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Abstract: In this paper a detection, isolation and fault estimation scheme using a Proportional-
Integral (PI) Observer that provides a robust estimation against measurements noise and
unknown inputs is presented. The main contribution consists in the synthesis of a PI-Observer
for descriptor LPV systems, can be useful not only for state estimation, but also to estimate
sensor faults and unknown inputs. The proposed PI-Observer can provide an alternative fault
diagnosis scheme. Once a fault is detected, a bank of observers is activated for the purpose of
fault isolation. This scheme reconstructs the sensor faults based on augmented state equations
where an auxiliary state is assigned to represent the dynamic behavior of the fault. An
illustrative example is presented in simulation.
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1. INTRODUCTION

Recent researches in Fault Detection and Diagnosis (FDD)
design schemes, especially model-based FDD, are focused
on systems modeled by coupled differential and algebraic
equations (DAE’s). Descriptor systems constitute an im-
portant class of systems of both theoretical and practical
interest, which include, chemical and biological processes,
interconnected large-scale systems, electrical circuits sys-
tems and robotic manipulators, among others. In this way,
much research has aimed at generalizing existing theo-
ries, especially in the time domain, from normal systems
to descriptor systems, which include controllability and
observability (Yip and Sincovec (1981)), feedback control
(Jiang et al. (2009)), observer design (Koenig (2006)) and
robust control (Yang et al. (2006)).

Linear Parameter Varying (LPV) approach, can be used
to convert a nonlinear system into a multiple model form.
The transformation is realized without loss of information.
LPV systems can be seen as nonlinear systems that are
linearized along a trajectory determined by the parameter
vector that it is assumed measurable (Toth et al. (2009)).
Many physical systems exhibit parameter variations due
to non-stationary or nonlinear behavior, or dependence on
external variables. For such processes, the theory of LPV
systems offers an attractive modeling framework. In this

way, some authors have proposed to represent the systems
using the LPV approach (Cerone et al. (2010)).

In LPV systems, the model parameters are assumed as
functions of a time-varying signal, the called scheduling-
variable (ε(θ)). Based on such representation some authors
as Ichalal et al. (2009), have developed methods for state
estimation and fault diagnosis in nonlinear systems de-
scribed by Takagi-Sugeno multiple models. Or as in Hamdi
et al. (2009), where a polytopic Unknown Input Observer
for LPV descriptor systems is designed to estimate states
of the system in presence of unknown inputs. In the work of
Astorga et al. (2009), a strategy for detection and isolation
sensor faults using a bank of residuals within a Generalized
Observer Scheme (GOS) is presented. This strategy for
fault estimation doesn’t take into account the effects of
disturbances and other uncertain factors.

Starting from LPV descriptor representation of the non-
linear systems, the present paper proposes sufficient con-
ditions for the design of a Proportional-Integral Observer
(PIO) that estimates the states of the system and the fault,
even in the presence of unknown inputs. In contrast to
Hamdi et al. (2011), who only consider constant actuator
faults and disturbances with slow variation, we consider
here dynamic sensor faults in spite of unknown inputs



which extends the range of possible scenarios in a real
plant.

The model for sensor faults presented in this paper uses
an increase in the system equations. This increase is an
auxiliary state (or more in case of multiple faults) that
represents the dynamic fault and in effect, converts the
sensor fault as an actuator fault, which enables to estimate
the fault as an new state. This paper presents a fault diag-
nosis scheme based on GOS for incipient or abrupt faults
in descriptor systems, which is robust against unknown
inputs because the disturbance distribution matrices are
considered known, this fact allows its uncoupling. This
observer is characterized by a integral term on the output
error to estimate the unknown input. The stability and
the convergence properties are ensured by using Linear
Matrix Inequality (LMI’s). The method used to model
sensor faults, is based on the work of Park et al. (1994),
where the sensor faults are presented as pseudo-actuator
faults.

2. LPV DESCRIPTOR SYSTEMS

Consider the following continuous-time nonlinear descrip-
tor system:

Eẋ = F (x(t), u(t), d(t))
y(t) = Cx(t)

(1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m with
(m < n) is the control input vector. y(t) ∈ R

p and
d(t) ∈ R

l are the measurement output and the unknown
bounded process disturbance vectors. E ∈ R

q×n is a
singular matrix with rankE ≤ n and F (·) is a smooth
function. The linearization of the function F (·) by Taylor
series around εi operation points (xi, ui) gives a set local
linear descriptor models with the following descriptor
linear system representation (Hamdi et al. (2010)):

Eẋ(t) = Ax(t) +Bu(t) +Rd(t)
y(t) = Cx(t)

(2)

where E,A ∈ R
q×n, B ∈ R

k×n, R ∈ R
l×n and C ∈

R
m×n are known constant matrices. With the following

assumptions as in Darouach et al. (1996):

Assumption 1: It is assumed that the triplet (E,A,C) is
observable if:

rank

[

sE −A
C

]

= n ∀s ∈ C

where C is the set of complex numbers.

