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We show that the variational limit of a ε-soft and thin junction problem (Pε) with sources concentrated in the junction gives rise to a surface energy mixing the internal energy and sources. The surface energy functional possesses an integral representation with respect to the Gradient Young-Concentration measures generated by sequences (ūε)ε>0 of minimizers of (Pε).

Introduction

This paper concerns a soft thin junction subjected to concentrated sources. More precisely, let Ω be a domain in R N and let B ε := Σ × (-ε 2 , ε 2 ) ⊂ Ω , Σ ⊂ R N -1 , be the layer occupied by the soft thin junction (cf Figure 1). We consider the minimization problem min

u∈W 1,2 Γ 0 (Ω) Ω\Bε f (∇u) dx + ε Bε g(∇u) dx -S ε , u ε (P ε )
where W 1,2 Γ0 (Ω) denotes the space of Sobolev functions with null trace on a part Γ 0 of the boundary of Ω, and the linear form S ε , . ε represents the work of the source (or the loading). Let B := Σ × (- 1 2 , 1 2 ). A suitably rescaled S ε of S ε is assumed to strongly converge to some S in the dual of the space V (B) := u ∈ L 2 (Ω) : ∂u ∂x N ∈ L 2 (Ω) when ε tends to zero. A general example of such sources which are measures on B ε is given in Section 4 of the paper. Sources of the form c 1 L(ε) 1 Bε where c is any constant and L(ε) ∼ ε, is a trivial example of measures satisfying this condition with S = 1 B . Note that in this paper the source (or the loading) S ε is a non L 2 -continuous perturbation of the energy functional Ω\Bε f (∇u) dx + ε Bε g(∇u) dx.

Among the physical motivations of (P ε ) one may mention various applications to heat conduction or electrostatic problems involving sources concentrated in the layer B ε with conductivity or permittivity of order the size of B ε . One may also think of membrane problems with an exterior loading concentrated in B ε occupied by a material with stiffness of order the small size of B ε . Such a problem with a source concentrated in the junction was considered in [START_REF] Croce | A characterization of gradient Young-concentration measures generated by solutions of Dirichlet-type problems with large sources ESAIM Control Optim[END_REF] in a one dimensional case in order to highlight and illustrate a gradient concentration phenomenon, but the authors were not able to express the variational limit problem. This paper illustrates the same gradient concentration phenomenon with a complete description of the limit problem in the sense of Γ-convergence (Theorem 3.3). When the size ε of the layer goes to zero, fields u ε of bounded energy develop a discontinuity through Σ. More precisely, at the variational limit, the internal energy functional of the junction ε Bε g(∇u) dx and the work of the loading S ε , u ε are combined into a functional of the type

H(u) = Σ h(x, u + -u -, u + + u - 2 ) dx
and the limit problem reads as min

u∈W 1,2 Γ 0 (Ω\Σ) Ω f (∇u) dx + H(u) (P)
where u ± denote the traces on Σ. When regarding the various studies devoted to the asymptotic modeling of junction problems (see [START_REF] Caillerie | The Effect of a Thin Inclusion of High Rigidity in an Elastic Body[END_REF][START_REF] Licht | A modelling of elastic adhesive bonded joints[END_REF][START_REF] Geymonat | Mathematical analysis of a bounded joint with a soft thin adhesive[END_REF][START_REF] Licht | A model of elastic adhesive bonded joints through oscillationconcentration measures[END_REF] and references therein) the main novelty is that the density h depends also of the mean u + +u -
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. Furthermore we show that the sequence of minimizers of (P ε ) (which converges to a minimizer ū of the limit problem (P)) generates a gradient Young-concentration measure μ in the sense defined in [START_REF] Croce | A characterization of gradient Young-concentration measures generated by solutions of Dirichlet-type problems with large sources ESAIM Control Optim[END_REF]. Then we can give an integral representation of the internal part of H with respect to the measure μ (Theorem 5.5) so that it can be localized in Σ × {±1}. Finally this provides new bounds on the measure μ (Corollary 5.6).

The paper is organized as follows: in Section 2 we fix notation and give a detailed description of the problem (P ε ). Section 3 is devoted to the asymptotic analysis of (P ε ) in the sense of the Γ-convergence of the functional energy extended to L 2 (Ω) equipped with its strong topology. In Section 4 we describe a large class of suitable sources S ε . Finally Section 5 is concerned with the analysis of the gradient concentration phenomenon generated by sequences of minimizers of (P ε ). We stress the fact that one could treat the problem in L p (Ω), 1 < p < +∞ in the same way without additional difficulties.

Description of the minimization problem

Let ε > 0 be a small parameter intended to go to zero, more precisely taking values in a countable subset of (0, ε 0 ] whose 0 is the only cluster point. The reference configuration of the assembly of the two adherents and the adhesive is a cylinder Ω := Σ × (-r, r) (with r > ε), where Σ is a bounded domain in R N -1 , N ≥ 2, with Lipschitz boundary. For x ∈ R N we sometimes write x = (x, x N ) where x ∈ R N -1 . In all the paper, C denotes a non negative constant which does not depend on ε and may vary from line to line. We do not relabel the various considered subsequences and the symbols → and ⇀ denote various strong convergences and weak convergences respectively. We define the following sets: 

B ε := Σ × (-ε 2 , ε 2 ); . B := Σ × (-1 2 , 1 2 ); . Ω ε = Ω \ B ε ;
. Γ 0 is a subset of the boundary ∂Ω of Ω such that dist(Γ 0 , ∂B ε ∩ ∂Ω) > 0 for all ε < ε 0 ;

. we write Ω

- ε , Ω + ε , Ω -, Ω + , B + ε and B - ε for the sets Ω ε ∩ [x N < 0] and Ω ε ∩ [x N > 0], Ω ∩ [x N < 0], Ω ∩ [x N > 0] and B ε ∩ [x N > 0], B ε ∩ [x N < 0] respectively.
We will be concerned with the following spaces:

. W 1,2 Γ0 (Ω ε ) := u ∈ W 1,2 (Ω ε ) : u = 0 on Γ 0 ; . W 1,2 Γ0 (Ω) := u ∈ W 1,2 (Ω) : u = 0 on Γ 0 ; . W 1,2 Γ0 (Ω \ Σ) := u ∈ W 1,2
(Ω \ Σ) : u = 0 on Γ 0 , and for every z ∈ W 1,2 Γ0 (Ω \ Σ), z ± will stand for the traces of z on Σ considered as a Sobolev function on Ω + and Ω -respectively.

