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Abstract–This study focuses on formulation of the Augmented Lagrangian and application of the Uzawa’s

algorithm to solve the homogenization problem of microscopic periodic media as in composites. Unlike in

the finite element model, an equally spaced grid system associated with the microstructure domain is used

instead of a finite element mesh topology. Moreover, the trigonometric interpolations for the field vari-

ables at every grid point help to handle the periodic conditions. The proposed approach is a compromise

between Lagrange multiplier and penalty methods, in that it enables exact representation of constraints

while using penalty terms to facilitate the iteration procedure. A typical homogenization problem will be

solved using this approach. The results show good consistency with those in literatures. Effects of the

grid density and the penalty parameter on the convergence have also been investigated.
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1 INTRODUCTION

For composites of complex microstructures, there are two different scales associated with
microscopic and macroscopic behaviors to deal with: the slowly varying global variables
and the rapidly oscillating local variables. To model a structure of such kind of material
using the finite element method (FEM) one should utilize very fine mesh density so that
the details at the microscale size can be captured. That leads to a very high computa-
tional cost and sometimes it is impossible to perform the analysis due to extremely high
requirements of computer resources. Instead, a process so-called homogenization is used
to characterize the heterogeneous material as a homogenized one and then, the equivalent
material properties are then used in the simulation of the whole structure as in a regular
FEM analysis.

For the sake of simplicity, the materials can be considered as an assembled body of
periodic unit cells as shown in Figure 1. The assumption of such periodic media has
been widely used to develop in both the mathematical analysis and the numerical mod-
els [1, 12]. Among various approaches to predict the effective properties of composites, the
mathematical homogenization method is preferable due to its systematic background and
the ease to implement [1, 10, 11]. One may use a FEM program with a slight modifica-
tion to solve the homogenization problem to obtain the homogenized coefficients without
difficulty [4, 5, 9]. Note that the periodicity conditions must be imposed through con-
straint equations to reflect the repeatability of the microstructure. Evaluation of several
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Figure 1: The macroscale and microscale of the homogenization problem.

treatments of periodicity was discussed in [2]. However, using FEM to solve the homog-
enization problem may have limitation in meshing the complicated microstructures and
handling with a large number of degree of freedom (DOF) in analysis [8].

The objective of this study is to develop an effective approach to solve the homog-
enization problem. The variable decomposition technique [3] together with formulation
of an Augmented Lagrangian is used leading to a saddle-point problem. The Uzawa’s
algorithm [6] is then applied to solve the saddle-point problem by iterations. This method
is reliable due to the fact that it is proved to be converged [3]. To eliminate the condi-
tion on periodicity of the field variables, we employ the trigonometric interpolations. The
field variables will then automatically satisfy the periodicity conditions. A grid system
associated with the microstructure domain is utilized in this approach instead of a mesh
configuration as in the finite element analysis. The meshing and the handling large num-
ber of degrees of freedom issues will not be encountered regardless the complexity of the
composite microstructure.

2 HOMOGENIZATION OF PERIODIC MEDIA

From the asymptotic expansion [1, 11], the homogenized elasticity tensor can be deter-
mined explicitly by:

ahomijkh =
1

|Y|

∫
Y

(
aijkh(y) + aijrs(y)ers(χ

kh)
)
dy (1)

where, Y =
{
y ∈ <n; 0 ≤ yi ≤ Yi, i = 1, n

}
, |Y| is the volume of the unit cell, 〈•〉 =

1
|Y|
∫
Y

(•) dy denotes the average over the unit cell Y.

χkh in (1) is the solution of the cell problem:{
− ∂
∂yj

aijrs(y)ers(χ
kh) = ∂

∂yj
aijkh(y)

χkh is Y − periodic
(2)

with the periodicity condition defined by:

If y ∈ Y 7→ vi (y) : Y− periodic or vi (y) ∈ Vper (Y) then vi (y) takes equal values on
the opposite faces of Y.

Generally, we can obtain the solution vE = χkh by solving the six cell problems and
then compute the homogenized elasticity coefficients according to (1).

As an alternative, the homogenization problem (2) with periodicity conditions can be
formulated in the following forms:
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For a given macroscopic strain E,

(PE) {Find vE ∈ Vper (Y) such that JE (vE) ≤ JE (v) , ∀v∈ Vper (Y)} (3)

where JE (v) = 1
2|Y|

∫
Y

a (E+e (v)) (E+e (v))dy

Note that the problems (2) and (3) are equivalent. Moreover, the variational formula-
tion (3) is equivalent to a problem of minimization with constraints:{

Find v ∈ Vper (Y) such that J (v)→ min
J (v) = 1

2a (v,v)− l (v)
(4)

where a (v,v) = 1
|Y|
∫
Y

ae (vE) e (v)dy; l (v) = − 1
|Y|
∫
Y

aEe (v)dy

Again, by solving 6 problems of formulation (3) or (4) with the imposed macroscopic
strains Eij =

(
T kh

)
ij

= 1
2 (δikδjh + δihδjk), where δij is the Kronecker delta symbol; the

homogenized coefficients are determined by:

ahomijkh =
〈
σkhij

〉
=

1

|Y|

∫
Y

σkhij dy =
1

|Y|

∫
Y

a
(
Tkh + e (vTkh)

)
dy (5)

In the following sections, we will briefly review the trigonometric interpolation tech-
nique and the discrete Fourier transforms. Then, we reformulate the minimization problem
(5) by using the Augmented Lagrangian method and the variable decomposition technique.
Based on these variational equations, an in-house code will be developed.

