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ABSTRACT

Over the last decade, there has been a significant increase
in the number and sophistication of malware-related attacks
and infections. Many detection techniques have been pro-
posed to mitigate the malware threat. A running theme
among existing detection techniques is the similar promises
of high detection rates, in spite of the wildly different mod-
els (or specification classes) of malicious activity used. In
addition, the lack of a common testing methodology and
the limited datasets used in the experiments make difficult
to compare these models in order to determine which ones
yield the best detection accuracy.

In this paper, we present a systematic approach to mea-
sure how the choice of behavioral models influences the qual-
ity of a malware detector. We tackle this problem by execut-
ing a large number of testing experiments, in which we ex-
plored the parameter space of over 200 different models, cor-
responding to more than 220 million of signatures. Our re-
sults suggest that commonly held beliefs about simple mod-
els are incorrect in how they relate changes in complexity to
changes in detection accuracy. This implies that accuracy is
non-linear across the model space, and that analytical rea-
soning is insufficient for finding an optimal model, and has
to be supplemented by testing and empirical measurements.

Categories and Subject Descriptors

H.3.4 [Systems and Software]: Performance evaluation
(efficiency and effectiveness); C.4 [Performance of Sys-

tems]: Measurement techniques; K.6.5 [Security and Pro-

tection]: Invasive software (e.g., viruses, worms, Trojan
horses)

General Terms

Security, Experimentation, Measurement
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1. INTRODUCTION
When studying the published results of existing research

on behavior-based detectors [5, 6, 8–10, 14, 20, 23], one can
make three interesting observations. First, despite their dif-
ferences, all proposed malware detectors seem to work quite
well. The detection rate is typically very high, with very
few (or even zero) false positives. The second observation
is that, even though each solution is based on a different
behavioral model (i.e., type of program abstraction), a clear
motivation of why a particular model was chosen is often
missing. Finally, the data sets which were used for the ex-
perimental evaluations of these systems were often limited
to very few benign and malicious samples, calling into ques-
tion whether the excellent detection results reported would
still hold with more extensive and systematic experiments.
The motivation behind these research approaches to beha-

vior-based detection were the increasing limitations exhib-
ited by anti-malware techniques. Recent high-profile inci-
dents such as Operation Aurora [12] and Stuxnet [7] are
instructive examples of the ongoing shift towards stealth
and evasion in the malware industry. Anti-malware tech-
niques often rely on byte signatures (i.e., strings or regular
expressions of bytes in the malware binary file), which are
easily evaded by simple code changes (e.g., run-time pack-
ing, obfuscation), as previous work has demonstrated [4,16].
Behavior-based methods rely instead on higher-level, more
abstract representations of malicious code, usually using sys-
tem calls instead of instruction bytes, with the often-stated
explanation that system calls capture intrinsic characteris-
tics of the malicious behavior and thus are harder to evade.
Unfortunately, simply transitioning a specification of ma-

licious behavior from using bytes or instructions to using
system calls does not guarantee more accurate and more
resilient detection. The structure of this specification is im-
portant, in terms of how the system calls are organized (i.e.,
as a sequence of calls, as an unordered set, as a dependence
graph), how many system calls are part of the specification,
how much of the specification has to match for detection
to succeed, etc. The existing work provides data points
for different models to consider, but there is no clear un-
derstanding of which specification models are most suitable
for detection given that malware writers continuously adapt



their work to be stealthy and to evade detection. Finally, all
these approaches have been tested on very limited datasets
including only a handful of benign applications run by the
authors on a single machine in a controlled environment.

To overcome this limitation, our goal in this paper is to
develop a methodology to systematically test and compare
the effectiveness of different models to capture program be-
havior. We argue that, in order to obtain a better under-
standing of how the choice of the behavioral model and its
parameters influences the quality of malware detection, the
detection capabilities of different behavior models have to
be tested on a realistic and large-scale data sets. In addi-
tion, in order to provide a better understanding of why a
particular model works better than others and under which
circumstances, our methodology organizes the space of be-
havioral models along three dimensions: the granularity of
atomic program operations, the ways in which these oper-
ations relate to each other, and the number of operations
included in a specification.

As program operations constitute the basic building blocks
of models, we refer to them as behavior atoms. In this work,
we focus on using system calls, with and without parameters
and with various levels of abstraction, as the atomic opera-
tions that models can use to characterize program behavior.

The second dimension captures the ways in which behav-
ioral atoms can be structured and combined together. In
particular, we are interested in the ordering constraints that
models can formulate on top of these atoms, and the possi-
ble structures that these constraints yield. Together these
dimensions allow us to explore empirically the design space
of specifications over system calls, from unordered sets, to
simple sequences, and to general finite state automata.

Given the universe of all possible behavior models that
can be expressed based on our atoms and structures, we
explore this space by running over 200 different testing ex-
periments against several large and diverse datasets of mali-
cious and benign programs. The datasets consist of program
execution traces observed both in a synthetic environment
(based on Anubis [1]) and on real-world machines with ac-
tual users and under normal operating conditions. By using
this mix, we ensure that the representations we consider
are not biased towards particular runtime environments, or
particular usage patterns. Our datasets consist of a total
of 1.5 billion system-calls invoked by over 363,000 unique
process executions. This exploration process leads us to ob-
serve the existence of limit points beyond which accuracy
cannot possibly improve and the non-linearity of accuracy
with model parameters. It is clear that only an exhaustive
(and experimentally-supported) approach can provide suf-
ficient information to allow us to reason about models in
comparison. Thus, the impossibility of generalizing results
in a closed form for finite-state models is one of the main
contributions of the paper.

We summarize our contributions as follows:

• We present a systematic testing technique to evaluate the
quality of behavioral-based detection models. In our ex-
periments, we explore the space of behavioral models by
generating over 200 different detection models and over
220 million of specifications, and test each one against
large, real-world datasets.

• We provide empirical evidence that accuracy varies non-
linearly with any parameters of the specification model
space. Our paper shows how, by attempting to general-

ize results in a closed form, it is easy to fall into common
pitfalls. Therefore, any proposed model has to be driven
by a comprehensive experimental validation.

