a) = µ(a) ≤ µ(b) ≤
µ(b) ∨ µ(y) = µy,t(b).

– If b ∈ x↑ \ {x, y} anda ∈ {x, y}, µy,t(a) =
∨

z∈y↓⋆\{x} µ(z) ≤
µ(y) (for µ is non-decreasing) andµ(y) ≤ µ(b) ∨ µ(y) =
µy,t(b). Thereby,µy,t(a) ≤ µy,t(b).

– If a, b ∈ x↑ \{x, y}, thenµy,t(a) = µ(a)∨µ(y) andµy,t(b) =
µ(b) ∨ µ(y) thusµy,t(a) ≤ µy,t(b).

In each possible case, we haveµy,t(a) ≤ µy,t(b). Hence,µy,t

is non-decreasing. ⊓⊔

When a label imageµ is obtained from a label digital
image (defined onZn) by the procedure we have described
at the beginning of Section 4, this image is pure (µ(x) is
an atom, or⊥, for any xel x). Cuts preserve purity under
an hypothesis which is satisfied, for example, by pseudo-
manifolds (see,e.g., [53]).

Proposition 46 Let µ : X → T be a pure, closed support
image, t∈ T a label and(x, y) a free pair for the label t. If
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any point in X that covers a xel (a minimal point) covers at
most one other xel and no other points, thenµy,t is pure.

Proof Let µ : X → T be a pure, closed support image. We
assume that any point inX that covers a xel covers at most
one other xel and no other points. Let (x, y) be a free pair
for the labelt. If ht(x) ≥ 1 then the xels ofX have the same
label in µy,t as inµ. As y coversx (Proposition 41), ifx is
a xel, then we derive from the hypothesis thaty↓⋆ \ {x} = ∅
or y↓⋆ \ {x} = {z} for some xelz ∈ X. Then,µy,t(x) = ⊥ or
µy,t(x) = µ(z) andµ(z) is an atom, orµ(z) = ⊥, sinceµ is
pure. ⊓⊔

Note that the condition “any point inX that covers a xel
(a minimal point) covers at most one other xel and no other
points” could be stated in a complex as “any point of height
1 covers at most two xels” but this is generally not equivalent
(in a poset, the height of a point that covers a minimal point
need not be one). Figure 21 shows some posets, included in
F3, for which this condition is, or is not, satisfied.

(a)

y

(b)

y

(c)

Fig. 21
(a) A poset (a subset ofF3) in which a pointy covers a xel and cov-
ers points that are not xels (1-faces ofF3). (b) A cubical 2-complex
(embedded inF3) in which a 1-facey covers three xels. (c) A cubical
2-complex in which any 1-face covers at most two xels.

4.2 Homotopy

Theorem 47 establishes that connected components and ho-
motopy groups are preserved by cuts provided that the do-
main of the image has the pierced sphere property (see Sub-
section 2.8) and the codomain is distributive. Figure 22 il-
lustrates the sequence of changes described in the proof. In
Appendix D, some counterexamples show that this preser-
vation is no longer guaranteed whenT is not distributive
(Figure 30) or whenX has not the pierced sphere property
(Counterexample 64).

Theorem 47 Let µ : X → T be a closed support image
and(x, y) a free pair for the label t∈ T. If X has the pierced

y x

(a)

y x

(b)

y x

(c)

y x

(d)

y x

(e)

Fig. 22 The four steps in Theorem 47. (a) The initial closed support
imageµ with a free pair (x, y) for the label{b} (see Figure 18 (b)). (b)
The imageµ+(x, µ(y)). (c) The smallest closed support imageν greater
than or equal toµ + (x, µ(y)). (d) The imageν + (y, {r}). (e) The image
µy,{b} = (ν + (y, {r})) + (x, {r}).

sphere property and if the lattice T is distributive, the cutµy,t

is equivalent toµ and, if X = Fn, µy,t is strongly equivalent
to µ.

Proof 1. By Definition 38,x is simple for the labelµ(y) in
the imageµ. Thereafter,µ′ = µ + (x, µ(y)) is equivalent
to µ (strongly equivalent ifX = Fn, according to Propo-
sition 34).

2. Let ν be the smallest closed support image greater than
or equal toµ′. Sinceµ is a closed support image,ν is
defined byν(z) = µ(z) ∨ µ(y) if z > x andν(z) = µ(z)
otherwise. We shall prove thatν is equivalent toµ′. To do
so, thanks to Proposition 35, it suffices to establish that
the pointsz ∈ x↑⋆ with same heightk, k ≥ 1, are simple
for the labelν(z) in the imageµk defined byµk(a) = ν(a)
if a ∈ x↑ and ht(a) < k andµk(a) = µ(a) otherwise.
Thereby, according to Definition 31, we consider a point
z in x↑⋆ such thatν(z) , µ(z), i.e., µ(y) � µ(z), and let
k be the height ofz. Let u be a label such thatz ∈ 〈u〉ν
andz < 〈u〉µk (if z < 〈u〉ν or z ∈ 〈u〉µk, then the support
of u in the imageµk + (z, ν(z)) is equal to the support
of u in the imageµk). Observe thatµk(z) = µ(z) and
µk(x) = µ(y). Then, fromz ∈ 〈u〉ν and z < 〈u〉µk, we
derive⊥ , ν(z)∧u = (µ(z)∨µ(y))∧u = (µk(z)∨µ(y))∧u =
(µk(z)∨µk(x))∧u = (µk(z)∧u)∨(µk(x)∧u) = µk(x)∧u (the
last equality follows fromz < 〈u〉µk, whenceµk(z) ∧ u =
⊥). Thus,x ∈ 〈u〉µk. As z < 〈u〉µ (sincez < 〈u〉µk) andµ
is non-decreasing, no point inz↓ is in the support ofu in
µ. Moreover, asµk = µ on X \ x↑, no point inz↓ \ x↑ is in
the support ofu in µk. Hence,z↓⋆ ∩ 〈u〉µk has a minimal
element,x, and is contractible (Property 3). Thereby,z is
β-simple for〈u〉µk ∪ {z}. This establishes thatz is simple
for the labelν(z) in the imageµk. Thus, the imagesν and
µ′ are equivalent, strongly equivalent ifX is Fn.

3. Letu =
∨

z∈y↓⋆\{x} µ(z). We prove now thaty is simple for
the labelu in the imageν. Remember thatν(y) = µ(y)
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andu ≤ µ(y) for µ is non-decreasing. Thereforew∧ u ≤
w∧ν(y) for all w ∈ T. Letw be a label such thatw∧ν(y) ,
⊥ andw∧u = ⊥. Obviously, for allz ∈ y↓⋆ \{x}, we have
µ(z) ≤ u and, thereafter,w∧ µ(z) ≤ w∧ u = ⊥. Hence,
y↓⋆ ∩ 〈w〉ν ⊆ {x}. Now, x ∈ 〈w〉ν for ν(x) = µ(y) = ν(y).
Thus,y↓⋆ ∧ 〈w〉ν = {x} andy is β-simple for the support
of w in the imageν. We derive thaty is simple for the
labelu in the imageν and that the imagesν + (y, u) and
ν are equivalent, strongly equivalent ifX = Fn.