We say that a function h : R N -→ R ∪ {+∞} satisfies a growth condition of order 2 if there exist α and

β in R + such that α |ξ| 2 ≤ h(ξ) ≤ β(1 + |ξ| 2 ) for all ξ ∈ R N .
We consider two convex functions f, g : R N -→ R satisfying a growth condition of order 2, and we assume that there exists a positively 2-homogeneous function g ∞,2 satisfying

g(ξ) -g ∞,2 (ξ) ≤ β(1 + |ξ| 2-δ ) for all ξ ∈ R N , (2.1) 
for some δ, 0 < δ < 2. Note that g ∞,2 is the positively 2-homogeneous recession function of g, i.e.,

g ∞,2 (ξ) = lim t→+∞ g(tξ) t 2 ,
is convex and satisfies the same growth condition of order 2. We define the space

V (B ε ) := u ∈ L 2 (B ε ) : ∂u ∂x N ∈ L 2 (B ε )
equipped with the norm

u V (Bε) := Bε |u| 2 dx + Bε ∂u ∂x N 2 dx 1 2
and we denote the duality bracket between the topological dual space V ′ (B ε ) and V (B ε ) by , ε . The considered total energy functional

F ε : L 2 (Ω) -→ R ∪ {+∞} is defined by F ε (u) =    Ωε f (∇u) dx + ε Bε g(∇u) dx -S ε , u ε if u ∈ W 1,2 Γ0 (Ω) +∞ otherwise,
where S ε is given in V ′ (B ε ). Our aim is to describe the asymptotic behavior of the minimization problem

(P ε ) min F ε (u) : u ∈ L 2 (Ω) ,
namely, the limit of min F ε (u) : u ∈ L 2 (Ω) together with the limit of the minimizer ūε , and to identify the limit problem in the framework of Γ-convergence.

Let us consider the space V (B) :

= u ∈ L 2 (B) : ∂u ∂x N ∈ L 2 (B) equipped with the norm u V (B) := B |u| 2 dx + B ∂u ∂x N 2 dx 1 2 ,
and denote the duality bracket between V ′ (B) and V (B) by ., . . The linear continuous operator

τ ε : V (B ε ) -→ V (B)
is defined for every x = (x, x N ) ∈ B by τ ε u(x, x N ) := u(x, εx N ) and we denote its transposed operator by T τ ε :

T τ ε θ, u ε = θ, τ ε u , ∀(θ, u) ∈ V ′ (B) × V (B ε ).
We make the following assumption on the source S ε : there exists S in V ′ (B) such that

S ε := ( T τ ε ) -1 S ε strongly converges to S in V ′ (B).
Then, in order to identify the Γ-limit of the functional F ε , it will be more convenient to write the functional F ε as

F ε (u) =    Ωε f (∇u) dx + ε 2 B g( ∇τ ε u, 1 ε ∂τ ε u ∂x N ) dx -S ε , τ ε u if u ∈ W 1,2 Γ0 (Ω)
+∞ otherwise.

The variational asymptotic model

Let H : V (B) -→ R be the functional defined by

H(θ) := B g ∞,2 ( 0, ∂θ ∂x N ) dx -S, θ = H in (θ) -S, θ . (3.1) 
We refer the fiunctional H in as the internal part of H. We claim that, when L 2 (Ω) is equipped with its strong topology, the functional F ε Γ-converges to the functional F 0 : L 2 (Ω) -→ R ∪ {+∞} given by

F 0 (u) =    Ω f (∇u) dx + inf θ∈X(u) H(θ) if u ∈ W 1,2 Γ0 (Ω \ Σ), +∞ otherwise, where X(u) := θ ∈ V (B) : θ(., ± 1 2 ) = u ± .
Before addressing the variational convergence process, we begin by establishing some compactness properties for sequences with bounded energy. Let us introduce the ε-translate operator T ε from W 1,2 (Ω) into W 1,2 (Ω\Σ). For any function w ∈ W 1,2 (Ω), w stands for its extension by reflexion on Σ×(-2r, -r)∪ (r, 2r) and we define the ε-translate T ε w of w by

T ε w(x, x N ) = w(x, x N + ε 2 ) if x ∈ Ω + ; w(x, x N -ε 2 ) if x ∈ Ω -. Lemma 3.1 (compactness). Let (u ε ) ε>0 be a sequence in L 2 (Ω) such that sup ε>0 F ε (u ε ) < +∞. Then (i) Bε |u ε | 2 dx ≤ Cε Ωε |∇u ε | 2 dx + ε Bε ∂u ε ∂x N 2 dx ; (3.2) (ii) sup ε>0 Ωε |∇u ε | 2 dx + ε Bε ∂u ε ∂x N 2 dx < +∞; (3.3) (iii) there exist u ∈ W 1,2 Γ0 (Ω \ Σ) and a subsequence of (u ε ) ε>0 such that u ε → u in L 2 (Ω) and u ε ⇀ u in W 1,2
Γ0 (Ω η ) for all η > 0; (iv) there exist θ ∈ V (B) and a subsequence such that τ ε u ε ⇀ θ in V (B), i.e.

τ ε u ε ⇀ θ in L 2 (B), ∂τ ε u ε ∂x N ⇀ ∂θ ∂x N in L 2 (B); moreover, ε ∇τ ε u ε ⇀ 0 in L 2 (B, R N -1 ); (v) θ(., ± 1 
2 ) = u ± . Proof. Proof of (i). Without loss of generality, we may assume that the N -1-dimensional Hausdorff measure of the intersection of Γ 0 with [x N > 0] is positive so that (i) is a mere consequence of the following Poincaré-like inequality:

∃C > 0, Bε |ϕ| 2 dx ≤ Cε Ω + ε |∇ϕ| 2 dx + ε Bε ∂ϕ ∂x N 2 dx ∀ϕ ∈ W 1,2 Γ0 (Ω). (3.4) Indeed, because ϕ (x, x N ) = T ε ϕ(x, 0) + x N ε 2 ∂ ∂x N ϕ (x, t) dt ∀x ∈ B ε , for all smooth function ϕ ∈ W 1,2 Γ0 (Ω), we get |ϕ(x, x N )| 2 ≤ 2 |T ε ϕ(x, 0)| 2 + ε ε 2 -ε 2 ∂ ∂x N ϕ(x, t) 2 dt .
Hence, integrating on B ε and using trace inequality and Poincaré inequality in Ω + give the desired inequality (3.4) for smooth ϕ, thus for all ϕ in W 1,2 Γ0 (Ω) by a density argument.