Assumption 2: It is assumed that the impulsive terms of
the system are observable (the triplet (E,A,C) is Impulse-
Observable) if:

rank

[

E A
0 E
0 C

]

= n+ rank(E)

As is proposed in Hamdi et al. (2010), (1) can be rep-
resented by the polytopic LPV descriptor structure as
follows:

Eẋ(t) =

Q
∑

i=1

εi(θ(t)) [Aix(t) +Biu(t) +Rid(t) + ∆xi]

y(t) = Cx(t)
(3)

where E,Ai ∈ R
q×n, Bi ∈ R

k×n, Ri ∈ R
l×n and C ∈

R
m×n are known constant matrices. ∆xi represents the

contribution of small signals due to the linearization of the
system, i.e., is a vector that depends of the ithth operating
point. This representation is defined as a multi-linear sys-
tem where the matrices are set by known operation points.

LPV descriptor system is represented into a polytopic
domain. The vertices of this polytope are called the
submodels of this representation, i.e., the parameter θ(t)
varies in a convex polytope of vertices θi such that θ(t) ∈
Co{θ : θ1, θ2, ..., θQ} with Q as the total number of
local models. These submodels are combined by weighing
functions to yield a global model. With respect to LPV
systems, an additional assumption is cited:

Assumption 3: Let us consider that:
i). θ(t) is bounded, and
ii). θ(t) is on-line accessible and fault-free.

εi(θ(t)) is the weighting function that defines the relative
contribution of each local model to build the global model.
This weighting function is constructed in such a manner
that complies with follow property of the convex sum:

Q
∑

i=1

εi(θ(t)) = 1, 0 ≤ εi(θ(t)) ≤ 1 (4)

This polytopic structure makes it possible to represent
any nonlinear behavior. The next section is dedicated to
develop a method to detect and estimate the sensor fault
in order to provide an efficient monitoring tool in the
operator’s decision.

3. REPRESENTATION OF THE SENSOR FAULTS

Let us consider the sensor fault fs(t) and the disturbances
d(t) given by:

Eẋ(t) =

Q
∑

i=1

εi(θ(t)) [Aix(t) +Biu(t) +Rid(t) + ∆xi]

y(t) = Cx(t) + Jfs(t)
(5)

where fs(t) ∈ R
nf is a fault vector which represents the

evolution of the fault and J represents the sensor fault
distribution matrix. Let us consider fs(t) = β(tf )f(t)
characterizes the time profile of a fault that occurs at
some unknown time tf . More specifically, β(tf ) is a smooth
function modeled by:

β(t− tf ) =

{

0, t < tf
1− e−ς(t−tf ), t ≥ tf

(6)

where the scalar ς > 0 denotes the unknown fault evolution
rate. Small values of ς characterize slowly developing
faults, also known as incipient faults. For large values



of ς , the time profile approaches a step function, which
models abrupt faults. Based on Park et al. (1994), the LPV
descriptor system (5) can be represented such as:

Ē ˙̄x(t) =

Q
∑

i=1

εi(θ(t))
[

Āix̄(t) + B̄iū(t) + R̄id(t) + ∆x̄i

]

y(t) = C̄x̄(t)
(7)

where x̄(t) ∈ R
n+nf is the augmented state vector defined

as x̄(t) =

[

x(t)
fs(t)

]

, the control vector is defined as ū =

[ u ξ ] and the matrices are given by:

Ē =

[

E 0
0 Inf

]

C̄ = [C J ] Āi =

[

Ai 0
0 αnf

]

with a sensor input defined as: ξ = ḟs − αfs, and

B̄i =

[

Bi 0
0 Inf

]

R̄i =

[

Ri

0

]

∆x̄i =

[

∆xi

0

]

where 0 is a zero matrix of appropriate dimension. The
term αnf

represents a diagonal matrix of appropriate di-
mension where α > 0 can be considered as an additional
degree of freedom in the observer design. The fault can
be modeled by a linear system of arbitrary order, but this
fact depends of the characteristics of the fault.

It is a well-known result that the necessary and sufficient
condition for detectability, is that the fault event vector
is detectable, i.e., if and only if (Āi, C̄) is observable
(Park et al. (1994)). In addition, this requirement may
be assumed in terms of the original system, i.e., if (Ai, C)
of the system (5) is observable.

