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Abstract

We show that the variational limit of a e-soft and thin junction problem (P:) with sources con-
centrated in the junction gives rise to a surface energy mixing the internal energy and sources. The
surface energy functional possesses an integral representation with respect to the Gradient Young-
Concentration measures generated by sequences (i )s>o of minimizers of (P:).
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1 Introduction

This paper concerns a soft thin junction subjected to concentrated sources. More precisely, let 2 be a
domain in RY and let B, := ¥ x (-5,5)CQ,¥C RN =1 be the layer occupied by the soft thin junction
(cf Figure 1). We consider the minimization problem

ue%i?m){/m& F(Vu) dx+6/BEg(Vu) i — {8, u). } (P.)

where WIEOQ(Q) denotes the space of Sobolev functions with null trace on a part I'y of the boundary
of Q, and the linear form (S¢,.). represents the work of the source (or the loading). Let B := ¥ x
(—%, %) A suitably rescaled S, of S¢ is assumed to strongly converge to some S in the dual of the space
V(B) = {u € L*(Q): a‘%\] €L? (Q)} when ¢ tends to zero. A general example of such sources which
are measures on B, is given in Section 4 of the paper. Sources of the form cﬁ]l B. Where c is any

constant and L(e) ~ €, is a trivial example of measures satisfying this condition with & = 1. Note that
in this paper the source (or the loading) S. is a non L?-continuous perturbation of the energy functional

fQ\BE f(Vu) dx + ¢ fBE g(Vu) dx.

Among the physical motivations of (P;) one may mention various applications to heat conduction or
electrostatic problems involving sources concentrated in the layer B, with conductivity or permittivity
of order the size of B.. One may also think of membrane problems with an exterior loading concentrated
in B, occupied by a material with stiffness of order the small size of B.. Such a problem with a source
concentrated in the junction was considered in [3] in a one dimensional case in order to highlight and
illustrate a gradient concentration phenomenon, but the authors were not able to express the variational
limit problem.

This paper illustrates the same gradient concentration phenomenon with a complete description of
the limit problem in the sense of I'-convergence (Theorem 3.3). When the size € of the layer goes to zero,
fields u. of bounded energy develop a discontinuity through 3. More precisely, at the variational limit,
the internal energy functional of the junction ¢ || B. g(Vu) dx and the work of the loading (S¢,u). are
combined into a functional of the type

_ , b
H(u)z/zh(;ﬁ,zﬁ—u—,%) d

and the limit problem reads as

min { /Q f(Vu)dz+H(u)} (P)

uewrlj(sz\z)

where u® denote the traces on ¥. When regarding the various studies devoted to the asymptotic modeling
of junction problems (see [2, 9, 7, 10] and references therein) the main novelty is that the density ~ depends
also of the mean “% Furthermore we show that the sequence of minimizers of (P.) (which converges
to a minimizer @ of the limit problem (P)) generates a gradient Young-concentration measure fi in the
sense defined in [3]. Then we can give an integral representation of the internal part of H with respect to
the measure i (Theorem 5.5) so that it can be localized in ¥ x {£1}. Finally this provides new bounds

on the measure fi (Corollary 5.6).

The paper is organized as follows: in Section 2 we fix notation and give a detailed description of the
problem (P.). Section 3 is devoted to the asymptotic analysis of (P.) in the sense of the T'-convergence
of the functional energy extended to L?(£2) equipped with its strong topology. In Section 4 we describe
a large class of suitable sources S.. Finally Section 5 is concerned with the analysis of the gradient
concentration phenomenon generated by sequences of minimizers of (P;). We stress the fact that one
could treat the problem in LP(2), 1 < p < 400 in the same way without additional difficulties.



2 Description of the minimization problem

Let ¢ > 0 be a small parameter intended to go to zero, more precisely taking values in a countable
subset of (0,e0] whose 0 is the only cluster point. The reference configuration of the assembly of the two
adherents and the adhesive is a cylinder Q := ¥ x (—r,r) (with r > ¢), where ¥ is a bounded domain in
RN-1 N > 2, with Lipschitz boundary. For 2 € RY we sometimes write 2 = (Z,zn) where & € RN-1,
In all the paper, C' denotes a non negative constant which does not depend on € and may vary from line
to line. We do not relabel the various considered subsequences and the symbols — and — denote various
strong convergences and weak convergences respectively. We define the following sets:

~
QZ%
B { z;» ..................... % > o
Q;%
§ J

Figure 1: physical domain

Q. =0Q \ E;
. Ty is a subset of the boundary 92 of Q such that dist(Tg,dB. N 9N) > 0 for all £ < &o;

. we write Q_, QF, Q7, QT BF and B for the sets Q. N[zy < 0] and Q. N[zy > 0], QN [zy < 0],
QNfzy > 0] and B: N [zy > 0], B- N [xny < 0] respectively.