4. Finally, let us prove thatx is simple for the labelu =
∨

z∈y↓⋆\{x} µ(z) in the imageν′ = ν + (y, u) in which the
label ofx is ν(x) = µ(y). Remember that we have estab-
lished thatw∧u ≤ w∧µ(y) for all w ∈ T. Letw be a label
such thatw∧ µ(y) , ⊥ andw ∧ u = ⊥. Sinceν is non-
decreasing andx ∈ 〈w〉ν, one hasx↑⋆ ⊆ 〈w〉ν and there-
afterx↑⋆∩〈w〉ν′ = x↑⋆\{y}. Now, by hypothesis,X has the
pierced sphere property. Thenx↑⋆ \ {y} is homotopically
trivial and x is a γ-simple point for〈w〉ν′ . Furthermore
x↑⋆∩〈w〉c

ν′
= {y} is clearly contractible sox is aβ-simple

point (and thus aγ-simple point) for〈w〉cν′ . Hence (Prop-
erty 22), for all labelsw, 〈w〉ν′ and〈w〉ν′+(x,u) are weakly
homotopy equivalent and〈w〉cν′ and〈w〉c

ν′+(x,u) are weakly
homotopy equivalent (ifw is such thatw∧ µ(y) = ⊥ or
w ∧ u , ⊥, the above equivalences are equalities). It is
plain that the imageν′+(x, u) is equal to the cutµy,t. Thus
µy,t andν′ are equivalent (strongly equivalent ifX = Fn).
By transitivity,µy,t andµ are equivalent (strongly equiv-

alent if X = Fn). ⊓⊔

5 Regular label images

In this section, we are interested in labels images constructed
from label digital images, that is, images defined onZn. The
particularity of these label images is that they are entirely
determined by their values on the xels (the minimal points
of X, which are also –by identification– the points ofZn).

As X is locally finite, for any pointx ∈ X the setx− =
{y ∈ x↓ | ht(y) = 0} is not empty and is finite. Thus, we
can define the label of a pointx in X depending only on the
labels of the elements ofx−.

5.1 Regular and regularised images

Definition 48 (Regular label image) A label imageµ : X→
T is aregular (label) imageif, for all x ∈ X,

µ(x) =
∨

y∈x−
µ(y)

Proposition 49 Let µ : X → T be a regular label image.
Then,µ is a closed support image.

Proof It is plain that, for any pointx, y in X, x≤y ⇒ x− ⊆
y− ⇒ µ(x) ≤ µ(y). Hence, a regular label image is non-
decreasing and thereafter is a closed support image (Propo-
sition 36). ⊓⊔

The regularisationof a label imageµ is the regular im-
ageµ′ which coincides withµ on the xels ofX.

If µ is a closed support image andµ′ is its regularisa-
tion, thenµ′(x) =

∨

y∈x− µ
′(y) =

∨

y∈x− µ(y) ≤ µ(x) (for µ
is non-decreasing) for allx ∈ X. It can easily be seen that
the regularisation of a closed support image is the smallest
closed support image which coincides withµ on the xels of
X.

Let us define the functionζ : LZ
n
→ TX which maps,

in a one-to-one manner, a label digital image on a regular
image. Given a label digital imageλ : Zn → L, ζ(λ) : X →
T is the only regular image such that, for any xelx ∈ X,
ζ(λ)(x) = λ(x) (actually,ζ(λ)(i(x)) = j(λ(x)) wherei and j
are respectively the embedding ofZn in X and ofL in T).

In general, the binary imagesµ ∧ l, whereµ is a regular
image andl ∈ L is a proto-label, are not regular (see Coun-
terexample 65 in Appendix D). Nevertheless, if we regu-
larise these binary images, we find that any regular image is
a supremum of regular binary images.

Proposition 50 Letµ : X→ T be a regular label image. Let
{l i}ℓi=1 (ℓ ≥ 1) be the set of the atoms of T. Thenµ =

∨ℓ
i=1 µ

′
i

where, for all i∈ [1, ℓ], µ′i denotes the regularisation of the
binary imageµi = µ ∧ l i .

Proof We prove first that a supremum of regular images is
regular:
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(y).

Now, obviously,µ′i (y) = µi(y) for all xel y and therefore,
∨ℓ

i=1 µ
′
i (y) =

∨ℓ
i=1 µi(y) for all xel y. From Proposition 30,

we haveµ =
∨ℓ

i=1 µi . Thus,µ and
∨ℓ

i=1 µ
′
i are regular images

which coincide on the xels ofX. Hence,µ =
∨ℓ

i=1 µ
′
i . ⊓⊔

5.2 Regular images onto a Boolean lattice

In this subsection,we assume the lattice T to be Boolean.
For all pair (t, u) of labels, we sett \ u = t ∧ uc whereuc is
the complement ofu in T.

The next proposition establishes that the reduction of the
number of labels, by identification of some labels with the
background, preserves the regularity of the image.
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Proposition 51 Let µ : X → T be a regular image. Let
t ∈ T be a label. Then, the imageµ ∧ t : X→ t↓ defined, for
all x ∈ X, by(µ ∧ t)(x) = µ(x) ∧ t, is regular.

Proof For any pointx ∈ X, we have (µ ∧ t)(x) = µ(x) ∧
t =
(

∨

y∈x− µ(y)
)

∧ t =
∨

y∈x−(µ(y) ∧ t) =
∨

y∈x−(µ ∧ t)(y).
Therefore, the imageµ ∧ t is regular. ⊓⊔

Applied to proto-labelsl i , Proposition 51 says that the
binary imagesµ ∧ l i , whose supremum isµ (see Proposition
30), are regular.

With the following proposition, we show that the func-
tion ζ permutes with the reduction of the latticeT to t↓ for
any labelt ∈ T.

Proposition 52 Let λ : Zn → L be a label digital image.
Then9, for all t ∈ T, ζ(λ) ∧ t = ζ(λ ∧ t).

In other words, we have the following commutative dia-
gram:

LZ
n

TX

LZ
n

TX

ζ

ζ

λ 7→ λ ∧ t µ 7→ µ ∧ t

Proof Since the imagesζ(λ)∧t andζ(λ∧t) are regular (from
Proposition 51 and the very definition ofζ), it suffices to
show that they are equal on the xels ofX. Let x be a xel. On
one side, one hasζ(λ ∧ t)(x) = (λ ∧ t)(x) = λ(x) ∧ t and on
the other side, (ζ(λ) ∧ t)(x) = ζ(λ)(x) ∧ t = λ(x) ∧ t. Thus,
ζ(λ ∧ t)(x) = (ζ(λ) ∧ t)(x). ⊓⊔

After reducing the number of labels by taking the infi-
mum with a particular labelt, we can consider the remain-
ing labels as a unique label. The result is a binary image
whose support is〈t〉. Starting from a label digital image,
the following proposition shows that this operation can be
made before or after the use of the functionζ. Combining
this proposition with Proposition 52 and the results estab-
lished in [25], it means that the connected components and
the digital fundamental groups of any binary digital image
obtained by just considering a particular union of labels in
a label digital image are isomorphic to the ones obtained by
the same operation in the label image.