Proof of (ii). From the coercivity conditions satisfied by f and g, estimate (3.2), and the strong convergence of S ε in V ′ (B), one has

α Ωε |∇u ε | 2 dx + ε Bε ∂u ε ∂x N 2 dx ≤ C + | S ε , u ε ε | = C + | S ε , τ ε u ε | ≤ C + S ε V ′ (B) τ ε u ε V (B) = C + S ε V ′ (B) 1 ε Bε |u ε | 2 dx + ε Bε ∂u ε ∂x N 2 dx 1 2 ≤ C + C Ωε |∇u ε | 2 dx + ε Bε ∂u ε ∂x N 2 dx 1/2 .
Then, setting

X ε := Ωε |∇u ε | 2 dx + ε Bε ∂u ε ∂x N 2 dx 1/2 , (3.3) follows from the estimate αX 2 ε ≤ C + CX ε .
Proof of (iii).

Step 1. We claim that there exist z ∈ W 1,2 (Ω\Σ) and a subsequence of (u ε ) ε>0 such that T ε u ε ⇀ z in W 1,2 (Ω\Σ) and strongly in L 2 (Ω\Σ). Clearly,

T ε u ε ∈ W 1,2 (Ω\Σ) and ∂ ∂x i T ε u ε = T ε ∂ ∂x i u ε for all ε > 0. ( 3.5) 
Combining the Poincaré inequality, (3.3) and (3.5), we deduce

sup ε>0 T ε u ε 2 W 1,2 (Ω\Σ) ≤ C sup ε>0 Ωε |∇u ε (x)| 2 dx + ε Bε ∂u ε ∂x N (x) 2 dx < +∞.
Therefore, (T ε u ε ) ε>0 is bounded in W 1,2 (Ω\Σ) and the claim follows immediately.

Step 2. We establish that there exists u in L 2 (Ω) such that we can extract from the previous subsequence (u ε ) ε>0 a subsequence strongly converging to u in L 2 (Ω). We can write

Ωε |u ε (x)| 2 dx = Ω + ∪Ω - |T ε u ε (x)| 2 dx - Σ×((r-ε 2 ,r)∪(-r,-r+ ε 2 )) |T ε u ε (x)| 2 dx, so that u ε 2 L 2 (Ω) = Ω + ∪Ω - |T ε u ε (x)| 2 dx + Bε |u ε (x)| 2 dx - Σ×((r-ε 2 ,r)∪(-r,-r+ ε 2 )) |T ε u ε (x)| 2 dx. (3.6) 
From step 1 and (3.2), we deduce that sup ε>0 u ε L 2 (Ω) < +∞. Thus there exist u ∈ L 2 (Ω) and a not relabelled subsequence such that

u ε ⇀ u in L 2 (Ω). Let us prove that u = z. Since u ε ⇀ u in L 2 (Ω) and T ε u ε ⇀ z in W 1,2 (Ω\Σ), we have for any ϕ ∈ C ∞ c (Ω), Ω u(x)ϕ(x)dx = lim ε→0 Ω u ε (x)ϕ( x, x N - ε 2 )dx = lim ε→0 Ω T ε u ε (x)ϕ(x)dx = Ω z(x)ϕ(x)dx.
Thus u = z almost everywhere in Ω and we deduce that u ∈ W 1,2 (Ω\Σ). Moreover, from (3.2) we have that Bε |u ε (x)| 2 dx → 0 as ε → 0. On the other hand, since

T ε u ε → z in L 2 (Ω), we infer Ω + ∪Ω -|T ε u ε (x)| 2 dx → Ω |z(x)| 2 dx and Σ×((r-ε 2 ,r)∪(-r,-r+ ε 2 )) |T ε u ε (x)| 2 dx → 0. Then we deduce that u ε L 2 (Ω) → z L 2 (Ω) = u L 2 (Ω)
and thus that (u ε ) ε>0 strongly converges to u in L 2 (Ω).

Step 3. It remains to establish that for any η > 0, there exists a subsequence of (u ε ) ε>0 such that u ε⌊Ωη ⇀ u ⌊Ωη in W 1,2 Γ0 (Ω η ). It will immediately result that u ∈ W 1,2 Γ0 (Ω\Σ). Let η > 0. Clearly, there exists 0 < ε 1 < η such that Ω η ⊆ Ω ε for all ε ≤ ε 1 . By the Poincaré inequality we have

sup ε>0 u ε 2 W 1,2 (Ωη) ≤ C sup ε>0 Ωε |∇u ε (x)| 2 dx + ε Bε ∂u ε ∂x N (x) 2 dx < +∞.
Thus, (u ε ) ε>0 is bounded in W 1,2 Γ0 (Ω η ), and there exist w ∈ W 1,2 Γ0 (Ω η ) and a not relabelled subsequence of (u

ε ) ε>0 satisfying u ε → w in L 2 (Ω η ) and u ε ⇀ w in W 1,2 Γ0 (Ω η ).
It is easily seen that in fact w = u ⌊Ωη . Proof of (iv). The weak convergence of τ ε u ε to some θ in V (B) follows from (3.2) and (3.3). Indeed

sup ε>0 τ ε u ε V (B) = sup ε>0 1 ε Bε |u ε | 2 dx + ε Bε ∂u ε ∂x N 2 dx 1 2 ≤ C sup ε>0 X ε < +∞.
Now we deduce that ∇τ ε u ε ⇀ ∇θ in the distributional sense so that ε ∇τ ε u ε ⇀ 0 in the distributional sense. On the other hand, from the coercivity of g, ε ∇τ ε u ε weakly converges to some