We will be concerned with the following spaces:
. W;OQ(QE) ={ue W) :u=0o0nTg};
. W;f(ﬂ) ={ueWh(Q):u=0o0nTy};

. W;OQ(Q \2) :={ueW"2(Q\X):u=0o0nTy}, and for every z € W;OQ(Q \ %), 2% will stand for
the traces of z on ¥ considered as a Sobolev function on QF and Q™ respectively.

We say that a function h : RY — R U {400} satisfies a growth condition of order 2 if there exist a
and 8 in RT such that
ale® < h(€) < B(1+|€?) for all € € RV,

We consider two convex functions f, g : RV — R satisfying a growth condition of order 2, and we assume
that there exists a positively 2-homogeneous function ¢°? satisfying

|9(&) — g%2(©)] < B(L+[¢]*™°) for all € € RV, (2.1)



for some §, 0 < § < 2. Note that g>2 is the positively 2-homogeneous recession function of g, i.e.,

goo,2(§) _ g(tf)

T tStoo  $2

b

is convex and satisfies the same growth condition of order 2. We define the space

V(B,) = {u € L*B.): ;—u € LQ(BE)}

equipped with the norm

ou 2 3
lully (s, ;:(/B Jul? daer/B el da:)

and we denote the duality bracket between the topological dual space V'(B;) and V(B.) by (, ). The
considered total energy functional F. : L?(2) — R U {400} is defined by

Fu(u) = /QE f(Vu) dx—|—€/B 9(Vu) dz — (8%, u)c if u e W7 (Q)

e

400 otherwise,
where §¢ is given in V'(B.). Our aim is to describe the asymptotic behavior of the minimization problem
(P.) min {Fe(u) tu € LQ(Q)} ,

namely, the limit of min { F.(u) : u € L?(Q)} together with the limit of the minimizer @., and to identify
the limit problem in the framework of I'-convergence.

Let us consider the space V(B) := {u € L*(B): 6‘1’; €L? (B)} equipped with the norm

0 3
lally ) :=(/B|u|2 dx+/3|%|2dx) ,

and denote the duality bracket between V/(B) and V(B) by (.,.). The linear continuous operator

Te : V(B:) — V(B)

is defined for every x = (Z,xn) € B by m.u(Z,zn) := u(Z,exn) and we denote its transposed operator
by T'r.:
(T'1.0,u). = (0, 7.u), ¥(0,u) € V'(B) x V(B.).
We make the following assumption on the source S¢: there exists S in V/(B) such that
S. := (T7.)71S¢ strongly converges to S in V'(B).
Then, in order to identify the I'-limit of the functional F;, it will be more convenient to write the functional
F. as 5
= 10t1.u
Vu der{—:Q/ V1o, ——— dI*S,T’LLifUEWl’QQ
r = 7 [ o 25 do— (Sem it € W)

+o00 otherwise.

3 The variational asymptotic model

Let H : V(B) — R be the functional defined by

H®#) = /Bgooﬂ(o,%) dz — (S, )



We refer the fiunctional Hy, as the internal part of H. We claim that, when L?(Q) is equipped with its
strong topology, the functional F. I'-converges to the functional Fy : L?(Q) — R U {+oco} given by

. . 1,2
Fo(u) = /Qf(Vu) dx + 062&) H(0) if ue W (Q\ X),

400 otherwise,
where X (u) := {6 € V(B) : 0(., £3) = u*}.

Before addressing the variational convergence process, we begin by establishing some compactness
properties for sequences with bounded energy. Let us introduce the e-translate operator T. from W12(Q)
into W12(Q\X). For any function w € W12(2), w stands for its extension by reflexion on ¥ x (—2r, —r)U
(r,2r) and we define the e-translate T.w of w by

w(z,zn +5) ifzeQf;

w(Z, ey — %) ifxeQ .

Tw(Z,zn) = {

[\v]

Lemma 3.1 (compactness). Let (uz)e>0 be a sequence in L*() such that sup,~q Fe(u:) < +o0o. Then

(i)
Oug 2
JPde<C / Vu.|? d / =17 dx); 3.2
/E'“' r<Ce( [ IVl dove [ |7 ar) (3:2)

ou
su Vu, dr + 5/ ’ =
s>Ig (/QE | | B, Oz N

(iii) there exist u € W;OQ(Q \ ¥) and a subsequence of (u:)eso such that ue — u in L*() and u. — u
in WEOQ(Q,]) for alln > 0;

(ii)

2
dx) < +00; (3.3)

(iv) there exist € V(B) and a subsequence such that T.u. — 6 in V(B), i.e.

Toue — 0 in L*(B),

oT.u 00
Zee 27 in L2(B):
8%]\/ 3:CN m ( )’

moreover, eV T.us — 0 in L2(B,RN-1);
() 0(., 1) =u*.