In Proposition 53, the latticeT need not be distributive.

Proposition 53 Letλ : Zn→ L be a label digital image. Let
B.λ : Zn → {⊥,⊤} be the binary image defined by B.λ(z) =
⊥ if λ(z) = ⊥ and B.λ(z) = ⊤ otherwise. Let B.ζ(λ) :
X → {⊥,⊤} be the binary image defined by B.ζ(λ)(z) = ⊥
if ζ(λ)(z) = ⊥ and B.ζ(λ)(z) = ⊤ otherwise. Then, B.ζ(λ) =
ζ(B.λ).

9 The notation is a bit tricky here. In fact, sincet < L, we should
defineλ∧t by (λ∧t)(z) = λ(z) if λ(z) is an atom undert and (λ∧t)(z) = ⊥
otherwise. Of course, we haveζ(λ)(z)∧t = (λ∧t)(z) for λ(z) is an atom.

Proof The proof consists of showing that 1.B.ζ(λ) is regular
and 2. the functionsB.ζ(λ) andζ(B.λ) coincide on the xels
of X.

1. Letµ : X → T be a regular image,B.µ : X→ {⊥,⊤} be
the binary image defined byB.µ(z) = ⊥ if µ(z) = ⊥ and
B.µ(z) = ⊤ otherwise andx be a point of height greater
than or equal to 1. We have:B.µ(x) = ⊥ ⇔ µ(x) =
⊥ ⇔

∨

y∈x− µ(y) = ⊥ ⇔ ∀y ∈ x−, µ(y) = ⊥ ⇔ ∀y ∈
x−, B.µ(y) = ⊥ ⇔

∨

y∈x− B.µ(y) = ⊥. We can straightfor-
wardly conclude thatB.µ is regular.

2. Let x be a xel. We have:B.ζ(λ)(x) = ⊥ ⇔ ζ(λ)(x) =
⊥ ⇔ λ(x) = ⊥ ⇔ B.λ(x) = ⊥ ⇔ ζ(B.λ)(x) = ⊥. Hence,
B.ζ(λ) = ζ(B.λ) are equal on the xels ofX and, since
they are regular, they are equal.

⊓⊔

The following lemma gives a way to locally regularise
some closed support images. We will use this lemma in Sub-
section 5.3, to regularise a label image after a cut.

Lemma 54 Let µ : X → T be a closed support image and
µ′ be the regularisation ofµ. Let (x, y) be a free pair for the
label t = µ(x) \ µ′(x) in the imageµ such thatµ(x) = µ(y).
Then, the cutµy,t is equal toµ on X\{x, y} and toµ′ on{x, y}.

Proof Sinceµ(x) = µ(y) andµ is non-decreasing,µ(y) ≤
µ(z) for all z ∈ x↑. Now, for any pointz ∈ x↑⋆ \ {y}, by Defi-
nition 42,µy,t(z) = µ(z) ∨ µ(y) and thereafter,µy,t(z) = µ(z).
By Definition 42 again,µy,t(z) = µ(z) for any pointz in X\x↑.
Thus,µy,t is equal toµ on X \ {x, y}.
As (x, y) is a free pair fort, we derive thatt , ⊥. In partic-
ular, x is not a xel (by definition,µ′ coincides withµ on the
xels ofx). Then:

– µ′(x) =
∨

z∈x− µ(z) ≤
∨

z∈x↓⋆ µ(z) ≤
∨

z∈y↓⋆\{x} µ(z) =
µy,t(x);

–
∨

z∈y↓⋆\{x} µ(z) ≤ µ(y) = µ(x) (for µ is non-decreasing);
– since (x, y) is a free pair fort, no pointz ∈ y↓⋆ \ {x},

z , x, is in the support of the labelt; thus,µy,t(x) ∧ t =
(
∨

z∈y↓⋆\{x} µ(z)) ∧ t =
∨

z∈y↓⋆\{x}(µ(z) ∧ t) = ⊥.

The latticeT is distributive, so it is modular (see Appendix A).
Then, sinceµ′(x) ≤ µy,t(x) ≤ µ(x) and µy,t(x) ∧ t = ⊥,
we get:µy,t(x) = µy,t(x) ∧ µ(x) = µy,t(x) ∧ (t ∨ µ′(x)) =
(µy,t(x) ∧ t) ∨ µ′(x) = µ′(x).

As regards the pointy, we haveµy,t(y) = µy,t(x) = µ′(x) ≤
µ′(y) =

∨

z∈y− µ(z) ≤
∨

z∈y↓⋆\{x} µ(z) = µy,t(y). Hence,µy,t(y) =
µ′(y). ⊓⊔

5.3 Digitally simple xels

A cut in a regular image is seldom regular. For instance, the
cut of Figure 19 (b) is not regular since the 1-face underx is
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(a)

(b) (c) (d)

Fig. 23 (a) A pure and regular imageλ : F2 → 2{r,g,b} (labels are
depicted as in Figure 13). (b) A cutµ for the label{b} in λ. The image
µ is not regular. (c) A cutν for the label{b} in µ. The imageν is regular.
The blue xelx at the centre ofλ is digitally simple for the label{r} in
the imageλ sinceλ andν coincide on all xels ofF2 except onx. (d) A
pure and regular imageλ : F2 → 2{r,g,b,t}. The proto-labelt is depicted
with rounded boxes. The blue xelx at the centre ofλ is not digitally
simple, for any proto-label, since giving it the red or the green proto-
label would disconnect the support of{b} from {t} and giving it the
rounded proto-label would make a hole in the label{r, g, b}.

magenta instead of red. But, since, most of the time, the do-
main of the initial image is a subset ofZn, one may want the
final image, after processing, to be also defined onZn. Un-
fortunately, it is not correct (from a topological viewpoint)
to extract a label digital image from a label image by just
retaining the xels (for instance, in Figure 19 (b), the support
of the label{g, b} is connected thanks to a 1-face in magenta
but the support of this label is disconnected in the underlying
digital image). To properly overcome this issue, it is neces-
sary to use the inverse function ofζ, the function we used
to construct the label image. Sinceζ is a bijection between
label digital images and regular images (topologically sound
as we have seen in Subsection 5.2), we need to improve cuts
in order to have a means to locally modify a pure and regular
image in such a way that the result is still a pure and regular
image. Figure 23 exemplifies the following definition.