4. PROPORTIONAL INTEGRAL OBSERVER (PIO)

The fault reconstruction is achieved considering a descrip-
tor system represented by the polytopic LPV descriptor
model (7), the equations of the PIO are (Hamdi et al.
(2011)):

ż(t) =

Q
∑

i=1

εi(θ(t))
[

Niz(t) + Giū(t) + Liy(t) + Hid̂(t) + ∆zi

]

ˆ̄x(t) = z(t) + M̃y(t)

˙̂
d(t) =

Q
∑

i=1

εi(θ(t))Φi(y(t) − ŷ(t))

(8)

where ˆ̄x(t), z(t) ∈ R
n+nf and d̂(t) ∈ R

p are the estimate
state vector, state observer vector and estimate unknown
input respectively. Ni, Gi, Li, Hi,∆zi, M̃ and Φi are ma-
trices for the PI observer. From (7) the estimation error is
equal to:

ē(t) = x̄(t)− ˆ̄x(t)

ē(t) = (In+nf
− M̃C̄)x̄(t)− z(t)

(9)

where In+nf
represents the identity matrix of order n+nf ,

then on can define a real matrix U ∈ R
(n+nf )×(n+nf )

calculated as:

UĒ = In+nf
− M̃C̄ (10)

and, for [Ē C̄]T as full rank column, is possible to calculate

U and M̃ , such that:

[

U M̃
]

=

[

Ē
C̄

]+

(11)

where the superscript + represents the inverse generalized
matrix, and the estimation error can be rewritten as:

ē(t) = UĒx̄(t)− z(t) (12)

A restriction of the PIO is to suppose that the unknown
inputs are bounded and their dynamic is slow, i.e., ḋ(t) ≃

0. Then, for δ(t) = d(t) − d̂(t), the unknown input derive
is defined as:

δ̇(t) = −
˙̂
d(t) (13)

The estimation error dynamic is written as:

˙̄e(t) =

Q
∑

i=1

εi(θ(t))
[

(UĀi − LiC̄ −NiUĒ)x̄(t)+

(UB̄i −Gi)ū(t) + (UR̄i −Hi)d(t)+
(U∆x̄i −∆zi) +Hiδ(t) +Niē(t)]

(14)

where the following conditions can be defined:

UĀi = NiUĒ − LiC̄ (15)

Gi = UB̄i (16)

Hi = UR̄i (17)

∆zi = U∆x̄i (18)

From (3), (13) and (14), the estimation error and the
unknown input dynamic is:

˙̄e(t) =

Q
∑

i=1

εi(θ(t))(Ni ē(t) +Hiδ(t)) (19)

δ̇(t) =

Q
∑

i=1

εi(θ(t))(−ΦiC̄)ē(t) (20)

and the following function can be established:

[

˙̄e(t)

δ̇(t)

]

=

Q
∑

i=1

εi(θ(t))

[

Ni Hi

−ΦiC̄ 0

] [

ē(t)
δ(t)

]

(21)

Then, the state estimation error (21) converges asymp-
totically to zero if the real part of the eigenvalues of
[

Ni Hi

−ΦiC̄ 0

]

< 0, i.e., are stables. From (10) and (15),

the matrices Ni, can be determined as follows:

Ni = UĀi − (Li −NiM̃)C̄ (22)

and defining Ki = Li − NiM̃ , the matrices Li can be
calculated. Then, (21) can be rewritten as:

[

˙̄e(t)

δ̇(t)

]

=

Q
∑

i=1

εi(θ(t))(Ăi − K̆iC̆)

[

ē(t)
δ(t)

]

(23)

where Ăi =

[

UĀi Hi

0 0

]

, K̆i =

[

Ki

Φi

]

and C̆ = [C̄ 0].



Then, the PI observer (8) for a LPV descriptor system
with inputs unknown (3) exists and their estimation error
converges asymptotically to zero, if and only if, the pairs
(Ăi, C̆) are detectable ∀i = 1, 2, ..., Q. This observer is
asymptotically stable if exists a positive definite symmetric
matrix P and matrices Wi = PK̆i such that the following
LMI holds:

(ĂT
i P + PĂi − C̆TWT

i −WiC̆) < 0, ∀i ∈ 1, 2, ..., Q.

(24)

Observer gains can be calculated from K̆i = P−1Wi. For
ensuring the stability and convergence of the observation
error, it is possible to define in the left part of the complex
plane a bounded area S with a line of abscissa (−σ) where
σ ∈ R

+, and the LMI’s defined in (24) must be replaced
by the following inequalities:

(ĂT
i P + PĂi − C̆TWT

i −WiC̆) + 2σP < 0,
∀i ∈ 1, 2, ..., Q.