L 2 (B, R N -1 ) function. Hence, ε ∇τ ε u ε ⇀ 0 in L 2 (B, R N -1 ).
Proof of (v). Note that θ(., ± 1 2 ) is well defined. Indeed, one has

V (B) ⊂ W 1,2 (- 1 2 , 1 2 ), L 2 (Σ) ⊂ C [- 1 2 , 1 2 ], L 2 (Σ) . Clearly, τ ε u ε (x, ± 1 2 ) = (T ε u ε ) ± (x) (in the sense of traces on Σ of W 1,2 Γ0 (Ω \ Σ)-functions) so that τ ε u ε (x, ± 1 
2 ) → u ± in L 2 (Σ). On the other hand, since

τ ε u ε (x, x N ) = τ ε u ε (x, ± 1 2 ) 
+ x N ± 1 2 ∂τ ε u ε ∂x N (x, s) ds
for a.e. x in B, we infer that for all ϕ ∈ C c (Σ),

1 2 -1 2 Σ τ ε u ε (x, x N )ϕ(x) dx = Σ (T ε u ε ) ± (x)ϕ(x)dx + 1 2 -1 2 Σ x N ± 1 2 ∂τ ε u ε ∂x N (x, s)ϕ(x)dsdx. (3.7)
By passing to the limit in (3.7), we obtain

1 2 -1 2 Σ θ(x, x N )ϕ(x) dx = Σ u ± (x)ϕ(x)dx + 1 2 -1 2 Σ x N ± 1 2 ∂θ ∂x N (x, s)ϕ(x)dsdx from which we deduce Σ u ± (x)ϕ(x)dx = Σ θ(x, ± 1 2 )ϕ(x)dx. Thus θ(., ± 1 2 ) = u ± almost everywhere in Σ. Lemma 3.2. For every u ∈ W 1,2 Γ0 (Ω\Σ), inf θ∈X(u)
H(θ) > -∞ and there exists θ(u) ∈ X(u) such that inf θ∈X(u)

H(θ) = H(θ(u)).
Proof. The proof follows from standard arguments used in the direct method of the Calculus of Variation.

As a consequence of Lemma 3.2, in its domain W 1,2 Γ0 (Ω \ Σ), the functional F 0 may be written

F 0 (u) = Ω f (∇u) dx + H(θ(u)).
Theorem 3.3 is the main result of this section.

Theorem 3.3. The sequence (F ε ) ε>0 Γ-converges to the functional F 0 when L 2 (Ω) is equipped with its strong topology.

The proof results from the following two propositions.

Proposition 3.4. For every u ∈ L 2 (Ω) and every (u ε ) ε>0 strongly converging to u in L 2 (Ω) one has

F 0 (u) ≤ lim inf ε→0 F ε (u ε ).
Proposition 3.5. For every u ∈ L 2 (Ω) there exists (v ε ) ε>0 strongly converging to u in L 2 (Ω) satisfying

F 0 (u) ≥ lim sup ε→0 F ε (v ε ).
Proof of Proposition 3.4. We may assume lim inf ε→0 F ε (u ε ) < +∞. From Lemma 3.

1 u ∈ W 1,2 Γ0 (Ω \ Σ) and there exists θ ∈ X(u) such that τ ε u ε ⇀ θ in V (B). Since S ε → S in V ′ (B), one has lim ε→0 S ε , τ ε u ε = S, θ . (3.8) 
On the other hand, since from Lemma 3.1,

u ε ⇀ u in W 1,2 Γ0 (Ω η ) for all η > 0, one has lim inf ε→0 Ωε f (∇u ε ) dx ≥ Ω f (∇u) dx. (3.9) 
Finally from (iv) of Lemma 3.1 and a standard lower semicontinuity argument

lim inf ε→0 ε 2 B g( ∇τ ε u ε , 1 ε ∂(τ ε u ε ) ∂x N ) dx ≥ lim inf ε→0 ε 2 B g( ∇τ ε u ε , 1 ε ∂(τ ε u ε ) ∂x N ) dx - B g ∞,2 (ε ∇τ ε u ε , ∂(τ ε u ε ) ∂x N ) dx + lim inf ε→0 B g ∞,2 (ε ∇τ ε u ε , ∂(τ ε u ε ) ∂x N ) dx ≥ lim inf ε→0 ε 2 B g( ∇τ ε u ε , 1 ε ∂(τ ε u ε ) ∂x N ) dx - B g ∞,2 (ε ∇τ ε u ε , ∂(τ ε u ε ) ∂x N ) dx + B g ∞,2 ( 0, ∂θ ∂x N ) dx = B g ∞,2 ( 0, ∂θ ∂x N ) dx (3.10)
provided that we establish

lim ε→0 ε 2 B g( ∇τ ε u ε , 1 ε ∂(τ ε u ε ) ∂x N ) dx - B g ∞,2 (ε ∇τ ε u ε , ∂(τ ε u ε ) ∂x N ) dx = 0. (3.11) Since g ∞,2
is positively homogeneous of degree 2, and from (2.1), we have

B ε 2 g( ∇τ ε u ε , 1 ε ∂(τ ε u ε ) ∂x N ) -g ∞,2 (ε ∇τ -1 ε u ε , ∂(τ ε u ε ) ∂x N ) dx = ε 2 B g( ∇τ ε u ε , 1 ε ∂(τ ε u ε ) ∂x N ) -g ∞,2 ( ∇τ ε u ε , 1 ε ∂(τ ε u ε ) ∂x N ) dx ≤ Cε 2 B 1 + ∇τ ε u ε 2-δ + 1 ε ∂(τ ε u ε ) ∂x N 2-δ dx.
Thus, by using Hölder's inequality (take p = 2 2-δ , q = 2 δ ) we deduce

B ε 2 g( ∇τ ε u ε , 1 ε ∂τ ε u ε ∂x N ) -g ∞,2 (ε ∇τ ε u ε , ∂(τ ε u ε ) ∂x N ) dx ≤ Cε δ
which proves (3.11). The conclusion of Proposition 3.4 follows by collecting (3.8), (3.9) and (3.10).