Definition 55 (Digitally simple xel) Let µ : X → T be a
regular image and t∈ T be a label. A xel x∈ X is digitally
simple fort if there exists a sequence of cuts(µi)r

i=0, r ≥ 0,
whereµ0 = µ, µi is a cut inµi−1 for all i ∈ [1, r],µr is regular,
x ∈ 〈t〉µr andµ(y) = µr (y) for any xel y distinct from x.

In the sequel, so we do not impose the spaceX to be
Fn, we borrow the notion of attachment to authors that have
worked on image processing in the framework of cubical
complexes [54,23].

Let µ : X → T be a regular image,x a xel in X and t
a label inT. We set Att(x, t) = x↑⋆ ∩ 〈t〉µ′ where the image
µ′ is the regularisation ofµ + (x,⊥). The points in Att(x, t)
are the points that ”attach” the xelx to the support oft (see
Figure 24).

x

(a) (b) (c)

Fig. 24 (a) A regular imageµ : F2 → 2{r,g,b}. (b) The set Att(x, {b}).
(c) The set Att(x, {r}).

We set also Card(t) = Card({u ∈ L⋆ | u ≤ t}) = Card(t↓∩
L⋆). The integer Card(t) is the number of proto-labels under
the labelt.

The following proposition provides a sufficient condi-
tion for a xelx to be digitally simple for a labelt ∈ T in a
pure and regular imageµ. It is required the existence of a
free pair (x, y) for the labelµ(x) with y ∈ 〈t〉 (condition(i)),
the possibility to shrinkx↑ onto Att(x, µ(x)) by withdrawal
of (combinatorial) free pairs in such a way that the points
whose label is less than or equal to the label ofy are removed
first (condition(ii) ) and that no point inx↑ \ Att(x, µ(x)) has
more than one proto-label distinct from those ofy (condition
(iii) ). The proof consists of regularising step by step (thanks
to Lemma 54) the labels of the points ofx↑\{x, y} in the non-
regular imageµy,µ(x), beginning by the points whose label is
less than or equal to the one ofy. Figure 25 illustrates some
of these steps. In Appendix D, Counterexample 66 shows
that in the following proposition, condition(iii) is not nec-
essary. This condition is used in the second part of the proof
to ensure that for any free pair considered, the two points
share the same label. Thereby, our example is built in such
a way that this last property is true, even if condition(iii) is
not respected.

Proposition 56 Letµ : X→ T be a pure and regular image
whose codomain T is distributive and whose domain X is
such that any point in X that cover a xel covers at most one
other xel and no other points. Let t be a label of T and x a
xel of X, not in〈t〉. If:

(i) there exists a point y∈ 〈t〉 such that(x, y) is a free pair
for the labelµ(x),

(ii) x↑ \ {x, y} ց (x↑ \ µ−1(µ(y)↓)) ∪ Aց A,
(iii) for any point z∈ x↑⋆ \ A, Card(µ(z) \ µ(y)) ≤ 1,

where A= Att(x, µ(x))), then the xel x is digitally simple for
the label t.

Proof We sett0 = µ(x). Since (x, y) is a free pair for the
labelt0, it is also a combinatorial free pair for the set〈t0〉. Let
((xi, yi))r

i=0 be a sequence of combinatorial free pairs fromx↑

to A = Att(x, t0) such thatx0 = x, y0 = y and
⋃k

i=0{xi , yi} =

(x↑∩µ−1(µ(y)↓))\Awith k ∈ [0, r]. We sett1 = µ(y)\t0. From
the hypothesis onX andµ, we derive thatt1 is an atom and,
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yx

(a)

y1

x1

x

(b)

y2

x2

x

(c)

x

(d)

Fig. 25 (a) The label imageµ and (x, y) = (x0, y0), a free pair forµ(x).
(b) The label imageµ1 and (x1, y1), a combinatorial free pair for the
setx↑ \ {x, y} whose faces are not in Att(x, µ(x)) and whose labels are
less than or equal toµ(y). (c) The label imageµ2 = µk+1 and (x2, y2) =
(xk+1, yk+1), a combinatorial free pair for the setx↑ \

⋃k
j=0{xj , yj } whose

faces are not in Att(x, µ(x)). (d) The label imageµ′ = µr .

thereafter, thatt1 ≤ t. Let µ1 be the cutµy,t0. By Definition
42, µ1(h) = t1 if h ∈ {x, y}, µ1(h) = µ(h) ∨ t1 if h ∈ x↑ \
{x, y} andµ1(h) = µ(h) otherwise. In particular,t0 ∨ t1 ≤
µ1(h) for any pointh ∈ x↑ \ {x, y} (for µ is non-decreasing).
By the very definition ofk, for any pointh ∈

⋃k
i=0{xi , yi},

µ1(h) = µ(h) ∨ t1 ≤ t0 ∨ t1. Therefore,µ1(h) = t0 ∨ t1 for
any pointh ∈

⋃k
i=1{xi , yi}. In particular,µ1(x1) = µ1(y1).

Observe that, sinceµ is regular,µ1 = µ
′ ∨ ν1 whereµ′ is the

regularisation ofµ1 andν1(h) = t0 if h ∈ x↑ \ ({x, y} ∪ A)
andν1(h) = ⊥ otherwise (ν1 = µ1 \ µ

′). Now x1 ∈ 〈t0〉µ1

and (〈t0〉µ1 ∩ y↓1) \ x↑ = (〈t0〉µ ∩ y↓1) \ x↑ is empty fory1 <

A. Thus, (x1, y1), which is a combinatorial free pair inx↑ \
{x, y}, is also a combinatorial free pair in〈t0〉µ1. Then, from
Proposition 40,{x1, y1} is a free pair for the labelt0 = ν1(x1).
The cutµ2 = (µ1)y1,t0 verifiesµ2(h) = µ′(h) if h ∈ {x1, y1} and
µ2(h) = µ1(h) otherwise (Lemma 54). Thereby, gradually,
we can show that the pairs (xi , yi), 1 ≤ i ≤ k, are free for
t0 in the imageµi = µ′ ∨ νi whereνi(h) = t0 for all h ∈
x↑ \ (A∪

⋃i−1
j=0{x j , y j}) andνi(h) = ⊥ otherwise.

