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Abstract

Most of the structures in Civil Engineering consists in assemblies of deformable
bodies, thus it is of interest to dispose of efficient models of junctions between de-
formable solids. The classical schemes of Continuum Mechanics lead to boundary
value problems involving several parameters, one being essential: the (low) thick-
ness of the layer filled by the adhesive. For usual behaviors of the adherents and
the adhesive, it is not difficult to prove existence of solutions, but their numerical
approximations may be difficult due to the rather low thickness of the adhesive im-
plying a too fine mesh. We propose a simplified but accurate mathematical modeling
by a rigorous study of the asymptotic behavior of the three-dimensional adhesive
when its thickness goes to zero. Depending on the stiffness of the adhesive, the limit
model will replace the thin adhesive layer by either a mechanical constraint along the
surface the layer shrinks toward or a material surface; the structure of the constitu-
tive equations of the constraint or of the material surface keeping the memory of the
mechanical behavior of the adhesive.

The mathematical techniques used in these studies, carried out for more than
25 years, involve variational convergences and the Trotter theory of convergence of
semi-groups of operators. We will present classical results concerning standard elastic
or dissipative behaviors of the adhesive and some new ones devoted to microscopic
aspects, imperfectly bonded adhesive joints, loaded joints, etc. . .

Keywords: junctions, asymptotic analysis, variational convergence, convergence of semi-
groups of operators.

1 Introduction

Most of the structures in Civil Engineering consists in assemblies of deformable bodies,
thus it is of interest to dispose of efficient models of junctions between deformable solids.
The classical schemes of Continuum Mechanics lead to boundary value problems involving
several parameters, one being essential: the (low) thickness of the layer filled by the
adhesive. For the usual behaviors of the adherents and the adhesive, it is not difficult
to prove existence of solutions, but their numerical approximations may be difficult due
to the rather low thickness of the adhesive implying a too fine mesh. Moreover, the
mechanical properties of the adherents and the adhesive being very different, the involved
systems may be very ill-conditioned. Hence, it is capital to propose simpler but accurate
enough models. A classical way is to consider the real geometrical and mechanical data,
like thickness, stiffness, etc, as parameters and to study the asymptotic behavior of the
parametrized boundary value problems when these parameters go to a natural limit (0 if
the quantity is small, +∞ if it is large!). This may be done by various methods: formal
asymptotic expansions, singular perturbations,. . . Here, we chose the rigorous point of view
of variational analysis by studying the asymptotic behavior of the minimizers of the total
mechanical energy functional. We show that they converge (with respect to a topology
induced by the mechanical energy) toward the solutions of a minimization problem which
will be our proposal of simplified model.

Two main cases of elastic junctions have been treated in this way:

i) the soft junctions, where the stiffness of the junction is far lower than the ones of



the adherents (it corresponds to soft adhesive bonded joints), see for instance [1] and
the references therein,

ii) the hard junctions, where the stiffness of the junction is far larger than the ones of the
adherents (which may occur in some situations of welding), see for instance [2], [3]
and the references therein.

Let us recall that a big difference in the nature of the asymptotic models occurs. The
soft adhesive junction is replaced by a mechanical constraint between the adherents whose
surface energy is a function of the relative displacement of the adherents along the interface
the junction shrinks toward. On the contrary, the hard junction is replaced by a material
surface perfectly stuck to the adherents, with a surface strain energy density function of
the surface gradient of the displacement (here, there is no jump of displacement across the
interface).

Anyway, these models are simpler than the genuine ones because surface integral func-
tionals are involved in place of integral functionals on a thin layer. They may be accurate
enough due to the rigorous convergence results: the closer the parameters to their natural
limits, the sharper the models!

Here, I will describe some extensions of these two basic results which have recently been
done in Montpellier in collaboration with Gérard Michaille, Oana Iosifescu and Pongpol
Juntharee; all of the material is gathered in the Ph.D. thesis of Pongpol Juntharee. The
first part is devoted to soft junctions and two extensions are presented. First, we consider
the case when the soft adhesive bonded joint is not perfectly stuck to the adherents and
after the case when the joint, perfectly bonded to the adherents, is subjected to a loading.
The second part concerns hard junctions and is a first attempt to model some fracture
phenomena in soldered joints. For the sake of simplicity, all the junctions considered here
occupy layers of constant thickness and, like the adherents, are assumed to be elastic.
Hence the starting equilibrium problems may be formulated in terms of minimization
problems in some suitable function spaces and we systematically derive our asymptotic
models through variational convergence methods.