Proof of Proposition 3.5. Let u ∈ L 2 (Ω). We have to construct a sequence (v ε ) ε>0 strongly converging to u in L 2 (Ω) such that lim sup

ε→0 F ε (v ε ) ≤ F 0 (u). If F 0 (u) = +∞, then u ∈ L 2 (Ω)\W 1,2 Γ0 ( 
Ω\Σ), and clearly, for any sequence (v ε ) ε>0 converging to u, lim sup ε→0 F ε (v ε ) ≤ F 0 (u) is true. Now, for the harder part, we assume F 0 (u) < +∞. Then u ∈ W 1,2 Γ0 (Ω\Σ) and

F 0 (u) = Ω f (∇u(x))dx + inf θ∈X(u)
H(θ).

To complete the proof, from θ := θ(u), i.e.

H(θ) = inf θ∈X(u)
H(θ), we construct a sequence (v ε ) ε>0 strongly converging to u in L 2 (Ω) and satisfying

F 0 (u) ≥ lim sup ε→0 F ε (v ε ).
The proof is divided into four steps:

Step 1. Let us extend u and θ by 0 into (R N -1 \ Σ) × (-r, r) and write these extensions u and θ. For a sequence δ of positive numbers intended to go to 0, consider a standard sequence of molifier (ρ δ ) δ and set

u δ := ρ δ * u defined by ρ δ * u( x, x N ) = R N -1 ρ δ ( x -y) u( y, x N )d y for all ( x, x N ) ∈ Ω; θ δ := ρ δ * θ defined by ρ δ * θ( x, x N ) = R N -1 ρ δ ( x -y) θ( y, x N )d y for all ( x, x N ) ∈ Ω. Clearly,            θ δ ( x, ± 1 
2 ) = u δ ( x, 0) for all x ∈ Σ,

u δ ∈ W 1,2 (Ω \ Σ), θ δ ∈ W 1,2 (B), u δ → u in W 1,2 (Ω \ Σ), θ δ → θ in V (B).
(3.12)

Next, for each δ > 0, we define the sequence (v δ,ε ) ε>0 as follows:

v δ,ε ( x, x N ) =        u δ ( x, x N ± ε 2 ) on Ω ∓ ε θ δ ( x, x N ε ) on B ε. (3.13) 
Obviously v δ,ε ( x, x N ) belongs to W 1,2 (Ω) and strongly converges to u δ in L 2 (Ω).

Step 2. We we claim that 

lim ε→0 Ωε f (∇v δ,ε )(x)dx = Ω f (∇u δ )(x)dx (3.14) lim ε→0 ε 2 B g( ∇τ ε v δ,ε , 1 ε ∂τ ε v δ,ε ∂x N )(x)dx -S ε , τ ε v δ,ε = H(θ δ ). ( 3 
f (∇v δ,ε )(x)dx = lim ε→0 Ω + ε f (∇u δ )( x, x N - ε 2 )dx + Ω - ε f (∇u δ ( x, x N + ε 2 ))dx = Ω + f (∇u δ )(x)dx + Ω - f (∇u δ )(x)dx = Ω f (∇u δ )(x)dx.
Proof of (3.15): Since g ∞,2 is positively homogeneous of degree 2 and S ε strongly converges to S in V ′ (B), one has

lim ε→0 ε 2 B g( ∇θ δ , 1 ε ∂θ δ ∂x N )(x)dx -S ε , θ δ = B g ∞,2 ( 0, ∂θ δ ∂x N )dx -S, θ δ = H(θ δ ).
Step 3. We establish that lim

δ→0 Ω f (∇u δ )dx + H(θ δ ) = F 0 (u). Since Ω f (∇u δ )dx + H(θ δ ) = Ω f (∇u δ )dx + B g ∞,2 ( 0, ∂θ δ ∂x N )dx -S, θ δ ,
the result is a straightforward consequence of (3.12).

Step 4. By using a standard diagonalization argument, from step 2 and step 3, there exists a mapping

ε → δ(ε) such that v δ(ε) -→ u in L 2 (Ω) and lim ε→0 Ω f (∇v δ(ε) )(x)dx + ε 2 B g( ∇τ ε v δ(ε) , 1 ε ∂τ ε v δ(ε) ∂x N )(x)dx -S ε , τ ε v δ(ε) = F 0 (u).
The sequence (v ε ) ε>0 where v ε := v δ(ε) fullfils all the conditions except the boundary condition on Γ 0 .

From assumption dist(Γ 0 , ∂B ε ∩ ∂Ω) > 0, and by using a standard slicing method due to De Giorgi in a neighborhood of Γ 0 (see [START_REF] Giorgi | Sulla convergenza di alcune successioni d'integrali del tipo dell' aera Rend[END_REF]), one can modify v ε in Ω ε into a function ṽε equal to v ε in B ε , satisfying the boundary condition on Γ 0 , and lim sup ε→0 Ωε f (∇v ε ) dx = lim sup ε→0 Ωε f (∇ṽ ε ) dx. Still denoting by v ε this new function, we have lim ε→0 F ε (v ε ) = F 0 (u) and the proof is complete.

Remark 3.6. In order to give an interpretation of the limit energy functional, it is worthwhile to write inf θ∈X(u)

H(θ) = inf θ∈V0(B) B g ∞,2 ( 0, ∂θ ∂x N (x) + [u](x)) dx -S, θ -S, ũ (3.16) where [u] = u + -u -, V 0 (B) = θ ∈ V (B) : θ = 0 on Σ × {± 1 2 } and ũ(x) = x N [u](x) + u + (x)+u -(x)
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. Thererfore when the limit source S vanishes on V (B), by using Jensen's inequality, inf θ∈X(u) H(θ) reduces to

H(u) = Σ g ∞,2 0, [u](x) dx
which is nothing but the surface energy of the model obtained in [START_REF] Licht | A modelling of elastic adhesive bonded joints[END_REF]. When the limit source is not trivial, by using the Euler equation associated with (3.16), it is easily seen that H is a surface energy on Σ of the form

H(u) = Σ h(x, [u](x), u + + u - 2 (x)) dx.
In this case we note that the energy density depends explicitly of the mean of the traces and that the surface energy H mixes the internal energy and the work of the loading.