The pair (xk+1, yk+1) is in x↑ \ µ−1({t0, t0 ∨ t1}) thus we
havet0∨ t1 < µk(xk+1) = µ(xk+1)∨ t1 andt0∨ t1 < µk(yk+1) =
µ(yk+1) ∨ t1. Now, Card(µ(xk+1) \ (t0 ∨ t1)) = Card(µ(yk+1) \
(t0 ∨ t1)) ≤ 1 (Hypothesis(iii) ). Hence, necessarily, we have
Card(µ(xk+1) \ (t0 ∨ t1)) = Card(µ(yk+1) \ (t0 ∨ t1)) = 1.
Sinceµk(xk+1) ≤ µk(yk+1), for µ is a closed support image
and cuts of closed support images are closed support images
(Proposition 45), we haveµk(xk+1) = µk(yk+1). Thereafter
we deduce as above that (xk+1, yk+1) is a free pair inµk for
t0 and the cutµk+1 is equal toµ′ ∨ νk+1 with νk+1(h) = t0 for
all h ∈ x↑ \ (A∪

⋃k
j=0{x j , y j}) andνi(h) = ⊥ otherwise. We

continue the same reasoning on each pair (xi , yi) for k+ 2 ≤
i ≤ r. The last cut isµr with µr = µ

′ ∨ νr whereνr (h) = t0
for all h ∈ x↑ \ (A∪

⋃r
j=0{x j , y j}) andνr (h) = ⊥ otherwise,

i.e., νr = ⊥ andµr = µ
′. So, we are done. ⊓⊔

In [55] , Couprie and Bertrand have established a “con-
fluence” property for collapses inside a cubical cell of di-
mension 2, 3 or 4: ifx↑ ց Att(x, 〈t〉) andX is a complex
such that Att(x, 〈t〉) ⊂ X ⊂ x↑, then x↑ ց X iff X ց
Att(x, 〈t〉). Thanks to this property, we can apply Proposi-
tion 56 to test whether a xelx ∈ Fn (n ≤ 4) is digitally sim-
ple for a labelt by the mean of the following greedy algo-
rithm. Of course if the following algorithm returns “false”,
it just means that the hypothesis of Proposition 56 are not all
satisfied and, since this proposition only provides sufficient
conditions, the tested xel can nevertheless be digitally sim-
ple. Figure 26 provides examples of images obtained from
the same label digital image by applying the following al-
gorithm to perform thinning or growing on the support of a
label.

Algorithm 1

Require: (x, y): a free pair for the labelt
Ensure: Boolean
1: Y← x↑ \ Att(x↑, 〈t〉)
2: T ← {z ∈ Y | Card(µ(z) \ µ(y)) > 1}
3: if T , ∅ then
4: return false
5: end if
6: Z← {z ∈ Y | µ(z) ≤ µ(y)}
7: while ∃(h, h′) ∈ Z × Z, (h, h′) free pair inY do
8: Z← Z \ {h, h′}, Y = Y \ {h, h′}
9: end while

10: if Z , ∅ then
11: return false
12: end if
13: while ∃(h, h′) ∈ Y × Y, (h, h′) free pair inY do
14: Y = Y \ {h, h′}
15: end while
16: if Y , ∅ then
17: return false
18: end if
19: return true

6 Conclusion

In this article we have proposed some tools to locally mod-
ify a label image with respect not only to the topologies of
the labels but also to the topology of the partition, in the
sense that the topologies of any union of labels can also be
preserved (depending on the choice for the lattice of labels).
Here, topology preservation is understood as the existence
of weak homotopy equivalence: when a pointx is removed
from a setX, the inclusioni : X\{x} → X puts in one-to-one
correspondence the connected components ofX \ {x} andX
and induces isomorphisms between the homotopy groups of
both spaces.

Let us now have a look at some of the more relevant
models for label images evoked in the introduction. Assum-
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(a) (b)

(c) (d)

(e) (f)

(g) (h) (i)

(j)

Fig. 26 (a) A label digital imageλ0 : Z2 → L (the background is not
depicted). (b) The regular imageµ = ζ(λ0) : F2 → 2L⋆ . (c) The pre-
imageλ1 = ζ

−1(µ1) whereµ1 is obtained fromµ by applying Algorithm
1 to shrink the green label. (d) The regular imageµ1. (e) The pre-image
λ2 = ζ

−1(µ2) whereµ2 is obtained fromµ by applying Algorithm 1 to
expand the green label. (f) The regular imageµ2. (g–i) The same detail
in the imagesλ0, λ1, λ2. (j) A part of the above detail in the imageµ1.
Observe that the isolated green square is not digitally simple for the
brown label: the change of label will fill a hole in the brown label.

ing X = Fn, it can be seen that we can process 3D well com-
posed images inside our framework in such a way that the
result is still a well composed image by adding a condition
in Algorithm 1: any proto-label on a 1-face of the xel being
processed must be present on at least one of the two 2-faces
including the 1-face and included in the xel (in 2D, no condi-
tion is required). The requirement found in [20] to preserve
the topology of any union of two or three labels is obviously
satisfied in our model since we preserve the topology of any
union of labels whenT is the power set of the proto-labels.
Moreover, we observe that Algorithm 1 forbids to have more
than three labels in the neighbourhood of a point adjacent to
the processed xel (but it is a point ofX, not a point ofZ3). In
[15], the authors provide eight figures, five in 2D and three
in 3D, to illustrate their definition of simple points in label
images. On two of them, all conditions are satisfied and the
point is actually simple. On the six other figures, at least
one condition is not satisfied and the point is not simple.
We have tested our own conditions on this set of examples
and we have obtained the same conclusions (see Appendix
E). Thereby it seems that we are able to encompass several
approaches with the model presented in this article, provid-
ing a framework to write precise topological statements and
establish reliable proofs.

Nevertheless, some questions remain. Can Theorem 27
be extended to a wider family of spaces? This would ensure
strong equivalences between label images in other spaces
thanFn. Is it possible to enrich the model in order to be able
to work with other types of regular images as those defined
in [22]? This could be interesting for the modelling of the
(18, 6)-adjacencypair inZ3. We hope to be able to give some
answers to these issues in further works.

A Lattices

In this appendix, we recall some vocabulary and properties used in the
article. More information on lattices can be found in,e.g., [56] or [57].

Lattice. A lattice is a poset in which every pair (a, b) of elements have
a supremum, denoteda∨b, and an infimum, denoteda∧b. There-
after in afinite lattice, there exists a least and a greatest element.

Atom/Atomistic. In a lattice, an element is anatom if it covers the
minimal element. Anatomistic latticeis a lattice in which each
element that is not the least element is a supremum of a set of
atoms.

Modular. A lattice ismodularif x ≤ z impliesx∨ (y∧ z) = (x∨ y)∧ z.
Distributive. A lattice isdistributiveif x∨ (y∧z) = (x∨y)∧ (x∨z), or,

equivalently, ifx∧ (y∨ z) = (x∧ y)∨ (x∧ z). A distributive lattice
is modular.

Boolean. In a lattice,y is acomplementof x if the infimum of x andy
is the minimum element and the supremum ofx andy is the maxi-
mum element. A lattice isBooleanif it is distributive and each el-
ement has a complement. Moreover, in this case, this complement
is unique. A finite distributive lattice is Boolean iff it is atomistic.

Opening. LetL be a lattice. A functionϕ : L→ L is anopeningif ϕ is
anti-extensive (ϕ(x) ≤ x for all x ∈ L) andϕ(x) ≤ y⇒ ϕ(x) ≤ ϕ(y)
for all x, y ∈ L. An opening is order-preserving (x ≤ y ⇒ ϕ(x) ≤
ϕ(y)) and idempotent (ϕ ◦ ϕ = ϕ). Let A be a subset ofL. The

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



23

functionϕA : L → L defined byϕA(x) =
∨

{a ∈ A | a ≤ x} is an
opening.