3 TRIGONOMETRIC INTERPOLATION AND THE DIS-
CRETE FOURIER TRANSFORMATIONS

Consider a unit cell Y = ]0, 1[3, with a given positive number n we define the grid points:

(xj , yk, zl) =
(

j
n ,

k
n ,

l
n

)
, where j , k , l ∈ {0, 1, ...,n − 1} as shown in Figure 2.

Due to the periodicity of the field variables, the trigonometric interpolation of a func-
tion f (x, y, z) is defined through the values at grid points f (xj , yk, zl) in the system by
using the inverse discrete Fourier transform:

f̂ (xj , yk, zl) =
∑
r,s,t

f̂jkl
n3 w

−1
jkl (xr, ys, zt) =

∑
r,s,t

f̂jkl
n3 e

2iπjxre2iπkyse2iπlzt , r , s, t ∈ {0, 1, ...,n − 1}

where, the coefficients f̂jkl of the interpolated function f̂ (x, y, z) are determined by the
discrete Fourier transform:

f̂jkl =
∑
r,s,t

f (xr, ys, zt)wjkl (xr, ys, zt) =
∑
r,s,t

f (xr, ys, zt) e
−2iπjxre−2iπkyse−2iπlzt

The values of the interpolated function f̂ (x, y, z) should be equal to the given values
of the function f (x, y, z) at grid points:

f̂ (xj , yk, zl) = f (xj , yk, zl) ,∀j, k, l ∈ {0, 1, ..., n− 1}

With the above definition of trigonometric interpolation, the field variables in the
homogenization problem will then automatically satisfy the periodicity conditions. This
benefit helps to eliminate constraints on variables and, as a consequence, to reduce the
complexity of the problem.
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Figure 2: Grid system of the periodic unit cell.

4 THE AUGMENTED LAGRANGIAN FORMULATION

By introducing a supplementary variable q, linked to v through the relation q = ∇v, the
problem (4) can be reformulated in the following form:

For a given macroscopic strain E, find

min

 1

|Y|

∫
Y

1

2
a (E + qs) . (E + qs) dy,∀v ∈ Vper (Y) and q = ∇v

 (6)

where qs = 1
2

(
q + qT

)
is the symmetric part of the tensor q = ∇v. the problem (6) is a

minimization problem in {q,v} with the supplementary constraint q=∇v. To handle this
constraint we use a Largrange multiplier to reduce the problem (6) (and also the problems
(2), (3) and (4)) to a saddle-point problem:

L (v,q, µ) = 1
|Y|
∫
Y

1
2a (E + qs) (E + qs) dy + 1

|Y|
∫
Y

µ (∇v − q) dy

where µ is a Lagrange multiplier. For r ≥ 0, the Augmented Lagrangian is defined by:

Lr (v,q, µ) =
1

|Y|

∫
Y

1

2
a (E + qs) (E + qs) dy +

1

|Y|

∫
Y

µ (∇v − q) dy +

∫
Y

r

2
|∇v − q|2dy

(7)
Then, the problem (7) is equivalent to:

Find the saddle-point (u,p, λ) such that:

Lr (u,p, λ) = min
v,q

max
µ

Lr (v,q, µ) (8)

Note that if vE is the solution of the problem (3) and (4) then it is equivalent to the
fact that {vE,qE = ∇vE, λ} is a saddle-point of Lr. Thus, we have:
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Lr (vE,qE, µ) ≤ Lr (vE,qE, λ) ≤ Lr (v,q, λ) , ∀ {v,q, µ}

Consequently, instead of solving the problem (3) or (4) for vE, we aim to find the
saddle-point {vE,qE, λ} of Lr by using the so-called Uzawa’s algorithm [3, 6]. The three-
step process at each iteration and the details of the method are given below:

Initialization:
{
q0
E, λ

1
}

are given arbitrarily.
With values of

{
qn−1
E , λn

}
calculated at the n-th iteration, vn

E,q
n
E and λn+1 at the

(n+1)-th iteration are to be determined successively by:

STEP 1: Minimization of Lr in v
Taking the variation of Lr in v, the condition of minimization leads to:∫