• We provide empirical evidence that the training set (i.e.,
the benign and malicious samples used to construct a
specification) has a large influence on the resulting ac-
curacy. This means that any analytically developed de-
tection scheme has to be supplemented with experimental
support from large data sets.

Finally, we hope that the methodology and the results
presented in this paper will provide a benchmark for future
malware detector proposals and research efforts.

2. OVERVIEW
Consider the following scenario: A malware analyst is

given the task of deriving a representation from the mal-
ware “catch,” which nowadays can run at over 55,000 new
samples per day [15]. The analyst has to construct an opti-
mal representation from the malware and benign datasets on
hand, and then he has to translate the result into the format
that is understood by the detection engine (possibly creat-
ing multiple signatures in that format). The challenge is to
find an optimal representation for the large set of malware
samples.
If the resulting representation is to be used in a byte-

signature antivirus engine, then the easiest path to get there
is to derive the byte signature that best covers the given mal-
ware set. Unfortunately, this simple approach can result in
a suboptimal outcome because it tries to capture the com-
mon behavior in a fairly rigid representation. Suboptimal
in our case means that the newly derived byte signature
will suffer from false positives or false negatives (and likely
from both). Therefore, as attackers started using obfusca-
tion strategies, detectors were forced to move toward more
complex representations. The first evolution consisted in
using regular expressions over byte sequences [21], approach
that quickly became obsolete as byte patterns have little
predictive power (i.e., they can accurately capture only pre-
viously seen malware) and are not resistant to evasion and
obfuscation techniques. Other static models, such as byte n-
grams [13], system dependencies of the program binary [19],
and syntactic sequences of library calls [17,22] have also been
proposed, but they had limited success.
Researchers have also tried to describe malware in terms

of violations to an information-flow policy. Because it is
not feasible for performance reasons to track system-wide
information flows accurately, the focus shifted on better and
better approximations of the information flow. For example,
Bruschi et al. [3] and Kruegel et al. [11] have shown that
some classes of obfuscations could be rendered innocuous
by modeling programs according to their instruction-level
control flow. At the same time, Christodorescu et al. [5] and
Kinder et al. [8] built obfuscation-resilient detectors based
on instruction-level information flow. However, extracting
and or collecting instruction-level information is either very
hard (from a static point of view) or very inefficient (from a
dynamic perspective).
To avoid the previously mentioned limitations and achieve

a precise and harder to evade malware characterization, re-
cent research has focused on detection techniques that model
the runtime behavior of malware samples [6,9,10,14,20]. To
better illustrate the challenge of extracting a behavioral sig-
nature we can use the simple example of Figure 1. On the



NtOpenKey (" SYSTEM\Cu ... 70B}", 131097)
NtQueryValueKey (1640, "EnableDHCP", 2)
NtQueryValueKey (1640, "DhcpServer", 2)
NtQueryValueKey (1640, "DhcpServer", 2)
NtClose (1640)
NtCreateFile ("\\ Device\ ... 70B}", 3, 0)
NtClose (1640)

(a) Short system-call trace.

s1: NtOpenKey

s2: NtOpenKey("SYSTEM\Cu ... 70B}", 131097)

s3: 〈 NtOpenKey, NtQueryValueKey 〉

s4: { NtOpenKey, NtQueryValueKey }

s5: [ NtOpenKey("SYSTEM\Cu ... 70B", 131097), . . . ,
〈 NtQueryValueKey(1640, "EnableDHCP", 2) ]

(b) Five behavioral specifications derived from (a).

Figure 1: A program execution trace and five examples of behavioral specifications that match it.

left side, there is a brief system-call trace from a program
execution, similar to what an analyst would see if he were to
run the malware samples in a honeypot. On the right side,
we list five possible behavioral representations that match
this system-call trace. Each of these behavioral represen-
tations is a candidate for use in a malware detector. The
first representation, s1, matches all programs whose execu-
tion traces include an invocation of NtOpenKey, irrespective
of its arguments, while s2 will match only if the invoca-
tion has the specified arguments. Behavioral representa-
tions s3 and s4 match programs that invoke NtOpenKey and
NtQueryValueKey in sequential order and any order, respec-
tively. The fifth representation, s5, matches all programs
that invoke NtOpenKey with the specified arguments, followed
by any number of arbitrary system calls, followed by an in-
vocation of NtQueryValueKey with the specified arguments.

Each of the behavioral representations in Figure 1(b) dif-
fers in its expressive power. For example, s1 is less spe-
cific than s2 because it does not impose any constraints on
program arguments, so a detector using s1 will likely have
higher detection rate and higher false positive rate than one
using s2. Thus, in a practical scenario, the analyst is faced
with the problem of finding the optimal behavioral repre-
sentation from an extremely large set of closely related, yet
slightly different candidates. The automation of this kind of
exploratory task of searching for and comparing candidates
is exactly what we focus on in this paper.

Table 1 summarizes how the problem was solved by some
of the most relevant previous publications in the area of
behavioral malware detection. Some of the proposed ap-
proaches are specific to detect particular classes of mal-
ware, e.g., spyware [9] or botnets [20], while others have
a broader scope that can cover different domains. The ta-
ble contains several columns, reporting information about
the data source used to build the models and the structure
of the model themselves. For instance, Christodorescu et
al. [6] use automatically constructed models based on direct
acyclic graphs of system calls, while Kirda et al. [9] manually
selected a subset of potentially dangerous API calls.