B Proof of Proposition 26

The proof of Proposition 26 (Subsection 2.8) relies on some combina-
torial properties of cubical and simplicial complexes thatwe establish
hereafter.

Lemma 57 Let X be a cubical or a simplicial complex equipped with
the order⊇. Let x∈ X be an m-face (0 ≤ m≤ dim(X)).

(i) Let y ∈ x↑ be a k-face (0 ≤ k ≤ m). There exist exactly m−k faces
in x↑ of dimension(k + 1) which include y.

(ii) Let x1, x2 be two faces in x↑ such thatdim(x1) = m − 1, x =
x1⊔ x2

10. Let Z be the set of faces in x↑ that intersect both x1 and
x2. The functionθ : Z→ x↑1 defined byθ(z) = z∩ x1 is a bijection
anddim(θ(z)) = dim(z) − 1 for all z ∈ Z.

Proof (i) If k = m, Lemma 57 is trivial. We suppose now thatk < m.
If X is a simplicial complex, there arem+1 vertices inx andk+1
vertices iny. Hence, there exist exactly (m+ 1)− (k+ 1) = m− k
faces ofx of dimensionk + 1 including y (thus containing the
k + 1 vertices ofy plus one). IfX is a cubicaln-complex, we can
assume without loss of generality thatx =

∏n
i=1 I i whereI i ∈ F

1
1

if i ≤ m, I i ∈ F
1
0 otherwise (see Subsection 2.2) andy =

∏n
i=1 Ji

where∅ ⊂ Ji ⊂ I i if i ≤ m− k and Ji = I i otherwise. It is plain
that the only (k + 1)-faces included inx and includingy are the
m−k faceszj , 1 ≤ j ≤ m−k defined byzj =

∏n
i=1 Ki with Ki = Ji

if i , j andK j = I j .
(ii ) If X is a simplicial complex, because dim(x1) = dim(x) − 1 and

x = x1 ⊔ x2, x2 is a singleton. Then, for allz ∈ Z, θ(z) = z∩ x1 =

z \ x2. So, it is plain thatθ is a bijection whose inverseθ−1 is
defined byθ−1(z) = z∪ x2. Furthermore, for allz ∈ Z, dim(z) > 0
and the simplexz∩ x1 = z\ x2 has dimensionk− 1.
If X is a cubical complex, becausex = x1⊔x2, we have dim(x2) =
dim(x1) = m−1. As above, we can assume thatx =

∏n
i=1 I i where

I i ∈ F
1
1 if i ≤ m, I i ∈ F

1
0 otherwise,x1 =

∏n
i=1 J1

i andx2 =
∏n

i=1 J2
i

with J1
i = J2

i = I i if i , m, ∅ ⊂ J1
m ⊂ Im andJ2

m = Im\ J1
m. In these

conditions, it can easily be seen thatZ = {
∏n

i=1 Ki | Ki = I i if i ≥
m, and∅ ⊂ Ki ⊆ I i , otherwise} andθ(

∏n
i=1 Ki) =

∏n
i=1 K′i with

K′m = J1
m andK′i = Ki otherwise. Hence,θ is bijective. Moreover,

obviously, Card({i | K′i ∈ F
1
1}) = Card({i | Ki ∈ F

1
1}) − 1.

⊓⊔

We establish below a proposition which straightforwardly provides
Proposition 26 as a corollary. This proposition will be usedin the proof
of Theorem 27 (see Appendix C). Some steps of the proof are depicted
in Figure 27.

Proposition 58 Let X be a cubical or a simplicial complex equipped
with the order⊇. Let x, y ∈ X, x ⊇ y, be two faces withdim(y) =
dim(x) − 1. Let Y be a subset of y↑ containing y. Then, x↑⋆ \ Y is con-
tractible.

Proof We setm = dim(x) andX0 = x↑⋆ \ Y. If m = 1, Proposition 58
is trivial (X0 is a singleton). Suppose now thatm≥ 2. We denote byy′

the face opposite toy in x↑: x = y⊔ y′. Observe that dim(y′) = 0 if X is
a simplicial complex and dim(y′) = m−1 if X is a cubical complex. We
will shrink X0 to {y′} by removing unipolar points fromX0. First, we
remove the faces ofX0 that are iny↑⋆, in decreasing order relatively to
their dimension. For any (m−2)-facez in y↑ \Y we derive from Lemma
57 that there are two (m− 1)-faces inx↑ includingz, one of which is
y. Hence,z is down unipolar inX0 and, thanks to Properties 6 and 11,

10 We write⊔ for the disjoint union.

(a) (b) (c)

(d) (e)

Fig. 27 Some steps of the proof of Proposition 58. (a) The setx↑⋆

with dim(x) = 3. In grey, the subsetY (y is the 2-face inY). (b) The set
X0 = x↑⋆ \ Y. (c) The setZ. (d) The setZ \ {z < y′↑ | dim(z) = 1}. (e)
The celly′↑.

we deduce that the setX1 = {z ∈ X0 | z < y↑ or dim(z) < m− 2} is a
strong deformation retract ofX0. Since, according to Lemma 57, any
(m−k)-face iny↑⋆ is covered by exactlyk faces inx↑ and byk−1 faces
in y↑, we can inductively remove all faces ofy↑ from X0 with the same
argumentation as above. Hence,Z = X0 \ y↑ is a strong deformation
retract ofX0. In a second step, we are going to prove that the faces in
Z \ y′↑ are successively up unipolar if we remove them in an increasing
order with respect to their dimension. Note that, sincex = y⊔ y′, there
is no 0-face inZ\y′↑. So, let us suppose that we have removed all faces
in Z \ y′↑ of dimension less thank (1 ≤ k ≤ m− 1) and letzbe ak-face
in Z \ y′↑. If X is a cubical complex, Lemma 57-(ii) ensures that there
exists inz↑⋆ exactly one (k − 1)-face iny′↑, namelyz∩ y′, and, ifX is
a simplicial complex, obviouslyz↑⋆ ∩ y′↑ = {y′}. Thus,z is up unipolar
in Zk = {t ∈ Z | dim(t) ≥ k} ∪ y′↑. So, we can inductively prove that
y′↑ is a strong deformation retract ofX0. As any cell is contractible
(Property 3), we are done. ⊓⊔

C Proof of Theorem 27

Lemma 59 Let X be a cubical or a simplicial complex. Let0 ≤ k <

m ≤ n, x ∈ X be an m-face and y∈ x↑ be a k-face. The set x↑ ∩ y↓⋆

is homeomorphic to an abstract simplicial(m − k − 1)-cell with an
homeomorphismϕ such thatdim(ϕ(z)) = dim(z) − k − 1 for all z ∈
x↑ ∩ y↓⋆.