Examples of measure sources S ε concentrated in B ε

The general form of elements of V ′ (B) is given for every θ in V (B) by S, θ = B s 0 θ dx + B s 1 ∂θ ∂x N dx where (s 0 , s 1 ) ∈ L 2 (B) × L 2 (B). The limit sources S considered in this section are generated by measures S ε in M(B ε ) whose slicing structure H N -1 ⌊Σ⊗S ε

x is such that their slicing components S ε x do not present a diffuse singular part in their Lebesgue-Nikodym decomposition in M(-ε 2 , ε 2 ), i.e., are of the general form

S ε x = 1 ε a ε (x, εt) dt + +∞ n=-∞ b ε,n (x)δ εtn(x)
where

a ε ∈ L 2 (B), b ε,n ∈ L 2 (Σ), t n : Σ -→ (- 1 2 , 1 2 
) is a Borel measurable map.

Roughly, such sources S ε are sums of a function in L 2 (B) and a countable sum of surface sources, each of them being concentrated in the N -1-dimensional surface included in B ε whose graph is εt n . We make the following additional assumptions:

(H1) there exists a ∈ L 2 (B) such that a ε → a in L 2 (B);

(H2) there exists b n ∈ L 2 (Σ) such that b ε,n → b n in L 2 (Σ) when ε → 0; (H3) there exists c n ∈ R + such that b ε,n L 2 (Σ) ≤ c n and +∞ n=-∞ c n < +∞;
It is easy to check that the measure S ε = T τ ε S ε of M(B) is given by:

S ε = H N -1 ⌊Σ ⊗ (S ε ) x where (S ε ) x = a ε (x, t) dt + +∞ n=-∞ b ε,n (x)δ tn(x) .
Proposition 4.1. The measure S ε strongly converges in V ′ (B) to the measure S defined for every θ ∈ V (B) by

S, θ = B a(x)θ(x) dx + +∞ n=-∞ Σ b n (x)θ(x, t n (x)) dx.
Therefore, the functional F ε Γ-converges to the functional

F 0 : L 2 (Ω) -→ R ∪ {+∞} given by F 0 (u) =            Ω f (∇u) dx + inf θ∈X(u) B g ∞,2 ( 0, ∂θ ∂x N ) dx - B aθ dx - +∞ n=-∞ Σ b n (x)θ(x, t n (x)) dx if u ∈ W 1,2 Γ0 (Ω \ Σ) +∞ otherwise.
Proof. The second assertion is a straightforward consequence of Theorem 3.3 provided that we establish the strong convergence of S ε to S in V ′ (B). For every θ ∈ V (B) we have

S ε -S, θ = B (a ε -a)θ dx + Σ +∞ n=-∞ (b ε,n -b n )θ(x, t n (x)) dx, thus | S ε -S, θ | ≤ θ L 2 (B) a ε -a L 2 (B) + +∞ n=-∞ b ε,n -b n L 2 (Σ) Σ |θ(x, t n (x)| 2 dx 1 2 . (4.1)
But it is easy to establish that there exists a non negative constant C such that

Σ |θ(x, t n (x)| 2 dx 1 2 ≤ C θ V (B)
so that (4.1) yields

S ε -S V ′ (B) ≤ a ε -a L 2 (B) + C +∞ n=-∞ b ε,n -b n L 2 (Σ) .
The conclusion follows from assumptions (H1), (H2) and (H3).

The gradient concentration phenomenon

We first recall the notion of gradient Young-concentration measure introduced in [START_REF] Croce | A characterization of gradient Young-concentration measures generated by solutions of Dirichlet-type problems with large sources ESAIM Control Optim[END_REF]. Let us denote the unit sphere {-1, 1} of R by S 0 , and consider

Σ ′ ⊂⊂ Σ, B ′ ε := Σ ′ × (-ε 2 , ε 2 ). Definition 5.1. A pair (v, µ Σ ′ ) ∈ L 2 (Ω) × M + ( Ω × S 0 ) is a gradient Young-concentration measure (localized on Σ ′ ) iff there exists a sequence (v ε ) ε>0 in W 1,2 Γ0 (Ω) satisfying          sup ε>0 Ω\Bε |∇v ε | 2 dx < +∞, v ε → v in L 2 (Ω), µ ε := δ ∂vε ∂x N / ∂vε ∂x N (x) ⊗ ε1 B ′ ε | ∂vε ∂x N | 2 dx * ⇀ µ Σ ′ .
We say that the sequence (v ε ) ε>0 generates the gradient Young-concentration measure (v, µ Σ ′ ). We denote the set of gradient Young-concentration measures localized on Σ ′ by YC(Σ ′ ).

Recall that the weak convergence * ⇀ above is defined by

Ω S 0 θ(x)ϕ(ζ)dµ ε = B ′ ε εθ(x) φ( ∂v ε ∂x N ) dx → Ω S 0 θ(x)ϕ(ζ) dµ Σ ′
for all θ ∈ C( Ω) and all ϕ ∈ C(S 0 ), where the 2-homogeneous extension φ :

R → R of ϕ ∈ C(S 0 ) is defined for all ζ ∈ R m by φ(ζ) = |ζ| 2 ϕ( ζ |ζ| ), if ζ = 0, 0 otherwise.
In [START_REF] Croce | A characterization of gradient Young-concentration measures generated by solutions of Dirichlet-type problems with large sources ESAIM Control Optim[END_REF], Theorem 3.1, the gradient Young-concentration measures was characterized as follows.

Theorem 5.2 (Characterization). A pair (v, µ Σ ′ = µ x ⊗ π) belongs to YC(Σ ′ ) if and only if v ∈ W 1,2 Γ0 (Ω \ Σ), π is concentrated on Σ′ and, for every ϕ ∈ C(S 0 ) such that ϕ * * > -∞,

dπ dH N -1 ⌊Σ ′ (x) S 0 ϕ(ζ) dµ x ≥ ϕ * * ([v](x)) for H N -1 a. e. x ∈ Σ ′ S 0 ϕ(ζ) dµ x ≥ 0 for π s a. e. x ∈ Σ′ (5.1)
where π = dπ dH N -1 ⌊Σ ′ H N -1 ⌊Σ ′ + π s is the Radon-Nikodym decomposition of π with respect to the measure H N -1 ⌊Σ ′ . Remark 5.3. Although from (3.3), δ ∂vε ∂x N / ∂vε ∂x N (x) ⊗ ε1 Bε | ∂vε
∂x N | 2 dx possesses weak cluster points in the sense of the weak convergence * ⇀ made precise above, for technical reason (proof of the sufficient conditions in Proposition 3.5 in [START_REF] Croce | A characterization of gradient Young-concentration measures generated by solutions of Dirichlet-type problems with large sources ESAIM Control Optim[END_REF]), it was not possible to state such a characterization for these cluster points because of possible concentration effects on the boundary of Σ. This is the reason why we deal with gradient Young-concentration measures localized on Σ ′ ⊂⊂ Σ.