Proof. Proof of (i). Without loss of generality, we may assume that the N — 1-dimensional Hausdorff
measure of the intersection of T'g with [xy > 0] is positive so that (i) is a mere consequence of the
following Poincaré-like inequality:

90 |2
3c > o, / 2 dz < cg</ Vel da +5/ 72 dx) Yo € WiA(Q). (3.4)
B. af B. |0zN 0
Indeed, because
TN a
o) =Tep@.0)+ [ T p(atydr Voe B,
£ aZ‘N
for all smooth function ¢ € Wllf(Q), we get
) > L g R N
ol o) <2(Tep(@,0F +2 [~ |57—p(a.0)] ).

2

Hence, integrating on B. and using trace inequality and Poincaré inequality in QF give the desired
inequality (3.4) for smooth ¢, thus for all ¢ in WEOZ(Q) by a density argument.



Proof of (ii). From the coercivity conditions satisfied by f and g, estimate (3.2), and the strong
convergence of S; in V'(B), one has

2 Ou, ?
e d d < C SE? ele
a(/QE|Vu| m—i—a/BE’axN x) < + (8%, ue)e|
= C+|<Ssa7'au€>|
< O+ ||S€HV’(B) H7'5U5||V(B)
1 Oue 2 3
= C+|[S:llyi(p (E/B |u |? dm+g/B Don dx)
2 1/2
< c+c(/ |Vu€|2d:c+€/ Oue dx) .
Q. B. axN

. 2 duc |* | \1/2 . 2
Then, setting X, := ( [Vue|”dx + € 3 d:c) , (3.3) follows from the estimate aX? <
Q. B. |9TN
C+CX..
Proof of (iii).

Step 1. We claim that there exist z € W2(Q\X) and a subsequence of (uc).., such that Tou. — z
in WH2(Q\X) and strongly in L?(Q\X). Clearly,

0 0
1,2 _
T.u. € WH*(Q\X) and oz, Tou. =1T. oz, ue for all e > 0. (3.5)

Combining the Poincaré inequality, (3.3) and (3.5), we deduce

du.
81:N

(z)

2
sup ||Tsu5||12/vl,2(9\2) < Csup </ Ve (z)|? da +5/ dx) < +o0.
e>0 e>0 Qe B,

Therefore, (T-u.),. is bounded in W?(Q\X) and the claim follows immediately.

Step 2. We establish that there exists u in L?(£2) such that we can extract from the previous subse-
quence (uc),-, a subsequence strongly converging to v in L2(92). We can write

2dr = ’LLZC2(E— Ufl?zflf
[ wera= [ meela- [ T

2

so that
2 2 2 2
fucl Py = [ TP dot [ jueta)Pdo- [ Tuc(o) do. (30)
Qtua- Be ZX((T—%,T’)U(—T‘,—T+% )

From step 1 and (3.2), we deduce that sup,.g [|uel/r2(0) < +00. Thus there exist u € L*(2) and a not
relabelled subsequence such that u. — u in L?(2). Let us prove that u = z. Since u. — u in L?(Q2) and
T.ue — z in WH2(Q\X), we have for any ¢ € C°(Q),

/u(m)w(m)dx = lim [ u(2)p(@ zy — 5)de
Q e—0 Jo 2

= lim [ T.uc(x)p(x)dx

e—0 Jo
= /z(x)cp(x)dac
Q

Thus u = z almost everywhere in 2 and we deduce that u € WH2(Q\X).
Moreover, from (3.2) we have that [, |u-(z)|*dz — 0 as e — 0. On the other hand, since T.u. — z



in L*(Q), we infer [, o [Teuc(z)?dz — [ |z(x)|*dz and fEx( (r—5.7)0(=r—r+5)) |Toue (z)[?dz — 0.
Then we deduce that ||uc|[z2(0) = [|2||L20) = ||uHL2(Q) and thus that (uc)eso strongly converges to u in
L?(Q).

Step 8. It remains to establish that for any 7 > 0, there exists a subsequence of (u.).., such that
Ug|@, — U, In W%OZ(Q,]) It will immediately result that u € W;OZ(Q\Z)
Let n > 0. Clearly, there exists 0 < &1 < 7 such that §,, C Q). for all € < e;. By the Poincaré inequality
we have
Ou,
aJUN

()

2
sup||u€H§V1,2(Qn) < Csup (/ |Vue ()] dx—|—€/ dx) < +o0.
e>0 e>0 Q.

B.

Thus, (uc).-, is bounded in WIEOQ (Qy,), and there exist w € W;OQ(QW) and a not relabelled subsequence
of (ue), satisfying u. — w in L*(Q,) and u. — w in W;OQ (). It is easily seen that in fact w = u|q, .

Proof of (iv). The weak convergence of 7.u. to some 6 in V(B) follows from (3.2) and (3.3). Indeed

1 1
sup (7/ |ue|? d:v—i—e/ dm) ’
e>0 \€ /B, Be

Csup X.: < +o0.
e>0

ou, 2
83;N

sup || Tetelly gy
e>0

IN

Now we deduce that @Tgue —+ V0 in the distributional sense so that 5675% — 0 in the distributional
sense. On the other hand, from the coercivity of g, eV7.u. weakly converges to some L?(B,RV~1)
function. Hence, eVr.u. — 0 in L?(B,RN~1).