Proof Let V be the set of (k + 1)-faces inx↑ ∩ y↓⋆. By Lemma 57, we
have Card(V) = m− k. We will prove by induction thatx↑ ∩ y↓⋆ is
homeomorphic to 2V (equipped with the inclusion). Leti be an integer
such thatk ≤ i < m andxi be ani-face includingy and included inx.
Let Vi be the set of (k+1)-faces inx↑i ∩y↓⋆ (Vi is a subset ofV). Suppose
that Vi = ∅ or we have defined an homeomorphismϕi : x↑i ∩ y↓⋆ →

2Vi \{∅} such that Card(ϕ(z)) = dim(z)−k−1 for all z ∈ x↑i ∩y↓⋆. Let xi+1

be a face includingxi and included inx andVi+1 be the set ofk+1-faces
in x↑i+1∩y↓⋆. From Lemma 57(i), we deduce that there exists a facea in
V such thatVi+1 = Vi ⊔{a}. Let x′i be the face included inxi+1 such that
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xi+1 = xi ⊔ x′i (dim(x′i ) = 0 if X is a simplicial complex and dim(x′i ) = i
if X is a cubical complex). LetY be the set of faces inx↑ that intersect
both xi andx′i . We define the functionθ : Y→ x↑i by θ(z) = z∩ xi . By

Lemma 57(ii) , θ is a bijection. Letb be a face inx↑i+1 ∩ y↓⋆. If b ∈ x↑i ,

we setϕi+1(b) = ϕi(b). If b < x↑i , thenb intersects bothxi andx′i (b∩ xi

is not empty for it includesy) so we can setϕi+1(b) = {a} ∪ ϕi(θ(b)).
Conversely, for allZ ∈ 2Vi+1 \ {∅}, we setψ(Z) = ϕ−1

i (Z) if a < Z,
ψ(Z) = θ−1(ϕ−1

i (Z \ {a})) otherwise. It is plain thatϕi+1 is a bijection
whose inverse isψ. Letb be face inx↑i+1∩y↓⋆. If b ∈ x↑i , dim(ϕi+1(b)) =

dim(ϕi(b)) = dim(b) − k − 1 by the induction hypothesis. Ifb < x↑i ,
dim(ϕi+1(b)) = 1+dim(ϕi(θ(b)) = 1+dim(θ(b))−k−1 = dim(b)−k−1
(for the last equality, we use Lemma 57-(ii) ). Since 2Vi+1 \ {∅} is a cell,
from the equality dim(ϕi+1(b)) = dim(b) − k − 1, we infer thatϕi+1 is
non-decreasing. Asϕi+1 is a bijection,ϕ−1

i+1 is also non-decreasing and,
thanks to Property 2,ϕi+1 is an homeomorphism. ⊓⊔

Proposition 58 could be stated in terms ofβ-simplicity: let x ≺ y
be two points in a complexX equipped with the order⊇ andY be a set
such thaty ∈ Y ⊆ y↑. Then, the pointx is aβ-simple point inX \ Y. It
is no longer true if we remove the condition dim(y) = dim(x) − 1 (see
[25] for counterexamples). Nevertheless, it remains true if we replace
β-simplicity byγ-simplicity.

Proposition 60 Let X be a cubical or a simplicial complex equipped
with the order⊇. Let x be a face in X and Y⊂ x↑⋆ be a subset that has
a maximum or a minimum. Then, the point x isγ-simple in X\ Y.

Proof Proving thatx is γ-simple inX \Y comes down to establish that
x↑⋆ \ Y is homotopically trivial. First case:Y has a minimum notedy.
The proof is made by induction onm, the dimension ofx. If m= 1, the
result is obvious. We assume now thatm ≥ 2. If dim(y) = m− 1, we
apply Proposition 58. If dim(y) ≤ m− 2, letz be an (m− 1)-face ofx↑

including y. From the induction hypothesis,z↑⋆ \ Y is homotopically
trivial. Hence,z is a γ-point in x↑⋆ \ Y. So, x↑⋆ \ (Y ∪ {z}) is weak-
homotopy equivalent tox↑⋆ \ Y (Property 22). Now, from Proposition
58, we deduce thatx↑⋆ \ (Y ∪ {z}) is contractible and we are done: by
transitivity, x↑⋆ \ Y is homotopically trivial.

Second case:Y has a maximum notedy. The proof is made by
induction on Card(Y). If Card(Y) = 1, i.e., Y = {y}, we use the first part
of the proof to conclude. Suppose now that Card(Y) ≥ 2. Let z, z , y,
be a face inY such that dim(z) = min{dim(t) | t ∈ Y \ {y}}. We observe
thatz↑⋆ ∩ Y = {y}. Now, we setZ = (x↑⋆ \ Y) ∪ {z} = x↑⋆ \ (Y \ {z}).
As Card(Y \ {z}) < Card(Y), we deduce from the induction hypothesis
that Z is homotopically trivial. Let us prove thatz is aγ-point for Z.
We havez↑⋆ ∩ Z = z↑⋆ \ {y} which, from the first part of the proof, is
homotopically trivial. Hence,z is a γ-simple point forZ. Thereafter,
the injectioni : x↑⋆ \ Y→ Z is a weak homotopy equivalence and we
conclude straightforwardly. ⊓⊔

Proof (Theorem 27)
Let y ∈ Y ⊂ X be aβ-simple point inY. Theny↑⋆ ∩ Y or y↓⋆ ∩ Y is
contractible. We suppose first thaty↑⋆ ∩Y is contractible. From Corol-
lary 9, we know that there exists a sequence (xi)r

i=0 (r ≥ 0) such that

y↑⋆ ∩ Y = {xi }
r
i=0 and xj is unipolar in{xi }

j
i=0 for all j ∈ [1, r]. The

proof consists to establish thatxj is a γ-simple point iny↑⋆ \ {xi }
j−1
i=0

for all j ∈ [1, r]. This will imply (by transitivity) that the injection of
y↑⋆ \Y in y↑⋆ \ {x0} is a weak homotopy equivalence. Then Proposition
60 will permit us to conclude easily. So, let us suppose first that xj is
up-unipolar in{xi }

j
i=0 for some j ∈ [1, r]. We setYj = x↑⋆j ∩ {xi }

j
i=0.

From Proposition 60, we derive thatx↑⋆j \ Yj is homotopically triv-

ial (sinceYj has a minimum). Asx↑⋆j ∩ (y↑⋆ \ {xi }
j−1
i=0 ) = x↑⋆j \ Yj , xj

is aγ-simple point iny↑⋆ \ {xi }
j−1
i=0 . We suppose now thatxj is down-

unipolar in {xi }
j
i=0 and we setYj = x↓⋆j ∩ {xi }

j
i=0. We observe thatYj

has a maximum. Thanks to Lemma 59, we can consider an homeo-
morphismϕ : y↑ ∩ x↓⋆j → Z whereZ is a simplicial cell. From Prop-
erty 2 (any continuous function between posets is non-decreasing), we
derive thatϕ((y↑⋆ ∩ x↓⋆j )) = ϕ(y)↑⋆ and thatϕ(Yj ) has a maximum
(for Yj has a maximum). Then we invoke Proposition 60 to assert that
ϕ((y↑⋆ ∩ x↓⋆j ) \ Yj ) = ϕ(y)↑⋆ \ ϕ(Yj ) is homotopically trivial. Hence,

(y↑⋆ ∩ x↓⋆j ) \Yj = x↓⋆j ∩ (y↑⋆ \ {xi }
j−1
i=0 ) is homotopically trivial andxj is

aγ-point iny↑⋆ \ {xi }
j−1
i=0 .