The last two columns of table 1 report the size of the mal-
ware and the benign datasets used to test the detection and
false positive rates. Unfortunately, these sets are very small
and often collected on a single machine in a controlled en-
vironment. For instance, MiniMal was tested on six benign
applications run for a maximum of 2 minutes each. Finally,
the efficiency column describes if the proposed solution is
more suitable for runtime detection or for offline malware
analysis. We marked a technique as ”Detection” if the au-
thors present experiments to support a possible end-user

installation of their solution, without taking into account
the real performance overhead (that, unfortunately, was of-
ten too high to be used in a real environment). In fact, in
many cases the authors presented solutions based on com-
plex models (such as graphs enriched with program slices,
or multi-layered graphs) that are hard to apply in realtime.
Even though all these approaches seem to provide accept-

able results, a motivation of why such complex models are
required is still missing. Are simpler behavioral models in-
adequate or insufficient to detect malware? Which ones are
their intrinsic limitations?
To answer these questions, in this paper, we present a

bottom-up testing methodology to evaluate behavioral-based
representations.

3. ATOMS, SIGNATURES, AND MODELS
We describe a detection specification as a model that com-

bines a number of signatures, where each signature is formed
from atoms that represent basic program operations in a
particular temporal and state relation to each other. Con-
ceptually, signatures correspond to low-level program behav-
iors (e.g., reading a system-configuration file), while models
correspond to high-level program behaviors (e.g., exfiltration
of sensitive configuration data) that arise from the coupling
of low-level operations.
A signature captures a program behavior in terms of the

relevant program operations together with the relationships
between them. Signatures are the basic blocks used in the
malware detection process, where the core operation is the
matching of a program against a signature.
According to our approach, we define a signature based

on the following three elements:
• A signature atom is the fundamental behavioral element

that appears in a program trace. For example, program
instructions, library calls, system calls, and system calls
together with their parameters are all possible signature
atoms.

• A signature structure describes how the atoms must be
ordered, and in what trace contexts they may appear for
a match to occur. An example of a structure is a set,
where atoms from the set can be matched in any order,
and within any context in an execution trace.

• A signature cardinality defines how many atoms are in-
cluded in the structure.
We write A to represent the set of all atoms. A program

matches a signature if the program matches the signature
atoms according to the structure of the signature.

Definition 1 (Signature Matching). A program P

matches a signature s = 〈A,Γ, α〉 if an execution trace of the



Table 1: Summary of the main behavioral-based approaches

Approach Data
Source

Model Type Model Extraction Efficiency Malware Set Benign Set

Kirda et al. [9] API Calls API Blacklist Manual Analysis 33 18
MiniMal [6] Syscalls Graph Automated Detection 16 6

BotSwat [20] System &
API Calls

Tainted Args in
Selected Calls

Manual Detection 6 8

Martignoni et al. [14] Syscalls Layered Graphs Manual Analysis 7 11
Kolbitsch et al. [10] Syscalls Graph Automated Detection 563 (6 families) 5

program P contains each atom in the set A only in the order
specified by Γ and separated only by atom strings specified by
α, where:
• A ⊆ A is a set of atoms,
• Γ ⊆ A×A is an order relation between atoms, and
• α : Γ × A+ 7→ {true, false} is a matching filter restrict-

ing what atom substrings the program execution trace can
contain between two matched signature atoms
(i.e., α

(

(si, sj), x
)

= true means that a match is allowed
on a program trace containing the substring sixsj , for
some string of atoms x).

Note that α and Γ together capture what we informally refer
to as the structure of a signature.

A model is defined by a set of signatures and an alert
threshold. The alert threshold defines how many different
signatures must be matched by a program before raising an
alert. For example, it is possible to require 4 different sets
of 7 system calls, or 15 sequences of 3 high-level actions. We
note that models do not require that signatures are matched
in any particular order, but just that a minimum number
(given by the alert threshold) of signatures are matched.
We can now define what it means for a program to match a

model. Intuitively, a program matches a model if it matches
its signatures (or at least a minimum number of them).

Definition 2 (Model Matching).
A program P matches a model M = 〈S, t〉, where S is a
set of signatures S = {s1, . . . , sN} and t is the alert thresh-
old, if the program P matches each signature in some set
{sj1 , . . . , sjt} ⊆ S, with 1 ≤ j1, . . . , jt ≤ N .

The definitions for signature and model are sufficiently
generic to encompass the vast majority of behavioral rep-
resentations that have been used or proposed for malware
detection. For example, byte signatures are models using
program instructions as atoms, with a total ordering rela-
tion, and a matching filter that always returns true. Mal-
specs (aka system-call dependency graphs) are models using
system calls as atoms, with a partial ordering relation, and
a matching filter that determines whether a depedency re-
lation is preserved by a sequence of system calls. Thus, our
model definition gives us the key dimensions along which to
explore accuracy.

The number of all the potential models (i.e., the combi-
nation of all the possible parameters) that can be extracted
from a program is extremely large. The alert threshold is
bounded from above by the total number of possible signa-
tures of a particular type. The cardinality of the signature
is, in the limit, bounded by the maximum number of atoms
in the samples. Finally, the number of signature structures

does not even have a theoretical upper bound (given that
both the order relation and the matching filter are arbi-
trary).

4. MODEL CONSTRUCTION
The fact that the space of all possible models is infinitely

large prevents a complete testing exploration in any mean-
ingful sense. We choose, therefore, to limit our exploration
to a well-defined region containing the models of practical
importance. In this section, we first discuss our choices to
constrain the exploration, and then describe our methodol-
ogy for exhaustively covering the resulting space and effi-
ciently comparing the accuracy of models.

4.1 Restricting the Model Space
We define limits for each of the four parameters that char-

acterize a model: atoms, structures, number of signatures,
and alert thresholds.

4.1.1 Atoms

In our experiments we consider four types of atoms: sys-
tem calls, system calls with arguments, actions, and actions
with arguments. An action corresponds to a higher-level
operation (e.g., reading a file, or loading a library) and it is
obtained by grouping together a set of similar system calls
(as illustrated in Table 2). For example, reading a file re-
quires more than one low-level operations (at least one to
open the file, and one or more to read the content). The
action atoms have been defined by us, based on the tradi-
tional grouping of system calls by Microsoft into different
classes [18].