Proof of (v). Note that 6(., £3) is well defined. Indeed, one has
1.9 11 9 11, 5

Clearly, T.uc(#,+3) = (Teu.)®(2) (in the sense of traces on X of W;OQ(Q \ X)-functions) so that
Teue (2, £3) — w* in L2(X). On the other hand, since

1 ™ 9
et (£, 08) = Toue(#, £2) +/ Tele (3, 5) ds
2 +1 8.13]\/‘

for a.e. z in B, we infer that for all ¢ € C.(¥),

/é/znus(:z,m)w(:z) dr = /E(Tug) ) dﬂ/é// %T;ZE »

By passing to the limit in (3.7), we obtain

/é/b’xwzv dx—/ (&) dm—&-/;//w@axe]v( s)e(z)dsdx

from which we deduce
/ (Z)p(2)dt = / 0(z o(z)d

Thus 6(.,£3) = u® almost everywhere in X. O

H>

Ydsdz. (3.7)

Lemma 3.2. For every u € W;OZ(Q\E) inf H(0) > —oco and there exists 0(u) € X (u) such that

0eX (u)
dnf H(0) = H(0(w).



Proof. The proof follows from standard arguments used in the direct method of the Calculus of Variation.
O

As a consequence of Lemma 3.2, in its domain W1}02 (2\ X), the functional Fj may be written

:/Qf(Vu) dx + H(0(u)).

Theorem 3.3 is the main result of this section.

Theorem 3.3. The sequence (F.).~o I'-converges to the functional Fy when L*(Q) is equipped with its
strong topology.

The proof results from the following two propositions.
Proposition 3.4. For every u € L?(Q) and every (u:)e>o strongly converging to u in L?(Q) one has

Fy(u) < limi(l)af F.(ue).
£—

Proposition 3.5. For every u € L?(QQ) there exists (v:)->0 strongly converging to u in L*(Q) satisfying
Fy(u) > limsup F_(v,).

e—0

Proof of Proposition 3.4. We may assume liminf._,o F.(u:) < +00. From Lemma 3.1 u € Wﬁf(Q \ 2)
and there exists § € X (u) such that 7.u. — 0 in V(B). Since S; — S in V/(B), one has

lim <S€, Teue) = (S, 6). (3.8)

On the other hand, since from Lemma 3.1, 4, — u in W ( y) for all n > 0, one has

limi(r)lf/ f(Vue) d;c>/f (Vu) (3.9)
e—
Finally from (iv) of Lemma 3.1 and a standard lower semicontinuity argument
< 10 ele
liirl)iglfg/Bg(VTgug, - E?iji )) dx
o = 10(reu 02 S O(Teu
> 11§L151f (62/39(V78u5,5 (B;NE)) dx—/Bg 2(eVT.ue, (8;]\,8)) da:)
-Himinf/ Oo’2(5§7'u a(TEuE)) dx
e—0 Bg getey afEN
o S 1 O(roue) = O(Teue)
> 2 < elUe - 00,2 ele
> llgglf <€ /Bg(VTEuE, = Oun ) dx /Bg (eVTeue, “orn ) dx
00
00,2 0 —~\d
+ [ 0.5 ds
_ / 720,22 ) da (3.10)
B Ozn
provided that we establish
. -~ 1 0(1eue oo ~ O(T.ue
g% <52/Bg(VTEu€, z (axN )) dx — /Bg 2(eVToue, (87]\/)) dm) =0. (3.11)
Since g°+2 is positively homogeneous of degree 2, and from (2.1), we have
N 1 0(7eue) o O(Teue)
2 v < ele)\ 0,2 \Vi 1 eUe d
/B e°g(Veue, c Ozn ) — 977 (eVT e, N )| dx
~ 10(r-u ~ 10(r.u
= 52/3 9(VToue, gig;;)) — g% (VToue, Z (3;;))‘ dz
R -5 |1 25
< 062/ 1+‘V75u5 ,M ] dx.
B e Oxzn




Thus, by using Holder’s inequality (take p = 2—36, q= %) we deduce

/ O(Teue)
B

&vN
which proves (3.11). The conclusion of Proposition 3.4 follows by collecting (3.8), (3.9) and (3.10). O

~ 10
e29(Vroue, - Telle
9 al'N

) — ¢™2(eVreu., ) dx < Ce®

Proof of Proposition 3.5. Let u € L*(2). We have to construct a sequence (v.).¢ strongly converging
to u in L?(Q) such that limsup F.(v:) < Fy(u). If Fy(u) = +o00, then u € LQ(Q)\VVIE[’)Q(Q\Z)7 and clearly,
e—0

for any sequence (v¢)eso converging to u, limsup F.(v.) < Fy(u) is true. Now, for the harder part, we
e—0

assume Fy(u) < +oo. Then u € W;UZ(Q\Z) and

Fo(u) = /Q f(Vu(e))da +  inf ().