Taking into account that the 2-homogeneous extension φ :

R → R of ϕ ∈ C(S 0 ) satisfying ϕ * * > -∞ is of the form ϕ(ζ) = cζ 2 if ζ ≥ 0 dζ 2 if ζ ≤ 0,
with (c, d) ∈ R + × R + , the above characterization theorem can be reduced to the following (cf Corollary 3.6 in [START_REF] Croce | A characterization of gradient Young-concentration measures generated by solutions of Dirichlet-type problems with large sources ESAIM Control Optim[END_REF])

Corollary 5.4. A measure (v, µ Σ ′ = (a(x)δ 1 + b(x)δ -1 ) ⊗ π) belongs to YC(Σ ′ ) if and only if v ∈ W 1,2 Γ0 (Ω \ Σ), π is concentrated on Σ′ and dπ dH N -1 ⌊Σ ′ (x) a(x)c + b(x)d ≥ ϕ([v](x)) for H N -1 ⌊Σ ′ a.e. x and for all (c, d) ∈ R + × R + where ϕ(ζ) = cζ 2 if ζ ≥ 0 dζ 2 if ζ ≤ 0 .
As stated in [START_REF] Croce | A characterization of gradient Young-concentration measures generated by solutions of Dirichlet-type problems with large sources ESAIM Control Optim[END_REF] Remark 2.5, every sequence (u ε ) ε>0 satisfying (3.3) generates a gradient Youngconcentration measure. Therefore every sequence (ū ε ) ε>0 , ūε ∈ argmin F ε , generates a measure μΣ ′ ∈ YC(Σ ′ ). Let ū be a strong limit of (ū ε ) ε>0 in L 2 (Ω), then, under the condition g ∞,2 ( ξ, ξ 3 ) ≥ g ∞,2 ( 0, ξ 3 ), the next theorem states that the internal term H in ( θ) (cf (3.1)) where θ is the solution of inf θ∈X(ū) H(θ), possesses an integral representation with respect to the Young-concentration measure μΣ ′ . In some sense we localize H in on S × {±1}. Moreover, by using Theorem 5.2 we will deduce some bounds on μΣ ′ . Theorem 5.5. Let ūε be a minimizer of min F ε (v) : v ∈ L 2 (Ω) and, for every Σ ′ ⊂⊂ Σ, (ū, μΣ ′ ) be a gradient Young-concentration measure localized on Σ ′ generated by the sequence (ū ε ) ε>0 . Then the two following assertions hold:

i) ūε → ū in L 2 (Ω), F ε (ū ε ) → F 0 (ū) = min F 0 (u) : u ∈ L 2 (Ω) ;
ii) Let F be a countable familly of Σ ′ ⊂⊂ Σ, then there exists μ ∈ M( Ω × S 0 ), μ = μx ⊗ π with π concentrated on Σ such that for all Σ ′ ∈ F, μ⌊ Σ′ × S 0 = μΣ ′ . Assume furthermore that g ∞,2 satisfies the condition ∀ξ ∈ R 3 , g ∞,2 ( ξ, ξ 3 ) ≥ g ∞,2 ( 0, ξ 3 ).

(5.2)

Then, every weak cluster point θ of the sequence (τ ε ūε ) ε>0 in V (B) satisfies H( θ) = inf θ∈X(ū) H(θ) and

1 2 -1 2 g ∞,2 0, ∂ θ ∂x N (x, s) ds = dπ dx (x) S 0 g ∞,2 ( 0, ξ 3 ) dμ x for a.e. x in Σ ′ ; H in ( θ) = Σ dπ dx (x) S 0
g ∞,2 ( 0, ξ 3 ) dμ x dx.

(

Proof. According to the variational nature of the Γ-convergence, for a subsequence one has

ūε → ū in L 2 (Ω) lim ε→0 F ε (ū ε ) = F 0 (ū) = min F 0 (v) : v ∈ L 2 (Ω) = Ω f (∇ū) dx + inf θ∈X(ū)
H(θ).

(5.4)

Fix Σ ′ ⊂⊂ Σ. From (3.3), for the subsequence (possibly dependent on Σ ′ ) associated with the gradient Young-concentration measure (ū, μΣ ′ ), there exist a subsequence and a measure μ = μx ⊗ π in M( Ω × S 0 ) with π concentrated in Σ, such that

δ ∂ ūε ∂x N / ∂ ūε ∂x N (x) ⊗ ε1 Bε | ∂ ūε ∂x N | 2 dx ⇀ μ.
Thus, from (3.11) and (5.2) we infer

lim ε→0 ε 2 B g ∇τ ε ūε , 1 ε ∂τ ε ūε ∂x N dx = lim ε→0 B g ∞,2 ε ∇τ ε ūε , ∂τ ε ūε ∂x N dx ≥ lim ε→0 Bε g ∞,2 0, ∂ ūε ∂x N dx = Σ S 0
g ∞,2 ( 0, ξ 3 ) dμ x dπ.

(5.5) Let θ be the weak limit of τ ε ūε in V (B) for the considered subsequence. Then, from (5.5) and since lim inf

ε→0 Ωε f (∇ū ε ) dx ≥ Ω f (∇ū) dx and lim ε→0 S ε , τ ε ūε = S, θ , we infer lim ε→0 F ε (ū ε ) ≥ Ω f (∇ū) dx + Σ S 0
g ∞,2 ( 0, ξ 3 ) dμ x dπ -S, θ .