4.1.2 Structures

We consider three possible structures to combine atoms
together: n-grams, tuples, and bags.
An n-gram is a sequence of n atoms that appear in con-

secutive order in the program execution trace. In the terms
of the Definition 1, an n-gram is given by the total order re-
lation Γ = {(a1, a2), . . . , (ai, aj>i), . . . , (an−1, an)} and the
matching filter α equal to false everywhere.
A bag of cardinality n (or n-bag) contains n atoms with-

out any particular order relation. Matching between a pro-
gram and a n-bag signature consists of checking whether
each atom in the bag appears at least once in a program ex-
ecution trace. Formally, a bag signature has an empty order
relation, Γ = ∅, and an always-true matching filter α.

A tuple signature of cardinality n (n-tuple) combines the
strict order relation of n-gram with the always-true match-
ing filter of bag signatures. A tuple signature is matched by



Table 2: The four types of atoms considered in this study.

Atom Type Examples
system call NtOpenFile, NtClose, . . .

system call with arguments
NtOpenFile(104860, "C:\WINDOWS\system32\Msimtf.dll", 5, 96),
NtClose(100)

action ReadFile, LoadLibrary, . . .

action with arguments
ReadFile("C:\WINDOWS\REGISTRATION\R00000000000F.CLB"),
Loadibrary("KNOWNDLLS\NTDSAPI.DLL")

a program if its atoms appear in order, but at any distance
from each other, in the program execution trace.

We also consider more complex structures derived from
combining the three basic structures with themselves in a
recursive way. For example, it is possible to build models
containing bags of n-grams, n-grams of tuples, or any other
combination of the basic structures. We extend our defini-
tions from signatures over atoms to signatures over signa-
tures in the natural way. For example, a k-bag of n-grams
is a signature with a bag structure and k n-grams as ele-
ments. Matching naturally extends in a similar way, where
matching a signature requires the recursive matching of its
component signatures. In the case of a bag of k n-grams,
the matching requires matching each of the k n-grams in
any order.

We observe that not all the structure combinations result
in new signature types. For example, n-grams of n-grams,
bags of bags, and tuples of tuples do not add complexity be-
cause they are equivalent to increasing the cardinality of the
basic structure. Other combinations may instead generate
models with a confused semantic. For example, an n-gram of
bags would require to match in a strict order (without any-
thing else in between) two groups of system calls that can
appear in any order and at any distance between each other.
In our experiments we excluded these ambiguous cases and
we focused on the following non-trivial combinations: bags
of n-grams, bags of tuples, tuples of bags, and tuples of n-
grams.

These structures may look too simple and “behind the
times” when compared with graph models recently intro-
duced in literature (often adopting graph-based structures).
However, this focus is deliberate, for two reasons. First, the
basic models that we consider should be comprehensively
assessed for their limitations before new research delves into
increasingly more complex models. Second, combinations
of our basic structures (n-grams, bags, and tuples) have
the same expressive power as loop-free DFAs and NFAs (al-
though we allow for whole-alphabet self-loops, i.e., Σ⋆). In-
tuitively, for example, it is possible to enumerate all paths
in a loop-free DFA by using a number of tuple signatures.

4.1.3 Signature Cardinality

We decided not to put an upper bound on the number
of atoms that can be included in a signature. Instead, we
performed an exhaustive exploration by first generating all
models with 1 atoms, then all models with 2 atoms, etc.
Since this upper bound is extremely high, we kept exploring
this direction until the resulting models became too inac-
curate to serve any purpose (see Section 5 for more details
about the stopping criterion we adopted in our experiments).

4.1.4 Alert Thresholds

A model’s alert threshold is naturally limited by the num-
ber of signatures in the model. In our experiments, we eval-
uate all values of the alert threshold, even though most of
the useful results are obtained with thresholds below 1,000.

4.2 Rationale
One might wonder at this point whether we are restrict-

ing ourselves to a set of representations that are too simple
to be useful in a malware detector. There is a long his-
tory of projects that used finite automata or richer models
derived from finite automata to capture program behavior.
We observe that models built on recursive combinations of
structures can easily reach the same expressivity as finite
automata. An additional reason for our focus on basic struc-
tures is that we want to restrict our analysis to behavior rep-
resentations that can be enforced in real time on end users’
machines. This excludes representations that need to collect
detailed, “inner” information about a program’s execution,
including information about individual instructions that are
executed and detailed data flows between system calls. Col-
lecting such data (in particular, taint information) requires a
special runtime for program execution, and it incurs a signif-
icant performance penalty. While data flow tracking mecha-
nisms are invaluable for the fine-grained analysis of malware
(in a controlled environment), they are typically impractical
for malware detectors running on the user’s machine. We
argue that the mix of our basic structures and the way they
can be combined together provides models with significant
flexibility and expressiveness to capture program behaviors.

4.3 Exploration of the Model Space
Our testing approach is fundamentally experimental, in

that we evaluate models against each other by comparing
their associated detectors’ accuracies against test sets of
malware and benign programs. A detailed description of
our experimental methodology appears in Section 5.

4.3.1 Number of Possible Signatures

For a program execution trace of length M , there are
M −n+1 possible sequences of length n. Since this number
is usually not too high, we are able to construct them all
without applying any approximations. The number of bags
of cardinality n for an execution trace containing x unique

atoms is given by

(

x

n

)

. While the set of unique atoms is

limited in the case of system calls and actions (since, for
example, Microsoft Windows has no more than 350 system
calls, depending on the version), the domain of atoms ex-
plodes in size for the types of atoms with arguments (i.e.,
system calls with arguments and actions with arguments).



For tuples, the problem is even bigger. From an execution

trace containing x atoms, it is possible to extract

(

x

n

)

n-

tuples.
As it is evident from these simple computations, even ex-

tracting all models based on simple structures is often im-
practical, as the number of signatures to be evaluated grows
factorially in the size of the execution trace. Thus, we have
to resort to some sort of pruning technique to reduce the
number of signatures generated, and therefore the number
of test to execute.