(25)

then, consequently ˆ̄x(t) will asymptotically converge to

x̄(t) and d̂(t) to d(t).

5. ILLUSTRATIVE EXAMPLE

Consider a continuous-time LPV descriptor nonlinear sys-
tem (1), described by:

ẋ1(t) = −1.5x2
1(t) + 0.2x3(t)x4(t) + d(t)

ẋ2(t) = −u1(t)x
2
1(t)− x4(t)x

2
3(t)− 0.5x2(t)

0 = 0.5x2(t)− x3(t) + 0.2x4(t)
0 = −x2

2(t) + x2
3(t)− 2x4(t) + u2(t)

y(t) =

[

1 1 0 1
0 0 0 1
0 0 1 0

]

x(t) + vk,

(26)

where u1(t) and u2(t) are constant signal of magnitude
10 and 7 respectively. vk ∈ R

p is the measurement noise
that is modeled as Gaussian white noise with variance
center 0.01. For simulation purposes, an unknown input
is modeled as a rectangular signal applied for 10 ≤ t ≤ 25.
LPV multi-model representation of the nonlinear dynamic
system is given by the follow set of matrices:

E =

[

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

]

, C =

[

1 1 0 1

0 0 0 1

0 0 1 0

]

, Ri = R =

[

1

0

0

0

]

A1 =

[

−0.8775 0 0.526 −0.0274

−5.8500 −0.5 0.1481 0.0026

0 0.5 −1 0.2

0 2.6522 −0.274 −2

]

, B1 =

[

0 0

−0.0856 0.01

0 0

0 1

]

A2 =

[

−0.6375 0 0.6166 0.0307

−4.2500 −0.5 0.2176 −0.0036

0 0.5 −1 0.2

0 1.8526 0.3068 −2

]

, B2 =

[

0 0

−0.0452 0.01

0 0

0 1

]

A3 =

[

−0.6357 0 0.6047 0.0226

−4.2380 −0.5 0.1162 −0.0015

0 0.5 −1 0.2

0 1.9660 0.2264 −2

]

, B3 =

[

0 0

−0.0449 0.01

0 0

0 1

]

∆x1 =

[

0.2004

1.6753

0

1.7397

]

, ∆x2 =

[

−0.0268

0.8083

0

0.8346

]

, ∆x3 =

[

−0.0011

0.8505

0

0.9535

]

The weighting functions are calculated according to (4),
∀i = 1, . . . , Q with Q as the total number of local
models considered, in this case Q = 3. The weighting
functions εi(θ(t)) characterize the dynamic behavior of the
descriptor nonlinear system and its evolution depends of
parameters that are functions of the state x3(t). These
functions are defined as:

εi(t)(x3(t)) =
µi(x3(t))

∑3
i=1 µi(x3(t))

(27)

Assumption 4: The state x3(t) is defined as free of faults
and always measurable.

The parameters trajectory is determined by the behavior
of the system variables as:

µ1(x3(t)) = exp

(

−
1

2

(

x3(t) + 5

2

)2
)

µ2(x3(t)) = exp

(

−
1

2

(

x3(t)

2

)2
)

µ3(x3(t)) = exp

(

−
1

2

(

x3(t)− 5

2

)2
)

(28)

5.1 Fault-free case.

For initial conditions, x0 = [0.4 −0.004 0.755 3.785]T

and x̂0 = [0 0 0 0]T , the nonlinear states and its
estimated are depicted in the Fig. 1 in fault free case. In
this figure the quick convergence of the observer to LPV
descriptor nonlinear system can be seen.
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Fig. 1. States of nonlinear system and their estimates.

5.2 Sensor-fault case.

A vector fs(t) ∈ Rnf with nf = 1 and β(t − tf ) = 1 −

eς(t−tf ) with ς = 0.01, is applied for y2 in time 21 ≤ t ≤ tf
and fs(t) = (2sin(5t− 10)). To design the observer for the
LPV descriptor system (5) the augmented system should

be constructed as (7). Then, the matrices U and M̃ can

be calculated by (11) such that UĒ+M̃C̄ = In+nf
. Using

the Yalmip Toolbox (Lofberg (2004)) or the LMI Control
Toolbox (Gahinet et al. (1995)), it is possible to compute
a solution satisfying the inequality (25), and to determine
the observer matrices Ki and Φi respectively:

K1 =





1.5644 4.6018 −1.110

31.943 6.6880 43.336

−2.219 −4.373 0.7062

−31.15 −14.15 −36.61

44.68 27.736 46.799



 Φ1 =

[

−0.8181 1.4884 −2.1623

]