(5.6)

Collecting (5.4) and (5.6) we obtain

Ω f (∇ū) dx + inf θ∈X(ū) H(θ) ≥ Ω f (∇ū) dx + Σ S 0 g ∞,2 ( 0, ξ 3 ) dμ x dπ -S, θ , in particular Ω f (∇ū) dx + H( θ) ≥ Ω f (∇ū) dx + Σ S 0 g ∞,2 ( 0, ξ 3 ) dμ x dπ -S, θ , thus B g ∞,2 0, ∂ θ ∂x N dx ≥ Σ S 0 g ∞,2 ( 0, ξ 3 ) dμ x dπ ≥ Σ dπ dx (x) S 0 g ∞,2 ( 0, ξ 3 ) dμ x dx. (5.7) 
On the other hand, by a standard lower semicontinuity argument, for every ϕ

∈ C c (Σ), ϕ ≥ 0, lim inf ε→0 B ϕ(x)g ∞,2 0, ∂τ ε ūε ∂x N dx = Σ ϕ(x) S 0 g ∞,2 ( 0, ξ 3 ) dμ x dπ ≥ B ϕ(x)g ∞,2 0, ∂ θ ∂x N dx so that 1 2 -1 2 g ∞,2 0, ∂ θ ∂x N (x, s) ds ≤ dπ dx (x) S 0
g ∞,2 ( 0, ξ 3 ) dμ x for a.e. x ∈ Σ.

(5.8)

Combining (5.7) and (5.8) we deduce

1 2 -1 2 g ∞,2 0, ∂ θ ∂x N (x, s) ds = dπ dx (x) S 0
g ∞,2 ( 0, ξ 3 ) dμ x for a.e. x ∈ Σ.

Clearly, μ⌊ Σ′ × S 0 = μΣ ′ . Now, by using a standard Cantor's diagonal process, the same equality holds for all Σ ′ of the countable familly F. It remains to show that H

( θ) = inf θ∈X(ū) H(θ). It's enough to notice that lim ε→0 F ε (ū ε ) = Ω f (∇ū) dx + inf θ∈X(ū) H(θ) ≥ lim inf ε→0 Ωε f (∇ū ε ) dx + lim inf ε→0 ε 2 B g ∇τ ε ūε , 1 ε ∂τ ε ūε ∂x N dx -S ε , τ ε ūε ≥ Ω f (∇ū) dx + B g ∞,2 0, ∂ θ ∂x N dx -S, θ = Ω f (∇ū) dx + H( θ)
which completes the proof.

We define the following two constants associated with the function g: c(g) := min g ∞,2 ( 0, -1)

g ∞,2 ( 0, 1) , g ∞,2 ( 0, 1) g ∞,2 ( 0, -1) , C(g) = 1 c(g) = max g ∞,2 ( 0, -1) g ∞,2 ( 0, 1) , g ∞,2 ( 0, 1) g ∞,2 ( 0, -1) . Recall that g ∞,2 ( 0, ξ) = g ∞,2 ( 0, -1) |ξ| 2 if ξ ≤ 0 g ∞,2 ( 0, 1) |ξ| 2 if ξ > 0 .
Moreover, from the assumption on the function g, clearly, g ∞,2 ( 0, 1) > 0 and g ∞,2 ( 0, -1) > 0.

We make precise the probability measure μx localized on Σ ′ ⊂⊂ Σ as follows:

μx := p(x)δ 1 + q(x)δ -1 with p(x) + q(x) = 1 a.e. x ∈ Σ ′ .

Corollary 5.6. Under the assumptions of Theorem 5.5, the three following estimates hold:

(i) for a.e. x in Σ ′ c(g)

1 2 -1 2 ∂θ ∂x N (x, s) 2 ds ≤ dπ dx N (x) ≤ C(g) 1 2 -1 2 ∂θ ∂x N (x, s) 2 ds, (5.9 
)

and dπ dx N (x) = 1 2 -1 2 ∂θ ∂x N (x, s) 2 ds when g ∞,2 ( 0, -1) = g ∞,2 ( 0, 1); (ii) c(g) |[ū](x)| 2 1 2 -1 2 ∂θ ∂x N (x, s) 2 ds ≤ p(x) ≤ 1 for a.e. x such that [ū](x) > 0; (iii) c(g) |[ū](x)| 2 1 2 -1 2 ∂θ ∂x N (x, s) 2 ds
≤ q(x) ≤ 1 for a.e. x such that [ū](x) < 0.

Proof. Since μx = p( x)δ 1 + q( x)δ -1 , we have S 0 g ∞,2 (ξ)dµ x = p( x)g ∞,2 ( 0, 1) + q( x)g ∞,2 ( 0, -1) with p( x) + q( x) = 1 a.e. x in Σ ′ so that from (5.3), one has = dπ d x ( x) p( x)g ∞,2 ( 0, 1) + q( x)g ∞,2 ( 0, -1) a.e. x ∈ Σ ′ . (5.10)

We are going to establish c(g) From (5.10) we deduce that min g ∞,2 ( 0, -1), g ∞,2 ( 0, 1) = p( x)g ∞,2 ( 0, 1) + q( x)g ∞,2 ( 0, -1)

dπ d x ( x)
≤ max g ∞,2 ( 0, -1), g ∞,2 ( 0, 1) dπ d x ( x) (5.11) and min g ∞,2 ( 0, -1), g ∞,2 ( 0, 1) dπ d x ( x) = min g ∞,2 ( 0, -1), g ∞,2 ( 0, 1) {p( x) + q( x)} dπ d x ( x) ≤ p( x)g ∞,2 ( 0, 1) + q( x)g ∞,2 ( 0, -1)

dπ d x ( x) = S 0 g ∞,2 (ξ)dµ x dπ d x ( x) = 1 2 -1 2
g ∞,2 ( 0, ∂θ ∂x N ( x, s))ds ≤ max g ∞,2 ( 0, -1), g ∞,2 ( 0, 1) Then, from (5.11) and ( 5.12) we have c(g)

1 2
-1 2 ∂θ ∂x N ( x, s) 2 ds = min g ∞,2 ( 0, -1), g ∞,2 ( 0, 1) max g ∞,2 ( 0, -1), g ∞,2 ( 0, 1)

1 2 -1 2 ∂θ ∂x N ( x, s) 2 ds ≤ dπ d x ( x)
and dπ d x ( x) ≤ max g ∞,2 ( 0, -1), g ∞,2 ( 0, 1) min g ∞,2 ( 0, -1), g ∞,2 ( 0, 1) The proof of (iii) is similar.
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