4.3.2 Experimentally Pruning the Signature Gener-
ation

If the number of atoms is high, generating all bags is com-
putationally infeasible. In such cases, we apply the following
pruning rule in order to use information gleaned from mod-
els considered up to now to reduce the number of models
we consider in the future. A new signature is generated and
considered for use in a model if and only if it covers some
minimum number Mmin of malware samples that are not
already covered by a minimum number Smin of existing sig-
natures. In our experimental evaluation, we use Mmin = 5
and Smin = 20, 000. In other words, for our purpose, a new
signature is generated only if it covers at least 5 samples
that are not already covered by more than 20,000 existing
signatures.

The meaning of these thresholds is as follows. The first
threshold (Mmin) is in place to prevent overfitting (i.e., the
creation of signatures that only detect malware samples that
are already covered by other signatures). Such signatures
are not general enough and, therefore, will not contribute
to the detection rate. The second threshold (Smin) is used
to prevent the generation of too many signatures for a sin-
gle sample. This ensures that the generated signatures are
sufficiently diverse to cover different subsets of the malware
test set.

We found this simple pruning rule, controlled by only two
parameters, to be sufficient in reducing the signature num-
bers to a manageable level. Because it requires that each
new signature has enough “support” in the test set, we know
that signatures that are not generated are guaranteed not
be part of an optimal model.

5. MODEL EVALUATION
To evaluate the effectiveness of each model in distinguish-

ing between malicious and benign behaviors, we performed
a large number of experiments. In each test, we extracted
the set of signatures according to the approach described
below, and we then measured the number of false alarms
and the number of detected malware samples. In particular,
we grouped the false positives by application (i.e., a false-
positive rate of 1% means that 1 application out of 100 was
erroneously flagged as malicious), instead of counting indi-
vidual executions that were detected as malicious. Similarly,
the detection rate is measured per sample so that a 1% de-
tection rate indicates that 1 malware sample out of 100 was
correctly detected by the signatures set.

5.1 Testing Methodology
We used four different datasets in our experiments. The

first is a collection of execution traces of 6,000 malware sam-

ples randomly extracted from Anubis [1]. This set, that we
call malware, includes a mix of all the existing categories
(botnets, worms, dropper, Trojan horses, ...), drawn from
malware that is active in the wild. The second dataset con-
tains 180 GB of execution traces collected from 10 different
real-world machines, where we observed normal day-to-day
operation of regular computer users. We label this set good-
ware. The third dataset (called anubis-good) contains the
traces of 36 benign application executed under Anubis. Fi-
nally, we used a dataset of execution traces for 1,200 mal-
ware samples that have been collected on a different ma-
chine than the ones normally used for Anubis (we call this
malware-test).
The purpose of having execution traces from different ma-

chines for both malware and benign programs is to eliminate
any machine-specific artifacts (e.g., machine IDs, user IDs)
that introduce noise in our results in the form of falsely dis-
criminative atoms.
The malware dataset, anubis-good dataset, and traces

for nine out of the 10 machines in the goodware dataset are
used to build the models. The traces from the tenth machine
in the goodware dataset and the malware-test dataset are
instead used to evaluate the models. The choice of the nine
machines used for model construction is done using 10-fold
cross-validation approach. The evaluation results presented
here are averages across the 10 tests. For any given structure
and cardinality, extracting the best model works as follows:
1. We extract the models from the malware set. This phase

may include pruning to limit the maximum number of
signatures generated to a manageable level.

2. We remove from the models the ones that match the
anubis-good dataset. This is required to be able to auto-
matically “clean” our signatures of Anubis-specific items
(e.g., the name of the sample file, usernames, etc.).

3. We create the signature by removing from the models ex-
tracted so far the ones that match on 9 out of 10 goodware
machines.

4. We test the false positive of the signature set on the 10th
machine, and the test detection rate on the malware-test
dataset. The results are extracted for all possible values
of the matching threshold.

5. We repeat Steps 3 and 4 for a total of 10 times, each time
excluding a different goodware machine. At the end, we
compute the accuracy by calculating the average of both
the detection and the false-positive rate between the 10
experiments.

5.1.1 Experimental Setup

All the experiments were executed using two clusters: one
with eight 4-core Xeon(R) machines with 16 GB of RAM
each, and the second with eight 16-core AuthenticAMD ma-
chines with 45 GB of RAM.

5.1.2 Model Construction and Performance Evalua-
tion

In our experiments, we automatically constructed and tes-
ted a total of 215 different detection models, containing a
total of more than 220 million of signatures. For each of
them, we performed 10 cross-validation experiments and we
averaged the results. This required more that 2,100 differ-
ent unique tests. In addition, we designed our matching
algorithm to test in parallel for all possible values of the
matching threshold.



(a) Detection and false-positive rates by alert threshold. (b) ROC curve.

Figure 2: Accuracy for models of 4-grams of system calls with arguments.

Each experiment required two distinct phases: one to ex-
tract the signatures, and one to evaluate the models to mea-
sure detection rate and false positives. Extracting the sig-
natures to cover the training set of 6,000 malware samples
required a substantial computational power. The time re-
quired for this task greatly depends on the complexity of
the signatures, and on the number of distinct atoms. It
ranged from 20 minutes for n-grams of system calls without
parameters to almost 2 days for tuples of system calls with
parameters.

Another important factor to take into consideration when
evaluating a certain model is the time required by a mal-
ware detector to perform the matching. For this reason,
we conducted a separate experiment to measure the match-
ing speed on a standard desktop computer (Intel dual Core
2.66 GHz with 4 GB of RAM). We tested our prototype mal-
ware detector on execution traces covering twelve hours of
user activity and recorded the time and amount of memory
required by the detection process. Our results shows that
the memory consumption may quickly become a problem
when the number of signatures increases (reaching around
1GB for 5 millions signatures). Since the number of signa-
tures is strictly related to the signature’s cardinality, using
signatures containing too many elements may become im-
practical in a real world deployment.