To complete the proof, from 0 := 0(u), i.e. H(f) = , 12{ )H(Q), we construct a sequence (v )0 strongly
eX(u
converging to u in L?(f2) and satisfying
Fy(u) > limsup F_(v,).
e—0

The proof is divided into four steps: N

Step 1. Let us extend v and @ by 0 into (RN=1\ ¥) x (—r,7) and write these extensions % and 6. For
a sequence ¢ of positive numbers intended to go to 0, consider a standard sequence of molifier (ps)s and
set

N-—-1

Os = ps * 9 defined by ps * 5(%, TN) = /R ps(T — @\)5(37, xn)dy for all (Z,zn) € Q.

RN-1

ugs = ps * u defined by ps * u(Z,xn) = / ps(T —Yu(y,xn)dy for all (Z,zn) €

Clearly,
05(Z,+1) = us(z,0) for all T € X,

us € Wl’z(Q \ 2)795 S W1’2(B), (3.12)
us — uwin WH2(Q\ X)), 65 — 0 in V(B).
Next, for each § > 0, we define the sequence (vs¢)e>0 as follows:

us(@, £ g) on OF
Vs, (T, xN) = (3.13)

on B,

Obviously vs (%, zn) belongs to W12(Q) and strongly converges to us in L%(Q).
Step 2. We we claim that

lim /Q () e = /Q F(Vug)(2)da (3.14)
~ 10705
iiﬂ% <62/BQ(V7-51;5,5, ggxiji)(x)dx - <SE,T51}575>) = H(05). (3.15)
Proof of (3.14): one has
lim / (TVose)(ayde = liny ( / S (Tus)@ o - ~)de + [ J(Vus@an + §>>dx)

. f(Vu(;)(x)dx—F/Qi f(Vus)(z)dx

Q
/ f(Vus)(z)dx.
Q



Proof of (3.15): Since g°? is positively homogeneous of degree 2 and S. strongly converges to S in
V'(B), one has

i (=2 [ (985, 572 w)de = (S.,04)) = [ 420, 1) — (.6 = H(65).
B g0y B

e—0 Orn

Step 3. We establish that }irr%)/ f(Vus)dx + H(05) = Fo(u). Since
—0Jq

[ 1Fude 105 = [ 1Fusyde+ [ 9226, 7)o - (5,6,

the result is a straightforward consequence of (3.12).

Step 4. By using a standard diagonalization argument, from step 2 and step 3, there exists a mapping
e 6(¢) such that vs) — u in L*(Q2) and

. B 1 0T-v5(c
lim </ F(Vvsey)(z)de + 52/ 9(VTov5(e), - ©)
Q B

e—0

Do )(z)dx — <SE,T€1)5(E)>) = Fy(u).

The sequence (v:)e>o Where v, := vs(.) fullfils all the conditions except the boundary condition on I'y.

From assumption dist(Tg, 9B. N 9Q) > 0, and by using a standard slicing method due to De Giorgi in a
neighborhood of T'y (see [4]), one can modify v, in Q. into a function o, equal to v. in B, satisfying the
boundary condition on I'g, and limsup,_,, fQE f(Vve) dz = limsup,_,, fQE f(Vo.) dz. Still denoting by
ve this new function, we have lim._o F.(v.) = Fyp(u) and the proof is complete. O

Remark 3.6. In order to give an interpretation of the limit energy functional, it is worthwhile to write

JnfH(6) = geivrifB){ /B 9=2(0), %(x) + [u)(2)) dz — <s,9>} — (S, 1) (3.16)

where [u] = ut —u”, Vo(B) = {0 € V(B): 0 =0on ¥ x {£1}} and @(z) = zn[u|(2) + M
Thererfore when the limit source S vanishes on V' (B), by using Jensen’s inequality, infgc x (,,) H (0) reduces

to

H(u) = / 6°2 (0, [u] () di

which is nothing but the surface energy of the model obtained in [9]. When the limit source is not trivial,
by using the Euler equation associated with (3.16), it is easily seen that H is a surface energy on X of

the form
ut +u~

H(u) = / G, o) (8), (@) da

In this case we note that the energy density depends explicitly of the mean of the traces and that the
surface energy H mixes the internal energy and the work of the loading.

4 Examples of measure sources S. concentrated in B,

The general form of elements of V'(B) is given for every 6 in V(B) by (S,0) = [ sof dz+ [, 81% dx
where (sg, s1) € L?(B) x L?(B). The limit sources S considered in this section are generated by measures
8¢ in M(B.) whose slicing structure HY ~!| S ® S is such that their slicing components S§ do not present

a diffuse singular part in their Lebesgue-Nikodym decomposition in M(—5, §), i.e., are of the general form

“+o0
1 A
8 = Zac(d,et) dt + Y ben(#)der, (2

n=—oo

10



where

a: € L*(B), b., € L*(%),

ty: X — (75, 5) is a Borel measurable map.
Roughly, such sources S¢ are sums of a function in L?(B) and a countable sum of surface sources, each of
them being concentrated in the N — 1-dimensional surface included in B, whose graph is et,,. We make
the following additional assumptions:

(H1) there exists a € L?(B) such that a. — a in L*(B);
(H2) there exists b, € L?(X) such that b, — b, in L?(X) when ¢ — 0;
(H3) there exists ¢, € R* such that ”b&ﬂ”m(z) < ¢, and Z:f_oo cn < +00;

It is easy to check that the measure S. =T 7.S8° of M(B) is given by: S. = HV¥ 1|2 ® (S.); where

—+00
(So)a = ac(@,t) dt + > ben(d)0r, a)-

n=-—oo

Proposition 4.1. The measure S. strongly converges in V'(B) to the measure S defined for every
6 € V(B) by

+oo
<S,9>:/Ba(3:)9(1:) dr+ Y /Ebn(i:)ﬁ(i,tn(:&)) di.

n—=—oo

Therefore, the functional F. T-converges to the functional Fy : L*(2) — R U {400} given by

. o/p 00 = e e
) /Qf(Vu) d$+ael)réfu){/3g (O,%) d:c—/Ba9 dz — Z /an(x)e(x,tn(x)) dx}

n=—oo

Fo(u) if ue Wl (Q\ %)

+o00 otherwise.

Proof. The second assertion is a straightforward consequence of Theorem 3.3 provided that we establish
the strong convergence of S¢ to S in V/(B). For every 6 € V(B) we have

+oo
(S.—S,0) = /B(ag —a)f du +/E D (ben — bn)0(E, 10 (2)) di,

n=—oo

thus

“+o0 1
(8. = 8.0 < 10l e =gz + 3 (1o =bulliasy ([ G tu@)F ) ] @)

n=—oo

But it is easy to establish that there exists a non negative constant C' such that

1

([ 106 ta(@ )" < C 16l s

so that (4.1) yields

+oo
”86 - SHV/(B) < ||a€ - aHL?(B) +C Z Hbs,n - bn||L2(z) :
n=-—oo
The conclusion follows from assumptions (H1), (H2) and (H3). O

11



5 The gradient concentration phenomenon

We first recall the notion of gradient Young-concentration measure introduced in [3]. Let us denote the
unit sphere {—1,1} of R by S°, and consider ¥’ CC %, BL :=%' x (-5, 5).

Definition 5.1. A pair (v,uss) € L2(Q) x MT(Q x S%) is a gradient Young-concentration measure
(localized on X) iff there exists a sequence (ve)eso in Wllo (Q) satisfying

sup/ |V |* da < +oo0,
Q\B

e>0 e
ve — v in L?(),
e = 5;«;5/ 2ue | )®€1B/|8x |2 d.’EL,U,E/.

We say that the sequence (ve)eso generates the gradient Young-concentration measure (v, uxr). We denote
the set of gradient Young-concentration measures localized on ¥’ by YC(X').

Recall that the weak convergence — above is defined by

[ - f ey [ oo

for all 0 € C(Q2) and all ¢ € C(SY), where the 2-homogeneous extension ¢ : R — R of ¢ € C(S°) is defined
for all ¢ € R™ by

2 (¢ i
5(0) = {|< (7). it ¢ #0,

0 otherwise.
In [3], Theorem 3.1, the gradient Young-concentration measures was characterized as follows.

Theorem 5.2 (Characterization). A pair (v, usy = p, @) belongs to YC(X') if and only if v € WEUQ (Q\
Y), 7 is concentrated on X' and, for every ¢ € C(SY) such that ¢** > —o0,

dHNdiim@) /S . o(C) dug > **(W](2))  forHN ' a. e z e ¥

0(¢) duy, >0  forms a. e. x €Y’

(5.1)
SO

where ™ = dHNdiflLE,HN*I |2 + 75 is the Radon-Nikodym decomposition of m with respect to the measure

HN-L| 3.

Remark 5.3. Although from (3.3), § 5, | ou. ®elp, |5, Dve. \2 dx possesses weak cluster points in the

()

sense of the weak convergence — made precise above, for technical reason (proof of the sufficient conditions
in Proposition 3.5 in [3]), it was not possible to state such a characterization for these cluster points
because of possible concentration effects on the boundary of 3. This is the reason why we deal with
gradient Young-concentration measures localized on ¥/ CC 3.

BEY B:rN

Taking into account that the 2-homogeneous extension @ : R — R of ¢ € C(S°) satisfying p** > —o0
is of the form
cC?if¢>0
e(C) =19 2.
d¢eif ¢ <0,

with (¢,d) € RT x RT, the above characterization theorem can be reduced to the following (cf Corollary
3.6 in [3])

Corollary 5.4. A measure (v,usy = (a(z)d1 + b(z)d_1) ® m) belongs to YC(¥') if and only if v €
WEOQ(Q \ X), 7 is concentrated on X' and

dm

m(x) (a(z)c + b(z)d) > ([v](z)) for HN 'S a.e. z and for all (c,d) € RT x RF
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?ifC=0

where p(¢) = {dC2 ifC<0

As stated in [3] Remark 2.5, every sequence (uc)eso satisfying (3.3) generates a gradient Young-
concentration measure. Therefore every sequence (&c)e>0, U € argmin F;, generates a measure fiyy €
VC(X'). Let @ be a strong limit of (i )eso in L2(Q), then, under the condition g°2(€, &) > ¢°2(0, &),
the next theorem states that the internal term H;,, () (cf (3.1)) where  is the solution of infge y(z) H(6),
possesses an integral representation with respect to the Young-concentration measure fis;. In some sense
we localize H;,, on S x {£1}. Moreover, by using Theorem 5.2 we will deduce some bounds on fis.