K2 =





1.1564 3.9228 −0.634

33.144 8.3304 41.232

−1.866 −3.833 0.3387

−31.46 −14.40 −35.62

44.475 27.167 46.192



 Φ2 =

[

−0.9540 1.2413 −1.9486

]

K3 =





1.1362 3.8887 −0.616

33.326 8.4962 41.215

−1.846 −3.802 0.3169

−31.59 −14.50 −35.64

44.592 27.229 46.249



 Φ3 =

[

−0.9692 1.2212 −1.9514

]

In sensor fault case, the states and its estimated are
depicted in the Fig. 2. In this figure only the state x3 is
well estimated, this is because it is the only measurement
that is considered not affected by the fault. For simulation
purposes, an unknown input is modeled as a rectangular
signal applied for 10 ≤ t ≤ 25. The estimation of the
unknown input is illustrated in the Fig. 3.
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Fig. 2. States of nonlinear system and their estimates.
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Fig. 3. Unknown input estimated (disturbance).

From the procedure of augmented system, given in the
Section 3, is possible to use the PIO for estimate the
dynamic behavior of the sensor fault as an additional
state. Fig. 4 shows the signal of the sensor fault and their
estimation.
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Fig. 4. Sensor fault and corresponding estimated.

For the purpose of fault isolation, a bank of observers
is built as a generalized LPV descriptor observer scheme

(based on GOS Frank (1994)). This scheme provides an
estimator dedicated to a certain sensor is driven by all
outputs except that of the respective sensor, i.e., where
each one of the them is driven by all inputs and all outputs
except the kth measurement variable. The measure yk is
not used in the k observer due to the fact that yk is
assumed corrupted. This scheme allows one to detect and
isolate only a single fault in any of the sensors, however,
with increased robustness with respect to unknown inputs.
For the bank of observers, the following LPV descriptor
system in considered:

Eẋ(t) =
M
∑

i=1

εi(θ(t)) (Aix(t) +Biu(t) +Rid(t) + ∆xi)

ζk(t) = C̃jx(t) + J̃jfs(t)
(29)

with C̃j and J̃j are the matrix and sensor fault distribution
vector respectively, without the kth row. The bank of
observer generates an incidence matrix (Table 1) where
a signal that is obtained from the residuals defining the
effects associated with the fault.

Table 1. Incidence Matrix

Fault F1 F2 F3

||y − ŷ|| 1 1 1

||ζ1 − ζ̂1|| 0 1 1

||ζ2 − ζ̂2|| 1 0 1

The bank generates residuals different to zero, otherwise,
only the observer which is insensitive to a sensor fault Fk

effects generates a unique residual with a media zero. The
performance of the fault diagnosis system is illustrated
for faults on the sensors y1 and y2, the sensor y3 is con-
sidered free of faults. Figs. 5-6, shows the results of the
bank observers according to the incidence matrix, only the
observer designed insensitive to a sensor fault provides a
residual vector equal to zero means. Only a single sensor
fault can be detected at a time.

This approach mainly considers the case of sensor fault.
It is possible also to consider the actuator fault case,
but it is important that into the LPV model of the
system, the parameters considered to build the weighting
functions cannot depend of the inputs of the system or
any dependent variable of the inputs, i.e., the parameters
should be free faults according to assumption A3. If this
is the case, actuator faults can be estimated also using the
same PI-Observer if they are modeled as unknown inputs
of the system.

Fig. 5. Residual vector with a fault in the first sensor.



Fig. 6. Residual vector with a fault in the second sensor.

6. CONCLUSIONS

This paper has presented a sensor fault diagnosis method
to detect and isolate sensor faults in LPV descriptor sys-
tems. This proposed method is easy to implement because
only matrix manipulations were made to represent the sys-
tem and its dynamics completely (states, unknown inputs
and faults) into a LPV model. This allows the observer
designed based on the LPV model, to provide reliable
information on the status of the process. Through PIO
approach, the error dynamics converges to zero, as well as
the sensor faults fs(t) and the unknown inputs are esti-
mated simultaneously. The diagnosis scheme is based on a
PIO presented in Hamdi et al. (2011), who only considered
constant actuator faults, while we considered here dynamic
sensor faults in spite of unknown inputs. Conditions to
ensure the existence and the stability of the proposed
scheme by using LMI formulation were established. The
PIO was designed to estimate simultaneously the sensor
fault and the unknown input and also, it was used to
build a bank of observers to isolate adequately sensor
faults. The effectiveness of this algorithm was evaluated
via simulations using a numerical example.
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