5.1.3 Experimental Strategy

For each experiment, we plotted a graph depicting the de-
tection and false positive rates for all possible values of the
matching threshold. For example, Figure 2(a) shows the re-
sults obtained with 4-grams of system calls with arguments.
The graph shows that both false-positive and detection rates
decrease when we increase the number of signatures that we
require to match in any given sample. With a threshold of
1, the model can detect around 98% of unknown malware
samples, but also misclassify almost 45% of the benign ap-
plications as malicious. In order to get a false positive rate
close to zero, we would need to significantly increase the
threshold, thus affecting also the detection rate that would
drop down to a mere 35%. While this graph is useful in
showing the overall effect of the threshold, it is difficult to

tell which is the right value to chose in order to get the best
trade-off between false positive and detection.
To answer this question, we also plotted the results of each

experiment as a ROC curve, in which the X axis represents
the false-positive rate, and the Y axis represents the detec-
tion rate. For example, Figure 2(b) shows the ROC curve
obtained with the same model of 4-grams of system calls
with arguments.
These two graph types are useful to summarize the effec-

tiveness of a given model. However, our experiments gen-
erated hundreds of such graphs, and it is not obvious how
they can be automatically compared in an objective way.
For this reason, we decided to summarize each experiment
using three indicators that represent different ways to choose
the best configuration on the ROC curve. The first value
(Vmax) corresponds to the configuration that maximizes the
area under the curve. The second value (V1) is the one in
which the model provides a 1% false-positive rate. Finally,
the third value we considered (V90) corresponds to the con-
figuration that provides a 90% detection rate.
By studying how these three indicators (emphasized by

small circles in the ROC curve in Figure 2(b)) change, it is
possible to quickly compare different models, or the effect of
different parameters in a given model.
In the rest of the section, we discuss the results of our

empirical evaluation with respect to these three indicators
(Vmax , V90, and V1), and highlight several interesting discov-
eries along the way.

5.2 Global Comparison
The main objective of our experiments is to study the

impact of different parameters on the effectiveness of a ma-
licious behavior detector. Table 3 shows a summary of the
best results across all the basic structures and atom types.
The model providing the best results is the “2-bags of 2-
tuples of actions with arguments”, closely followed by the
“2-tuple of actions with arguments” and the “4-bags of ac-
tions with arguments”. The first model was able to detect



Table 3: Evaluation summary of different types of models.

Model Cardinality Range Vmax Best Cardinality V90 V1

n-grams of syscalls 2–40 0.615 10 31.7% 4.1%
n-grams of syscalls with args 2–40 0.775 3 15.8% 43.3%
n-grams of action 2–75 0.423 15 62.2% 0.4%
n-grams of action with args 2–75 0.737 2 27.1% 45.9%
bags of syscalls 1–10 0.127 3 – 12.8%
bags of syscalls with args 1–20 0.736 1 26.4% 43.3%
bags of actions 1–10 0.004 1 – –
bags of actions with args 1–15 0.970 4 0.4% 97.3%
tuples of syscalls 2–10 – – – –
tuples of syscalls with args 2–10 0.616 2 – 28.0%
tuples of actions 2–10 – – – –
tuples of actions with args 2–10 0.987 2 0.0% 99.2%

bags of n-grams of syscalls 2–4/2–4 0.500 2/2 – 8.2%
bags of n-grams of syscalls with args 2–4/2–4 0.648 2/4 – 30.2%
bags of n-grams of action 2–4/2–4 0.111 3/4 – –
bags of n-grams of action with args 2–4/2–4 0.529 2/3 – 22.0%
bags of tuples of syscalls 2-4/2-4 – – – –
bags of tuples of syscalls with args 2-4/2-4 0.497 2/2 – 33.8%
bags of tuples of action 2-4/2-4 – – – –
bags of tuples of action with args 2-4/2-4 0.990 2/2 0.42% –
tuples of n-grams of syscalls 2-4/2-4 0.509 2/2 – 2.9%
tuples of n-grams of syscalls with args 2-4/2-4 0.624 2/3 – 26.5%
tuples of n-grams of action 2-4/2-4 0.142 3/4 – 0.1%
tuples of n-grams of action with args 2-4/2-4 0.536 2/2 – 24.9%
tuples of bags of syscalls 2-4/2-4 – – – –
tuples of bags of syscalls with arguments 2-4/2-4 0.480 2/2 – 32.4%
tuples of bags of actions 2-4/2-4 – – – –
tuples of bags of actions with arguments 2-4/2-4 0.873 2/2 – –

99% of unknown malware samples with 0.4% false positives
(and a variance of 0.00016), while the second achieved a 90%
detection with zero false alarms.

An interesting observation is that the three indicators
(max ROC area, false positives at 90% detection rate, and
detection at 1% false-positive rate) do not always provide
consistent results. In other words, there are models that
have a good V90, but do not perform equally well on the V1

scale, and vice versa. Therefore, the best model also depends
on the user’s choice of the optimization goal (e.g., detection
rate, false-positive rate, or a combination of the two). On
the other hand, variance values keep being consistent, and
are in average 0.01 on the false positive rate at 90 and 95%
detection rate and 0.00001 on the detection rate at 1% false
positive rate. The highest variance value we encountered
all over the experiments was of 0.033, on a model whose
performances are not of high interest (20-grams).

5.3 Impact of Pruning Techniques
Before proceeding in the analysis of the different param-

eters, it is important to verify that the pruning techniques
we adopt to generate the models of bags and tuples are not
affecting the validity of the results.