Theorem 5.5. Let . be a minimizer of min {F.(v) : v € L*(Q)} and, for every ¥’ CC %, (4, jis/) be a
gradient Young-concentration measure localized on ¥’ generated by the sequence (tc)eso. Then the two
following assertions hold:

i) 4. — u in L*(), F.(u.) — Fo(a) = min {Fy(u) : u € L*(Q) } ;

ii) Let F be a countable familly of ¥' CC ¥, then there ewisls fi € M(Q x S°), i = iz @ T with
7 concentrated on X such that for all ¥’ € F, p|¥' x S° = jisy. Assume furthermore that g°2
satisfies the condition

VEER?, g™2(E &) 2 g°(0, &) (5:2)
Then, every weak cluster point  of the sequence (7eiic)e>o in V(B) satisfies H(0) = infge xa) H(0)
and

3 ~ 00 dm .
00,2 - — - 00,2 = L /.
/_ g°*(0, —&UN)(x, s) ds T (2) /SO 9°°°(0,&3) diig for a.e. & in X,

o ‘ (53)
1,0) = [ [F@ [ 0=20.6) de] da
Proof. According to the variational nature of the I'-convergence, for a subsequence one has
i, — u in L*(Q)
lim F(@ie) = Fy (@) = min { Fy(v) : v € L*(Q)}
= [ f(Va)dz+ inf H(9). (5.4)

Q feX ()

Fix ¥’ CC X. From (3.3), for the subsequence (possibly dependent on ¥') associated with the gradient
Young-concentration measure (1, fis ), there exist a subsequence and a measure i = iz @ T in M(€2 x S)
with 7 concentrated in X, such that

Ol |9 -
0 oa T 1 ——|*“ dxr — L.
ouc | puz | (o) @ LBl dr = i
Thus, from (3.11) and (5.2) we infer
i roa., L2 ; 02/ S - 0T
timet [ (S, JGE) dr =ty [ 0P, ) da
- Ou
> 1 00,2 0’ 5 d
B EI_I% ng ( 833N) *

= [ ([ g2 die) an (5.5)

Let 6 be the weak limit of 7.4 in V(B) for the considered subsequence. Then, from (5.5) and since

limi(r)lf f(Vae) de > | f(Va) dr and 1in(1)<55,7'5125> =(S,0),
=0 Jo, Q e
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we infer
lim F.(a.) /fVu dx+/ (/ 2(0), &) dpi,) 7 — (S, ).
e—0 SO

Collecting (5.4) and (5.6) we obtain

F(Va) det it H(O) > | f(V) da:—i—/i(/so g%2(0, &) dii )m-(s 9),

Q feX (u) Q

in particular

/Qf( @) dz + H(0) /fVu dx+/ (/S 9=2(0, €3) dnj) 7 — (S, ),
thus
/}390072(078835\[) de > /z<_/s° 9°%(0,&3) dﬂj) dm
> [ F@( [ 20,6 dus) .

On the other hand, by a standard lower semicontinuity argument, for every ¢ € C.(X), ¢ > 0,

.. A\ 00,2 (A OTele _ / A / 00,2
lim inf B@(ﬂﬁ)g (0, Do ) dz = w(@( » (0,3) din )dﬂ
. 00
> £)g>% (0, =—) d
> [ e 0.5 da

so that

/§ (0 aa—e)(m,s) ds < 7_T(i)/ g°%(0,&3) diip  for a.e. & € .
1 TN

2

Combining (5.7) and (5.8) we deduce

3 .00 drw -
200, (% 0,2 . .
/l 92 (0, 81‘1\1)(%8) ds = dx( )/SO 9°°°(0,&3) dppz  for ae. T € 3.

-2

(5.8)

Clearly, ji|%’ x S° = jisy. Now, by using a standard Cantor’s diagonal process, the same equality
holds for all ¥’ of the countable familly F. It remains to show that H(6) = , 1)1}{ )H (0). It’s enough to
eX(a

notice that

lim F. (@)

e—0

/f(Vﬂ) dr + €inf(’i)H(H)

hmlnf/ f(Va) dx Jrhrnlnf( /BQ(VTE’L_LE,  Orw
_ o2 00 _
f(Va) dx + (0, =—) dz — (S, 0)
Q Ox TN

/ F(Va) dz + H(a‘)
Q

v

v

which completes the proof.