We suppose now thaty↓⋆ ∩ Y is contractible. Taking the reverse
order onX (sinceX = Fn, (X,≤) is homeomorphic to (X,≥)), we derive
from Proposition 14 thaty is aβ-simple point forY and from Corollary
10 thaty↑⋆ ∩ Y is contractible. Then it follows from the first part of
the proof thaty is a γ-simple point for (X \ Y) ∪ {y} equipped with
the inclusion and we conclude, invoking Proposition 20, that y is aγ-
simple point for (X \ Y) ∪ {y} with the initial order. ⊓⊔

D Counterexamples

Counterexample 61 (Theorem 27)Figure 28 illustrates the fact that
Theorem 27 is generally false when the poset(X,≤) is a cubical com-
plex, but(X,≥) is not a cubical complex.

Counterexample 62 (Proposition 32)Figure 29 illustrates the fact
that Proposition 32 is generally false in a non-distributive lattice.

Counterexample 63 (Proposition 44)Figure 30 illustrates the fact
that Proposition 44 is generally false in a non-distributive lattice. Fur-
thermore, this figure shows that the number of connected components
of the supports is not preserved by a cut in such a lattice. Therefore,
this counterexample is also a counterexample for Theorem 47when the
lattice is not distributive.

Counterexample 64 (Theorem 47)Figure 31 illustrates the fact that
Theorem 47 is generally false if the poset X has not the pierced sphere
property.

Counterexample 65 (Proposition 50)Figure 32 shows that if the lat-
tice T is not distributive, the binary imageµ ∧ a whereµ is a regular
image and a is an atom of T can be non-regular.

Counterexample 66 (Proposition 56)Figure 33 shows that in Propo-
sition 56, Condition (iii) is not necessary.

E Comparison between ML-simple points and digitally
simple points

In Figure 34, we borrow the images used in [15] to illustrate the notion
of ML-simple point in label digital images in order to compare this
notion with our own notion of digitally simple point in regular label
images (we have omitted the first image of [15] which is very similar
to the second one).
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y

(a) (b)

Fig. 28 (a) A setX which is a cubical complex but whose dual is not
a complex (because of the boundary). In black, a subsetY of X. The
pointy is a 1-face ofY. In light grey, the complement ofY in X, X \ Y.
(b) In black, the setY \ {y}. In light grey, the set (X \ Y) ∪ {y}. Clearly,
y is a β-simple forY (y is up-unipolar inY) but y is notγ-simple for
(X \ Y) ∪ {y} since this later set has not the same number of connected
components asX \ Y.

(a)

⊤

R G B Y

⊥

(b) (c)

Fig. 29 (a) A label imageµ : X → T. (b) The Hasse diagram of
T (which is not distributive). The labels⊥,R,G, B,Y,⊤ are depicted
respectively in white, red, green, blue, yellow and black. The yellow 2-
facex is not simple for the label⊤ since the labelG is such thatG∧Y =
⊥ andG∧⊤ , ⊥ but x is notβ-simple for〈G〉∪{x}. (c) The label image
ϕ ◦ µ : X → ϕ(T) (for the definition ofϕ, see Proposition 32). In this
image, the pointx is simple for the label⊤.

y

(a)

⊤ = {r,g,b, t}

{r,g} {g,b}

{r} {g} {b} {t}

⊥ = ∅

(b) (c)

Fig. 30 (a) A closed supports label imageµ : X →

T with T = {∅, {r}, {g}, {b}, {t}, {r, g}, {g, b}, {r, g, b, t}}, equipped
with the inclusion. (b) The Hasse diagram ofT. The labels
{r}, {g}, {b}, {r, g}, {g, b}, {r, g, b, t} are depicted respectively in red,
green, blue, yellow, cyan and black. (c) The cutµy,{g}. In the image
µ, the support oft is empty. But, in the cutµy,g, the support oft is no
longer empty (it contains the three points in black).

z

y x

z
′

(a)
z

z
′

(b)

Fig. 31 (a) An imageµ : X → 2{r,g}. In the posetX, the pointsz and
z′ are identified. Thus,X has not the pierced sphere property (x↑⋆ \ {y}
is a ring). The support of{g} is a ball. (b) The cutµy,{g}. The support of
{g} is a ring.

(a) (b)

Fig. 32 (a) A regular imageµ : X → T with T =

{∅, {r}, {g}, {b}, {r, g, b}} equipped with the inclusion. (b) The binary im-
ageµ ∧ {b} which is not regular.

x

(a) (b)

y

(c)

y1

(d)

y2

(e)

y3

(f)

Fig. 33 (a) A regular imageµ : X → 2{r,g,b,e} where the four proto-
labelsr, g, b, e are depicted respectively in red, green, blue and grey.
We take the notations of the proof of Proposition 56. The xelx is at the
center of the image. Its label ist0 = {e}. (b) The label digital image as-
sociated toµ (in Z3). (c) The cutµ1 = µy,t0. (d) The cutµ2 = (µ1)y1,t0 . (e)
The cutµ3 = (µ2)y2,t0 . (f) The cutµ4 = (µ3)y3,t0 which is regular. Hence,
the xelx is digitally simple. Nevertheless we haveµ(y3) =

∨

{r, g, b, e},
so Condition(iii) of Proposition 56 is not satisfied.
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 34 These seven label images must be considered as defined on
Zn for ML-simple points or onFn for digitally simple points. In the
latter case, we assume the image to be regular, so there is no need to
represent the faces of dimension less than or equal ton− 1. There are
four proto-labels depicted in red, green, blue and grey. Thevoxel x is
the central voxel (in blue). The test consists in checking ifthe voxelx
is (ML or x)-simple for the red label. Note that ML-simple points are
to be used with the (4, 8) or the (6, 18) adjacency pair. (a)x is ML-
simple [15] and it can easily be seen thatx is digitally simple. (b) to (g)
x is not ML-simple [15] andx is not digitally simple (these checks are
not difficult and left to the reader). Observe that on subfigure (f), the
grey label is not taken into account to decide thatx is not a ML-simple
point. Likely, the authors of [15] have chosen to add a fourthlabel here
to put in evidence that the move of the central voxel from the blue
label to the red label could modify the topology of the green label. It is
different with digitally simple points. Because of the grey label, neither
Conditioni nor Conditioniii of Proposition 56 are satisfied. But, if we
replace the grey label by the green label,x becomes digitally simple.
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