As mentioned in Section 4, in order to contain the num-
ber of signatures to a reasonable volume, we discarded the
signatures that were not detecting at least five malware sam-
ples (i.e., not general enough) not already covered by 20,000
other signatures (i.e., too redundant). As a consequence,
the signature set extracted with this greedy approach de-
pends on the order in which the samples in the training set

are analyzed. Changing the order is equivalent to changing
the starting point of the algorithm, and thus the greedy ap-
proach would converge to a different solution. To test the
effect of the initial condition on our results, we chose a class
of models (tuples of system calls with parameters, of vari-
ous cardinality) and we repeated three times the signature
extraction phase with three different orders of the training
samples: normal, reversed, and random.
What we observed is that changing the initial conditions

sensibly affects the total number of signatures that we ex-
tracted. However, the fluctuation in the quality indicators
were quite small (e.g., ± 3% for Vmax) suggesting that the
properties of the models were affected only marginally by
the different pruning. Even more importantly for our re-
sults, the trends between different models were not affected
at all. For example, the effect on the graphs when moving
from a 4-tuple to a 10-tuple did not depend on the starting
point of the pruning algorithm.
This gives us confidence that even though the absolute

values we present may be slightly inaccurate due to the un-
avoidable pruning approach, the global trends and the mes-
sages we discuss in the rest of the section are valid inde-
pendent of the approximate algorithm used to extract the
signatures.

5.4 Impact of Model Threshold
One question we tried to answer with our experiments is

whether there exists an optimal range of threshold values
that improve the accuracy for all models. As we already de-
scribed in Section 4, both the detection and the false positive



(a) Matching threshold for different model struc-
tures

(b) Impact of Cardinality on the Vmax of various models (interpolated)

Figure 3: Matching thresholds and impact of cardinality for various models.

rates monotonically decrease when the matching threshold
is increased. The first thing we observed for the experiments
is that the drop is faster for the models based on a seman-
tically rich set of atoms (e.g., the syscalls with parameters)
than on those that are based on simpler atom sets.

Another important observation of our experiments is that
the effect the threshold has on a model’s accuracy depends
on the structure of the model. Figure 3(a) shows three typ-
ical detection rate curves obtained for bags, sequences, and
tuples of length 4. The graph shows that n-gram models are
much more sensitive to the threshold than bag models. In
fact, while the detection rate for all n-gram models quickly
drops when increasing the threshold, for the bags the accu-
racy charts exhibit “plateaus” that decrease more slowly.

To summarize, the models that generate a large number of
less constrained signatures, such as bags, are less sensitive to
the threshold than the models that generate a small number
of more specific signatures. Indeed, we found some models
(e.g., bags of actions with arguments), for which increasing
the threshold between 1 and 1,000 produces a drop of less
than 2.5% on the detection rate.

5.5 Impact of Signature Cardinality
In our experiments, for each signature type, we repeated

the test with increasing cardinality values (in the set [1, 2, 3,
4, 7, 10, 15, 20, 30, 40, 50, 60, 75]), until we noticed that the
detection rate was constantly dropping and the maximum
area of the ROC curve decreased below 0.2.

Figure 3(b) shows how the cardinality affects the signature
effectiveness in distinguishing benign from malicious behav-
iors. Because of space constraints, the chart reports only
few models; however, a similar behavior was also observed
for the other structures as well. For low values of cardinality,
in the range of 2 to 10, adding more atoms to the model can
improve the results. However, values greater than 10 do not
seem to provide any further benefit. In this case, increasing
the cardinality only had the effect of producing signatures
that overfit the training malware dataset, thus reducing the
detection rate.

The accuracy of certain models (like bags and tuples)
drops fast when increasing the cardinality, while it decreases
slowly for n-grams and models based on actions. Therefore,
while bags and tuples reached our Vmax = 0.2 threshold at a

size of 10 or 15, for n-grams we had to run experiments up to
the 75-grams of actions. The fact that increasing the cardi-
nality does not help to improve the accuracy is an interesting
and positive result because extracting and matching signa-
tures that contain a large number of elements is extremely
time consuming.
The relation between the cardinality of models and the

number of extracted signatures is less clear. For models
based on n-grams, the signature number keeps growing lin-
early with the size of the models. However, the number
of signatures that actually contribute to the detection (i.e.,
the ones that actually match at least one of the samples)
shows an opposite negative trend (i.e., they slowly decrease).
Again, this is the consequence of the fact that the signatures
are overfitting the training set. Models based on bags gener-
ated a high number of signatures also for small cardinality.
In this case, however, the number of matching signatures is
also quite large, often an order of magnitude higher than for
any other model. This is instead an example of signatures
that are too general, and therefore, easier to match.
Finally, we tested nine cardinality combinations for each

recursive model (inner cardinality = 2,3,4 and outer cardi-
nality = 2,3,4). For example, we evaluated 3-bags of 4-grams
or 2-tuples of 4-bags. Our considerations for simple models
are still valid also for the recursive ones – the only difference
being that all the curves dropped much faster. For exam-
ple, the 3-tuples of n-bags starts with a Vmax of over 0.873
with n = 2, decreases to 0.199 with n = 3, and dropped
to 0 for n = 4. This results from the fact that, structure
aside, a 3-bag of 4-tuples contains 12 atoms and therefore
is roughly equivalent (from a cardinality point of view) to a
basic structure of that size.

5.6 Impact of Atoms and Signature Structure
The impact of the atom abstraction strictly depends on

the structure used to combine the atoms together. In fact,
this is the only dimension without a clear winner, with each
combination having its own advantages and disadvantages.
For example, n-grams are the only structure that can pro-

duce some results also with models based on actions with-
out arguments. However, our experiments show that models
based on atoms without arguments contain signatures that
are too generic. Therefore, also in the few cases in which



they were able to reach the 90% detection level, the number
of false alarms was, in the best scenario, already over 30%.

N -grams are also the best structure for low-level atoms
(e.g, system calls), while bags and tuples provides the best
results when combined with high-level atoms (e.g., actions).
At a closer inspection, for models based on system calls,
n-grams perform better than bags which in turn perform
better than tuples. For models based on actions, the accu-
racy impact is reversed, with tuples performing better than
bags, which perform better than n-grams.

Finally, the experiments on recursive structures confirmed
the fact that tuples and bags tend to provide better results
than sequences, especially when combined with actions with
arguments. In fact, the “2-bags of 2-tuples of actions with
arguments” was the best models among all our experiments
(with respect to the max area of the ROC curve) achieving
a Vmax = 0.99 and a V90 = 0.4%.