2 Soft junctions

2.1 An asymptotic model for a thin, soft and imperfectly bonded

elastic joint

To simplify, we confined to the case of a unique adherent lying in a domain Ω, included
in {x3 > 0} with a Lipschitz-continuous boundary whose intersection S with {x3 = 0} is
a domain of R

2. It is linked with a rigid support {x3 < −ε} by an adhesive occupying
the layer Bε := S × (−ε, 0). The bulk energy density of the adherent is a strictly convex
function of the linearized tensor of deformation e(u)−u is the displacement - with quadratic
growth. The adherent is subjected to body and surface forces of densities f and ϕ, and
is clamped along Γ0 ⊂ ∂Ω. The bulk energy density of the adhesive is a function of the
linearized tensor of deformation of the type :

WµS ,µD
(e) := µSW1(tr e) + µDW2(dev(e))

tr e := e11 + e22 + e33, dev(e) := e −
1

3
Id

which, without particular mathematical difficulties, generalizes the density associated with
an isotropic linearly elastic material, W1, W2 being strictly convex with quadratic growth
(but, as for W , non necessarily quadratic!). We also assume the existence of smooth
enough recession functions of order 2 W∞,2

i . The adhesive is not subjected to forces, is
clamped on the rigid support and the mechanical constraint between the adhesive and
the adherent is not necessarily pure adhesion but is described by a surface energy density
h, which is a non negative, convex, lower semi-continuous function in R

3 vanishing at

0. Thus, both realistic smooth densities like
1

p
|·|p and realistic non smooth densities like

indicator functions of closed convex subsets of R
3 may be taken into account! Assuming
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the forces densities of class L2, it is clear that an equilibrium configuration is given by the
unique solution ūs of the following problem involving the triple s := (ε, µS , µD):

(Ps) Min{Fs(ν) − L(ν); ν ∈ Vs }

with

Vs := { ν ∈ L2(Ωε; R
3); ν+ := ν|Ω ∈ H1

Γ0
(Ω; R3), ν− := ν|Bε

∈ H1
S
−ε

(Bε; R
3) },

Ωε := Ω ∪ Bε

H1
Γ0

(Ω; R3) := { ν ∈ H1(Ω; R3); ν = 0 on Γ0 }

H1
S
−ε

(Bε; R
3) := { ν ∈ H1(Bε; R

3); ν = 0 on S−ε := (0, 0,−ε) + S }

L(ν) :=

∫

Ω

f(x) · ν(x) dx +

∫

Γ1

ϕ(x) · ν(x) ds, the work of external loading,

Fs(ν) :=

∫

Ω

W (e(ν+)) dx +

∫

Bε

WµS ,µD
(e(ν−)) dx +

∫

S

h([ν](x̂, 0)) dx

[ν] := γ0(ν
+) − γ0(ν

−), the jump of displacement across S

(or the relative displacement along S) where the same symbol γ0(w) denotes the trace on
S of any element w of both H1(Bε; R

3) and H1(Ω; R3), of course x̂ = (x1, x2). To get a
simplified model (suitable for numerical computations), we study the asymptotic behavior
of ūs under the conditions: there exist s̄ ∈ {0}× [0,∞)2, (µ̄S , µ̄D) ∈ [0,∞]2 and a positive
real number ε0 such that: s̄ = lim s, (µ̄S , µ̄D) = lim(µS/ε, µD/ε), 0 = lim(εµS , εµD),
0 < ε < ε0. It was shown in [1] that the surface energy density

W µ̄S ,µ̄D
(ν) = W∞,2

µ̄S ,µ̄D
(ν) := µ̄SW∞,2

1 (tr(ν ⊗s e3)) + µ̄DW∞,2
2 (dev(ν ⊗s e3)), ∀ν ∈ R

3

where

a ⊗s b =
1

2
(a ⊗ b + b ⊗ a) ∀a, b ∈ R

3, e3 = (0, 0, 1),

was the energy density associated with the mechanical constraint along S which replaced
the thin soft joint perfectly bonded to the adherents. In the present case, we have shown
that the imperfectly bonded joint shall be replaced by a constraint whose associated energy
density is the inf-convolution g of h with WµS ,µD