Y

[
(−λn∇ψ) +

(
−rqn−1

E ∇ψ + r∇vn
E∇ψ

)]
dy = 0,∀ψ ∈ Vper (Y) (9)

By applying the divergence theorem and the periodicity condition of ψ to (9), we yield:

∆vn
E = div

(
qn−1
E + λn

r

)
STEP 2: Minimization of Lr in q
Taking the variation of Lr in q, the condition of minimization leads to:

a (qn
E)s + rqn

E = −aE + r∇vn
E − λn (10)

By solving (10) we can obtain the symmetric and the anti-symmetric parts of qE. The
updated values of qn

E are: qn
E = (qn

E)s + (qn
E)a

STEP 3: Updating λn

λn+1 = λn + r (∇vn
E − qn

E) (11)

The solutions of (8) are obtained by iterations. For each iteration, there are three
steps, in which (9), (10) and (11) are readily to be processed by using the above-mentioned
trigonometric interpolations and the Fourier transforms of displacement field variables. To
avoid obtaining a local minimizer solution, the convergence criteria is employed such that
the iterating process terminates when the relative error of a variable is smaller than a
chosen value ε for a NCONV number of successive iteration. The relative error is taken in
L2−norm, i.e.

∥∥∥uk+1
i − uki

∥∥∥
L2

/∥∥uki ∥∥L2 ≤ ε. The variable value ui can be the displacement

at grid points v, divergence of the displacement q or the Lagrange multiplier λ. Once
convergence has been reached, qE coincides with ∇vE. The Uzawa’s algorithm with a
suitable choice of the initial and the multiplier values has been proved to achieve better
convergence.

5 NUMERICAL EXAMPLE

To verify the proposed method, we investigate a typical example of a unidirectional fiber-
reinforced composite material using 2D model to compare with results in [7].

A grid system of the unit cell for the 2D model is used to predict the properties of the
glans fiber/epoxy reinforced composite system as shown in Figure 3. The volume fraction
of fibers is 45%. The plane strain and perfect bonding between constituents assumptions
are made. The data on Young’s modulus and Poisson’s ratio of glass fiber and epoxy resin
are given in Table 1.
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Figure 3: Grid system if the unit cell.

Table 1. Material properties of glass fiber and epoxy

Material E (GPa) ν

E-glass fibers 70 0.2
Epoxy resin 3.5 0.35

Note that for a 2D problem, we use an exchange is notation between the tensor aijkh
and its matrix form Cij . Explicitly, in this problem we denote: C11 = a1111, C22 = a2222,
C12 = a1122 and C66 = a1212. To obtain the homogenized modulus, we will solve 3 cell
problems by successively impose the three macroscopic strains:

E =
(
T11

)
=

[
1 0
0 0

]
; E =

(
T22

)
=

[
0 0
0 1

]
and E =

(
2T12

)
=

[
0 1
1 0

]
Calculations of the homogenized values and comparisons with [7] are shown in Figure 4.

A quite good agreement can be observed. Note that [7] used the finite element method to
solve the problem with different geometries and sizes of the unit cell. The obtained results
of the present study also closely match with those in [9]. With a coarser grid density,
the solutions show a small discrepancy with the referred values. However, for finer grid
density the solutions are stable and almost identical to those of [7]. The sensitiveness of
the solution on the grid density is thus negligible after a certain level. Hence, to employ
the developed program efficiently we can use a rather coarse grid system to obtain results
with the same accuracy as in case of fine grid resolution.

The influence of the parameter r on the convergence is shown in Figure 5. We may
find that the penalty parameter needs not to tend to infinity to obtain the exact solution
as in the ordinary penalization methods, it can be small. That is one of the advantages
of the Augmented Lagrangian method, appearance of the last term in (7) improves the
convergence properties of the algorithm.

6 CONCLUSION

The Augmented Lagrangian approach associated with the trigonometric interpolation in
this study shows its effectiveness in solving the homogenization problems. The trigono-
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Figure 4: Comparison between the results obtained by the present study and those of
three FEM models in [7]: (a) C11 = C22 coefficients; (b) C12 = C21 coefficients; (c) C66

coefficient.
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Figure 5: Effects of the penalty parameter r on the convergence.

metric interpolation helps to remove the constraint on periodicity. Furthermore, the Aug-
mented Lagrangian method is a compromise between Lagrange multiplier and penalty
methods, in that it enables exact representation of constraints while using penalty terms
to facilitate the iterative procedure. Combination of these two advantages leads to a quite
promising and potential way for handling the homogenization problems, especially for
predicting properties of very complicated microstructured materials. Besides, the concept
in this approach makes it ready to be used with a microscope image of the real microstruc-
tures. The meshing and the handling large number of DOF issues will not be encountered
because the grid system is used instead of a topology of the finite element nodes. The ap-
plicability of the algorithm discussed in this study is broad, ranging from linear elasticity
to nonlinear and/or plasticity applications.
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