5.7 A Quick Look Inside the Models
In order to better understand why some models perform

better than others, we took a closer look at some of the
models we generated in our experiments. In particular, we
extracted for each model the top 20 signatures contributing
to the detection rate, and the top 20 signatures that were
responsible for the false positives.

The first observation is that the signatures based on bags
or tuples tend to be more homogeneous, picking only the
combination of atoms that may appear less frequently in
normal programs. On the other side, n-grams are forced
to combine atoms that appear in a strict order, and there-
fore often contain more common calls about registry and
file system operations. The advantage of tuples over bags
is the fact that they can contain repetitions. For example,
one of the top signatures of the 2-tuple of n-grams with ar-
guments contains a repetition of the same NtReleaseMutant

system call. The same call never appears in the top 20 for
bags structures. In fact, the presence of only one of these
calls was one of the main cause of false alarms.

Looking at the type of system calls included in the top
signatures does not provide any useful insight. For exam-
ple, NtQueryValueKey is an important item in the detection
of models based on bags, but it is a main cause of false
alarms for n-grams models. On the contrary, the picture
is more clear when looking at models based on actions. In
this family, one clear trend is the fact that the detection
rate of good models is always dominated by the LoadLibrary

atom. This high-level action summarizes many operations
in the system-call world, and was therefore more difficult to
express in models based on them. A second result is that
the signatures responsible for false positives are very often
based on actions related to registry operations.

To conclude, we also looked at the presence of particularly
sensitive parameter values. For example, we checked ten
registry keys associated to autostart locations, reported by
Bayer et al. [2] as common in malicious samples. Most of
the keys never appeared in the top-20 signature sets and few
of them only appear as causes for false positives. However,
there was one interesting exception, in that the registry key
SOFTWARE/Microsoft/Active Setup/Installed Components/

was present in the top-20 signatures of 7 different n-grams
models, but never appeared as a top cause of false alarms.

6. THE IMPORTANCE OF TESTING
Analyzing models beyond the ones built on signatures

with simple structure requires a concerted effort to address
the explosion in the number of candidate models. For ex-
ample, if the number of tuple models over atoms is factorial
in the size of the execution trace, then computing all mod-
els of bags of tuples is not feasible. Therefore, it may be
tempting to follow some a priori rules, maybe based on intu-
itions about the models and their accuracies. Unfortunately,
our experimental results indicate that, in general, no valid
rules of this form exist, and that pruning rules should not
be derived analytically without a solid experimental testing
support.

Fallacy: Increasing the specificity of a component in a
model improves the model’s accuracy.

When the cardinality of a signature is increased to add
more atoms to it, the signature becomes more specific and,
therefore, less likely to match on both the goodware and the
malware datasets. The result is that, intuitively, a model
based on 3-grams should generate less false positives than a
model based on 2-grams.
However, trying to extend the property of a signature to

the property of the models based on that signature is a very
common and dangerous pitfall. In fact, since altering the be-
havioral model alters the number of signatures that are gen-
erated, the overall results could often go against the common
sense (e.g., making the signatures more specific can increase
the number of matches of the entire model).
For example, we can consider the very simple scenario il-

lustrated in Figure 4. The malware set contains only one
sample that executes five atoms (a1...a5), and the goodware
dataset contains only one process that executes seven atoms
(again a1...a5 but in a different order). The bottom part of
the figure shows some of the models that can be extracted
from the two datasets (the signatures in each model are the
ones that match the malware samples but never appear in
the goodware one). The 3-grams model contains three sig-
natures, the first of which, 〈a1, a2, a3〉, is not covered by
any signature in the 2-grams model. Therefore, any pro-
gram executing those three actions in a row would trigger a
false alarm in that model, but not in the one with a lower
cardinality (i.e., by increasing the cardinality we possibly
increase the detection and false positive rates). Therefore,
the actual effect of changing the cardinality of a model can
only be measured experimentally, as we did earlier in this
section.

Fallacy: Moving to a more selective model structure
improves the model’s accuracy.

Different structures are comparable in terms of their ac-
curacy only when considering one signature at a time. For
instance, sequences are more specific than tuples that, in
turn, are more specific then bags. Hence, one may erro-
neously think that, keeping all the other parameters con-
stant, moving from a sequence to a bag would improve the
detection rate but also the false positives.
However, a quick look at the example in Figure 4 is enough

to understand that this relationship between signatures does
not hold at the model level. For example, the bag models
are all empty, the 2-tuple contains only one signature, and
the 2-grams contains two. The situation is not much better



Malware: (a1, a2, a3, a4, a5)
Goodware: (a3, a1, a2, a5, a4, a2, a3)
2-grams : 〈a3, a4〉, 〈a4, a5〉
3-grams : 〈a1, a2, a3〉, 〈a2, a3, a4〉, 〈a3, a4, a5〉
2-tuple : [a4, a5]
3-tuple : [a1, a3, a4], [a1, a3, a5], [a1, a4, a5], [a2, a3, a4], [a2, a3, a5], [a3, a4, a5]
k-bags : ∅

Figure 4: Example of Behavioral Models

when we consider recursive structures. In general, there is no
clear relation in terms of false positives and detection rate,
between a simple model (e.g., a 5-grams) and its aggregated
version (e.g., a 3-tuple of 5-grams).

This discussion illustrates that it is not possible to gener-
alize results in a closed form. Therefore, an analysis of the
model space has to be necessarily informed and driven by
a comprehensive experimental evaluation. Otherwise, the
use of intuitive yet wrong rules would erroneously eliminate
certain models from consideration.

7. CONCLUSION
In this paper, we propose a systematic approach to mea-

sure how the choice of behavioral models influences the qual-
ity of a malware detector. We achieve our goal through a
large set of testing experiments in which we explore the space
of many possible behavioral models. Our findings confirm
that the accuracy of certain models is very poor, indepen-
dently of the values of their parameters. In general, the best
models are the ones that rely on few, high-level atoms with
their arguments. Finally, our experiments show how each
parameter impacts the final result and how they should be
chosen in order to maximize the accuracy and reduce the
false alarms.
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