:

g(t) := h +e W µ̄S ,µ̄D
(t) := inf{h(t′) + W µ̄S ,µ̄D

(t′′); t = t′ + t′′, t′′ ∈ R
3 }

That corresponds to the connecting in series of the initial mechanical constraint along S
with the limit constraint of density W µ̄S ,µ̄D

! More precisely, we establish:

When s tends to s̄, then ūs|Ω converges strongly in H1
Γ0

(Ω; R3) towards the

unique solution ū of

(P ) Min{F (ν) − L(ν); ν ∈ H1
Γ0

(Ω; R3) }

and F (ū) − L(ū) = lims→s̄(Fs(ūs) − L(ūs)), where

F (ν) :=

{∫
Ω

W (e(ν)) dx +
∫

S
g(γ0(ν)) dx̂ − L(ν), when g(γ0(ν)) ∈ L1(S),

+∞, otherwise.

This result is established by the usual strategy of variational convergence:

i) property of compactness for all the sequences us with bounded energies,

ii) upper bound for Fs(us),

iii) lower bound for Fs(us).

The point i) is obtained through estimations in function of ε of the constants involved in the
inequalities of Poincaré, of Korn and of continuity of the trace operator from H1

Γ0
(Bε; R

3)
into L2(S; R3) The point ii) is obtained by a lifting to Bε (similar as the one of [1]) of the
field defined on S which achieves the minimum entering the definition of g(γ0(u)) thanks
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to a capital property of Lipschitz-continuity of g, implied by the properties of W∞,2
i .

Eventually, the sub-differential inequality and an integration by parts supply the point
iii).
Thus, our proposal of model is simpler than the genuine one: the integral functional de-
fined on the thin three-dimensional domain Bε is replaced by an integral functional defined
on the surface S the adhesive layer shrinks to. And, the previous convergence result shows
that the closer s to s̄, the more precise the model. In practice, lim(µD/ε), lim(µS/ε)
should be replaced by the true real physical data µD/ε, µS/ε. We can still improve the
model by a result of corrector type by studying the asymptotic behavior of the optimal
displacement in the adhesive. We have proven that it is energetically equivalent to a field,
affine function in x3 whose trace on S is supplied by the minimizer involved by the defi-
nition of g(γ0(ū)).
We have given various examples of realistic densities h including the one treated in [4] by
means of a zoom in the third coordinate in the joint and an indirect mixed formulation
with two fields (displacement and stress).
Finally, motivated by the tribological concept of the third body, a variant has been con-
sidered where the thin layer contains a far thinner and softer layer in the viscinity of the
adherents.

2.2 Loaded adhesive joints

To be realistic, we consider a scalar problem, the unknown being, for example, the deflexion
of a membrane made of three parts and subjected to a loading even in the inner part.
If Ω := Σ × (−r, r), r > 0, where Σ is a bounded domain of R

d, d = 1, 2, the adhesive
occupies Bε := Σ×(−ε/2, ε/2) and the adherents Ωε := Ω−Bε. The bulk energy densities
respectively are εg and f , g and f are strictly convex with a quadratic growth and one
assumes the existence for g of a recession function of order 2. The adherents are clamped
on Γ0 ⊂ ∂Ω and subjected to forces whose work L is a continuous linear form on H1

Γ0
(Ωε0

).
On the contrary, the work of the loading applied to Bε is defined from a continuous linear

form on V (B) := {u ∈ L2(Ω);
∂u

∂xN

∈ L2(Ω) }. If τε is the scaling operator, continuous

from V (Bε) into V (B), defined by τε(u)(x̂, xN ) := u(x̂, xN/ε) ∀x = (x̂, xN ) ∈ Bε, then
the work is the linear form u 7→ 〈Sε, τεu〉.
Thus, the determination of equilibrium configurations leads to the problem

(Pε) Min{Fε(ν) − L(ν); ν ∈ H1
Γ0

(Ω) },

where

Fε(ν) :=

∫

Ω

f(∇ν) dx + ε

∫

Bε

g(∇ν) dx − 〈Sε, τεν〉

Clearly, the problem has a unique solution ūε and we aim to study its asymptotic behavior
when ε tends to zero and assuming that Sε strongly converges toward some S in the dual
of V (B). It is easy (by proceeding as in [1]) to establish that the sequences with bounded
energies are relatively compact in L2(Ω) and in H1