We define the following two constants associated with the function g:

0,20 -1 0,20 1 00,2 -1 00,2 1
lg) o= min (L2070 97201 0,-1) g2(0,1)

~ ) ~ )3 (g)zizmax(g ~ ) N
g>2(0,1) ~g>2(0,-1) c(9) g°>2(0,1) " g>2(0,-1)
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Recall that )~ )
" =20 1) i £<0
00,2 O, — g (A
OO T i 6> 0

Moreover, from the assumption on the function g, clearly,
¢>2(0,1) > 0 and ¢>2(0,—1) > 0.
We make precise the probability measure iz localized on ¥’ CC ¥ as follows:
fz = p(2)61 + q(2)6_1 with p(2) +q(2)=1ae. &€

Corollary 5.6. Under the assumptions of Theorem 5.5, the three following estimates hold:
(i) for a.e. T in %'

1 — 2 1 — 2
2 | 08 dm 2 | 08
T < —(2) < — (2 .
e(g) / , 5oy @] @5 g @ <0 / gy @) 4 (5.9)
a9 <A>—/é 9, )2 ds when g=2(0,~1) = ¢=2(0,1);
an din T s Dn z,8 s when g , =g ,1);

5 <p(&) <1 for a.e. & such that [a](Z) > 0;

i) o) 1)

— 5 <q(z) <1 for a.e. & such that [u](Z) < 0.
90
(Z,8)| ds

N

_% GxN

Proof. Since iz = p(Z)01 + q(T)d_1, we have [, g°2(&)dm; = p(#)g>2(0,1) + q(2)g>2(0, —1) with
p(T) + ¢(ZT) =1 a.e. T in X’ so that from (5.3), one has

drm . . o ~ ~
= —z(x) {p(m)g"o’Q(O 1)+q(m)g°°’2(0,—1)} ae. €Y. (5.10)
dz
We are going to establish
| o9 * o _am 5| 09 ’
Z <@ < z :
W [ gy @) ds< F@ < [ |5 a
From (5.10) we deduce that
) ’ 3 00
. 00,2/ _ 00,2/ -~ < 00,2/ -~
min{g=20.1), =200} [ |5E @) as < [ 0™ 5@ s
0.2 arm .
= 9= (E)dp, ) o= (T)
SO
~ dm
_ 2y 00,2 00,23 _qy L 9T~
= {p@9g=20,1) + a@g=*0.-1) } (@)

~ ~ dm .
< max{g=2(0,-1), 20, 1)} (@) (5:11)
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and

: 00,2/ 00,2 dm . : 00,2 00,2 =~ 9T
min {g*2(0,~1), g2(0,1)} 2@ = min{g™*©0,-1), g0, 1) } {p(@) + ¢(@)} = @)
dm
< 3\ 00,2 =\ ,00,2 e~
< {p@g=20.1) + @92 0.~} =@
dm
_ 00,2 s
- (/SO g (g)dﬂl d/x\ (.13)
= [0 g @
_ 2
< max{g20.-0. 20,0} [ |2 (@0)| d4512)
,% N
Then, from (5.11) and (5.12) we have
Ly a5 2 min 90072(6,—1), 9“72(6,1) L v 2 —
o) [ | @) ds— 0 - }/ 0 (,9)| ds < @
2 |0zy max { g22(0, 1), g=2(0,1)} /-4 |0ow dz
and
a7 max{g“’z(a,—l), 9&72(6,1)} 3 90 2 5| 90 2
— (@) < — — / (Z, s) ds:C(g)/ —(,s)| ds
dz min{goo,2(07_1)7 900,2(0’1)} _1 or N S| oxr N
from which we deduce,
1 — 1 — 2
2| 00 . drw .. 2| 00 .
=7 < (@) < = .
c(g)/_é azN(x,s) ds < df(x) C(g)/% 8xN(x’S) ds

Let us prove (ii) and (iii). According to Theorem 5.2, for every ¢ € C(S°) such that p** > —oo,

dﬁ — k% -
W(m) /0 ©(C) diy > ™ ([v](z)) for HN lae. 2 €Y/, (5.13)
[z
dr
where ™ = %H&Tl + 75 is the Radon-Nikodym decomposition of 7 with respect to the measure
(=
H&Tl. We assume that [@](Z) > 0 and show that
_ 2
16(9)7\[11](:'3)|2 <) <1
/E R z,8)| ds
_% 8£UN ’
Let )
_ 1 e if  £=0
o(§) = { 0 it i<0 (5.14)

Clearly, ©*([a](Z)) = ¢([a)(Z)) = (1) |[u)(Z)|°. From the inequality (5.13), it follows that
o) W@ = o ([a@)

< Fo (/[ vom)
< oo [ |2 o as)( [ sterim)
— cop@r) [ | e as




Then, we obtain

a2 a2
al(& c al(& .
lH ],;9)| S (Q;HH I( )|2 <p(d) <1
C(9) /—; —BIN(:LS) ds /—é —axN(:E,s) ds
The proof of (iii) is similar. O
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