Γ0
(Ωη) weak for all positive η. The

computation of the strong L2(Ω)-Γ limit of the first two terms of L2(Ω) was done in [1],
but as u 7→ 〈Sε, τεu〉 is not a continuous perturbation on L2(Ω), we expect that the limit
problem will involve a mixing of the limit behavior of the strain energy of the layer and
of the work of the loading acting on it.
Let

V0(B) := {u ∈ V (B);u = 0 on Σ × {−1/2, 1/2} },

G(u) := Min

{ ∫

B

g∞,2
(
0̂,

∂θ[u]

∂xN

(x) + [u](x̂)
)

dx − 〈S, θ〉; θ ∈ V0(B)

}
− 〈S, ũ〉,

[u] = u+ − u−, ũ(x) = [u](x̂)xN +
u+(x̂) + u−(x̂)

2
,

we have shown :

When ε tends to zero and Sε to S, then ūε strongly converges in L2(Ω) toward
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the unique solution of

(P ) Min

{ ∫

Ω

f(∇u) dx + G(u) − L(u);u ∈ H1
Γ0

(Ω − Σ)

}
.

Hence, when S equals zero, G(u) reduces to
∫
Σ

g∞,2(0̂, [u](x̂))dx̂ which is nothing but the
surface energy obtained in [1]. On the contrary, when S does not vanish, the functional G
reads as

G(u) :=

∫

B

g∞,2(0̂,
∂θ[u]

∂xN

(x) + [u](x̂)) dx − 〈S, θ[u]〉 − 〈S, ũ〉,

where θ[u] is the minimizer involved by the first definition of G(u), thus G generally is a non
local functional, not only of the jump field [u] but also of the traces fields u+ and u−. The
appearance of an internal additional state variable θ stems from the weak convergence of
τεuε toward θ+ ũ in V (B) and, consequently, a lower bound of ε

∫
Bε

g(∇uε) dx+〈Sε, τεuϕ〉

is G(u). To get the upper bound, we build uε in Bε from the optimum θ[u] involved by
G(u).
We may give various examples of sources Sε of slicing structure HN−1|Σ ⊗ Sε

x̂, Sε
x̂ =

aε(x̂, ·)dxN +
∑

∞

−∞
bε,nδtε

n
(x̂), corresponding to distributed or concentrated sources. Last,

we may examine the generation by ∇ūε of a ”gradient Young measure of concentration”
that is analysed in the spirit of [5]. Moreover we express the non local G(u) in function
of this measure and we get bounds for the probability measure µ̄x̂ stemming from the
desintegration of µ̄.

3 Hard junctions

Here, we consider the modeling of some soldered joints and revisit previous studies ( [2], [3])
devoted to the asymptotic behavior of a structure made of two adherents connected by
a thin and stiff adhesive layer. In [3], the adherents and the adhesive were modeled
as hyperelastic through bulk energy densities with the same growth exponent p lying in
(1, +∞), the stiffness of the adhesive being of the order of the inverse of its thickness. Here,
our first attempt to account for some fracture phenomena in soldered joint is to model
the adhesive as pseudo-plastic, that is to say, its behavior is described by a bulk energy
density with linear growth. Hence, from the mathematical point of view, two difficulties
appear: the growth of the bulk energy in the adhesive and the adherents are different and
the linear growth in the adhesive will imply to work in spaces of displacement fields with
free discontinuities. We use the same geometry as previously: Ω := S × (−r, r), r > 0,
where S is a bounded domain of R

2, the adhesive fills Bε := S × (−ε/2, ε/2) and the
adherents Ωε := Ω − Bε. The stiffness of the material occupying the small layer being
assumed to be of order 1/ε, we will use the framework of small perturbations to model
the adhesive. Its strain energy density reads as 1/εg(e(u)), g being a convex function
with linear growth. Concerning the adherents, there are no mathematical difficulties to
assume more generally that their strain energy density f is a quasi-convex function (of the
gradient of displacement ∇u) with a growth of order p ∈ (1, +∞). The structure made
of the adhesive perfectly stuck to the two adherents is clamped on a part Γ0 of ∂Ω and
subjected to body and surface forces whose supports are included in Ωε0

and whose work
is denoted by L(·). Thus the determination of equilibrium conditions leads to the problem

inf

{ ∫

Ωε

f(∇u) dx +
1

ε

∫

Ωε

g(e(u)) dx − L(u);u ∈ Aε

}

with:

Aε := {u ∈ LD(Ω; R3);u|Ωε
∈ W 1,p

Γ0
(Ωε; R

3) },

W 1,p
Γ0

(Ωε; R
3) := {u ∈ W 1,p(Ωε; R

3);u = 0 on Γ0 },

LD(Ω; R3) := {u ∈ L1(Ω; R3); e(u) ∈ L1(Ω; M3×3
S ) }.

Because of the linear growth of g, the problem may have no solutions but at least ε-
minimizers ūε. It has at least one solution, still denoted by ūε, in

Aε := {u ∈ BD(Ω; R3);u|Ωε
∈ W 1,p

Γ0
(Ωε; R

3) },
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where
BD(Ω; R3) := {u ∈ L1(Ω; R3); e(u) ∈ Mb(Ω;M3×3

S ) }.

As in [3] where the bulk energy of the adhesive has a superlinear growth, the adhesive,
when ε tends to zero, will be replaced by a material surface whose surface energy density
is a function of the surface strain denoted by e(γS(û)) , where γS(û) is the trace on S
of the first two components of any element u of W 1,p

Γ0
(Ω; R3) and e is the symmetrized

gradient (in the sense of distributions). This density g0 stems from g by:

g0(ζ) = Min{ g(ξ) : ξ ∈ M3×3
S , ξ̂ = ζ }, ξ ∈ M3×3

S 7→ ξ̂ ∈ M2×2
S , ξ̂αβ = ξαβ .

But, whereas the traces of the limits of fields with bounded energies have surface strain
tensors in Lp(Ω;M2×2

S ) in the superlinear case, the linear growth will yield surface strain
tensors not in L1(Ω;M2×2

S ) but in Mb(Ω;M2×2
S ). More precisely, if

A0 := {u ∈ W 1,p
Γ0

(Ω; R3); γS(û) ∈ BD(S; R2) },

BD(S; R2) = {u ∈ L1(S; R2); e(u) ∈ Mb(S;M2×2
S ) },

the total strain energy functional of the asymptotic model will be :

F0(u) :=

{∫
Ω

f(∇u) dx +
∫

S
g0(e(γS(û)) if u ∈ A0

+∞ if u ∈ L1(Ω; R3) − A0

the last term being taken in the sense of an integral of convex function of measure, by due
account of the following convergence result ([6]):

when ε tends to zero, there exist a not relabelled subsequence and ū in W 1,p
Γ0

(Ω; R3)
such that

ūε weakly converges to ū in BD(Ω; R3),

ūε weakly converges to ū in W 1,p
Γ0

(Ωη; R3)∀η > 0, γS(ˆ̄u) ∈ BD(S; R2).

Moreover, ū is solution to

(P ) Min{F0(u) − L(u);u ∈ L1(Ω; R3) }

and

Fε(ūε) − L(ūε) → F0(ū) − L(ū).

In this model, the traces on S may have discontinuities which can be interpreted in terms
of macrofissures or in terms of diffuse defects or fractal cracks. Actually, due to the
Sobolev embeddings, the traces on S γS(u) of the displacement fields solutions to (P )
being continuous when p > 3, γS(û) as an element of BD(S; R2) does not present jumps
but only fractal or diffuse singularities. It is worthwhile to note that the genuine model
may involve fractures in Bε, whereas the limit model (for p > 3) only involve diffuse
defects or fractal cracks in the material surface which replaces the adhesive . . . Taking into
account the geometry of the layer, one easily shows that for all sequence with bounded
energies there exists u in W 1,p

Γ0
(Ω; R3) and a not relabelled subsequence such that uε

weakly converges in BD(Ω; R3) and W 1,p(Ωη; R3) for all positive η towards u, and that
γS(û) belongs to BD(S; R2) and is the weak limit, in BD(S; R2) quotiented by the set
of rigid displacements of R

2, of the x3-average of ûε in Bε. From that point and the
very definition of g0, one deduces that F0 is a possible lower bound with respect to the
Γ-convergence of Fε towards F0 for the strong topology of L1(Ω; R3). To check the upper
bound, one first shows that F0 is the lower semi-continuous regularization for L1(Ω; R3) of
a functional F̃0 of same expression as F0 but living on smooth fields (γS(u) ∈ C1(S; R3)).
Next is established that F̃0 ≥ Γ–lim supFε by the usual process of lifting into Bε and one
concludes by taking the l. s. c. envelope of the two members.
This result is then extended to more realistic situations of welding where the domain
occupied by the global structure (adhesive + adherents) does depend on ε through suitable
translations in the x3-direction.
Next, in view to take into account materials which may undergo reversible solid/solid
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phase transitions, the hypotheses of quasiconvexity and convexity for f and g respectively
are dropped. A reasonable candidate for the limit functional is :

F0(u) :=

{∫
Ω

Qf(∇u) dx +
∫

S
SQg0(e(γS(û)) if u ∈ A0

+∞ if u ∈ L1(Ω; R3) − A0,

where Qf is the quasiconvex envelope of f and SQg0 : M2×2
S 7→ R is the symmetric

quasiconvexification of g0 defined by:

SQg0(ζ) := inf

{
1

D̂

∫

bD

g0(ζ + e(ϕ)) dx̂; ϕ ∈ C∞

0 (D̂; R2)

}
.

We only succeed in establishing the lower bound on the subset Ã0 of A defined by:

Ã0 := {u ∈ W 1,p
Γ0

(Ω; R3); γS(û) ∈ SBD(S; R2) },

where SBD(S; R2) denotes the set of the elements u of BD(S; R2) whose Cantor part
of the strain tensor e(u) vanishes, by using an additional argument of [7]. Concerning
the upper bound, as previously we exhibit a functional F̃0 such that F0 is the l. s. c.
regularization. The difficulty due to the differences of growth is overcome by introducing
a perturbation η|·|p of g0.

The last point, for numerical reasons, examines the possibilities of a regularization à
la Norton-Hoff of the functional F0 involved in the limit problem. If, we recall g0 by h
assumed to be positively homogeneous of degree 1 and such that

∃α, β > 0; α|ξ| ≤ h(ξ) ≤ β|ξ|, ∀ξ ∈ M2×2
S ,

we consider a sequence (hq)q∈(1,p) satisfying:

i) hq : M2×2
S 7→ R

+ is convex and positively homogeneous of degree q,

ii) hq → h pointwise in M2×2
S ,

iii) ∃a > 0; ∀q > 1, close enough to 1, hq(ξ) ≥ h(ξ), ∀ξ ∈ M2×2
S , |ξ| ≥ a.

Then, we show that when q → 1, the functional Fq : W 1,p
Γ0

(Ω; R3) 7→ R
+ ∪ {+∞} defined

by:

Fq(u) :=

{∫
Ω

f(∇u) dx +
∫

S
hq(e(γS(û)) if u ∈ Bq

+∞ otherwise,

where

Bq := {u ∈ W 1,p
Γ0

(Ω; R3);hq(γS(û)) ∈ L1(S) },

Γ-converges for the weak topology of W 1,p
Γ0

(Ω; R3) towards

F0(u) :=

{∫
Ω

f(∇u) dx +
∫

S
h(e(γS(û)) if u ∈ B

+∞ otherwise,

where

B := {u ∈ W 1,p
Γ0

(Ω; R3); γS(û) ∈ BD(S; R2) }.

Hence, if the sequence (hq)q∈(1,p) moreover satisfies the coercivity condition

∃αq > 0, αq|ξ|
q ≤ hq(ξ), ∀ξ ∈ M2×2

S ,

then the problem Min{Fq(u) − L(u);u ∈ Bq } has at least one solution ūq and there ex-

ists a not relabelled subsequence such that ūq weakly converges in W 1,p
Γ0

(Ω; R3) toward ū,
solution to Min{F (u)−L(u);u ∈ B }. Because the functions hq are convex and positively
homogeneous of degree q and may be chosen differentiable, the numerical methods of con-
vex optimization are able to easily supply approximations of ūq and consequently of ū !...
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